Frequency Comb-referenced Spectra in the v_1+v_3 Band of Acetylene

Matthew Cich, Damien Forthomme, Greg Hall, Chris McRaven, Trevor Sears, <u>Sylvestre Twagirayezu</u>

Frequency comb-referenced measurements

 ω_0

- ω_{rep} and ω_{o} are fixed to the GPS atomic clock standard. Optical frequencies good to better than 10⁻¹².
- Use the comb as a frequency ruler by phase locking a spectroscopic laser to a single comb line.
- We are currently limited to optical wavelengths between 1 and 2 microns.

 $\omega_{\text{opt}} = n \, \omega_{\text{rep}} + \omega_{0}$ (1)

Dual Beam Spectrometer

Line shape measurements

Single Line $(P(11)_e)$

Isolated Lines?

Measure the line shape as a function of pressure and temperature. But weak underlying (hot band) lines blend with the main line in ways that are difficult to quantify-particularly if their positions are not well known. Need accurate rest frequencies...

Cavity-enhanced absorption

Sub-Doppler measurements in a cavity. Laser locked to cavity; cavity referenced to comb; wavelength modulation detection.

C₂H₂ sub-Doppler measurements

Most important are the v_4 and v_5 hot bands. Example of 10110-00010 R(12)_f hot band line: **196 610.648 976 5(17) GHz**. Fractional uncertainty 8x10⁻¹².

$C_2H_2 v_5$ hot bands

HITRAN has regular J-dependent errors. Upper level is regular.

C_2H_2 , v_4 hot bands

HITRAN has J-dependent errors. We measure some small perturbations that reflect level crossings of dark states 11

Summary

- Line profiles measured at signal to noise ratios of up to 10⁵ for multiple concentrations. Challenging data for line shape models.
- Frequency measured many lines in v₄ and v₅ hot bands of v₁+v₃. Their positions will be added to the C₂H₂ data base somehow. Spectroscopic parameters can be refined from combination differences.
- Weak perturbations give information on level crossings of dark states. Published THz data may provide check on derived energy levels.

Acknowledgements

Trevor Sears

Matt Cich, Chris McRaven Gary Lopez

Greg Hall

Damien Forthomme