The NIR absorption spectrum of water vapor by CRDS between 1.26-1.70 µm: *Complete empirical line list & Continuum absorption*

<u>D. Mondelain</u>, A. Campargue, S. Kassi Laboratoire Interdisciplinaire de Physique Université Grenoble 1/CNRS

S. Mikhailenko V.E. Zuev Institute of Atmospheric Optics, Tomsk, Russia

Outline

Line list for water vapor (1.26 -1.70 μm region)

 \bullet The self-continuum in the 1.6 μm window

Conclusions and outlooks

Our CRDS spectrometers

- High sensitivity: $\alpha_{min} \sim 5 \times 10^{-11}$ cm⁻¹ (typ. in routine)
- High dynamic range: > 4 orders of magnitude
- Large spectral coverage: 1.20 1.70 μm

Fit of the recorded CRDS spectra

A Voigt profile is used for each observed lines.

 \rightarrow List of empirical positions and intensities

Origin of the data in our line list

M11: Mikhailenko *et al*, JMS 2011 L12: Leshchishina *et al*, JQSRT 2012 L13: Leshchishina *et al*, JQSRT 2013

Overview comparison with HITRAN2012

This work: 38 138 lines (for the four main isotopologues) +1372 HD¹⁸O lines + 600 HD¹⁷O lines

HITRAN: 31 381 lines

Difference mainly due to HD¹⁶O

 \rightarrow Important limitation in the transparency windows

Some deficiencies in HITRAN2012

Summary

- Complete: *v*, *S*, *E*", <u>unique</u> assig. for 40 290 transitions for the 6 major isotopologues.
- Empirical: positions rely on exp. determined energy levels.
- Evidence of some deficiencies in HITRAN2012: lack of HDO lines + some inaccurate pos. and intensities.

Adopted for the next edition of the GEISA database

Improvements on line position accuracy

Typ. accuracy: 30 MHz (1x10⁻³ cm⁻¹) obtained with wavemeters

With a frequency comb (On fly measurements of $v_{beat note}$ between DFB and comb teeth) Accuracy: < 500 kHz (without aver.) ~10 kHz (with aver.)

In collab. with Politecnico di Milano

The water vapor self-continuum in the 1.6 µm window

The (arbitrary) definition of the continuum

Continuum = $\alpha_{\text{Meas}} - \alpha_{\text{WML}}$ α_{WML} corresponds to a (Lorentz) profile within 25 cm⁻¹ of **monomer** line centre, without the 25 cm⁻¹ ('plinth').

Characteristics of the continuum

Two components (in the atmosphere):

- self-continuum
- foreign-continuum

Cross-section $(cm^2 molec^{-1} atm^{-1})$

+ Negative temp dep

Retrieval of the self-continuum

Comparison with previous experimental results near RT

Ptashnik et al

FTIR spectra from IAO TOMSK (L=612 m) $C_s = (3.4\pm2) \times 10^{-23} \text{ cm}^2 \text{ molec}^{-1} \text{ atm}^{-1}$

Bicknell et al

Calorimetric-interferometric method Search for low - absorption regions in the 1.6 - and 2.1 -µm atmospheric windows. J. Dir. Energy 2006;2:151-61.

MT_CKD: semiempirical formulation of the continuum.

Temperature dependence of C_s

Leforestier et al, JCP (2010)

We investigated the magnitude and temperature dependence (*T* dependence) of the dimer absorption in the region of $0-600 \text{ cm}^{-1}$ and the collision-induced absorption (CIA) in the region of $0-1150 \text{ cm}^{-1}$. Together with our previous study of the self water-vapor continuum contributions resulting from far-wing line shapes of the allowed H₂O lines in the infrared window between 800 and 1150 cm⁻¹, we find that the three mechanisms have completely different *T* dependence behaviors. The dimer absorption has the strongest negative *T* dependence and the continuum **1.6 µm window**

Comparison with CAVIAR FTS measurements

Comparison with CAVIAR FTS measurements

Comparison with models (At the edges)

MT_CKD V2.5 Dimer (Vigasin) Far-wings (Ma)

Mondelain et al, JGR (2014)

Comparison with models (At the center)

MT_CKD V2.5 Dimer (Vigasin) Far-wings (Ma)

Mondelain et al, JGR (2014)

Conclusion & Perspectives

• Our results provide constraints for absolute cross-sections and their temp. dependence.

• CRDS is a good alternative to FTS to measure water continuum in the transparency windows (real time monitoring at fixed spectral points during P ramp)

Perspectives:

- Clarify the contribution of adsorbed water with CRDS cells with different lengths
- Extend the T range
- \bullet Other TW (2.3 and 1.25 $\mu m)$
- Foreign continuum

Many thanks to...

A. Campargue, S. Kassi, S. Mikhailenko, S. Manigand, A. Aradj

Q. Ma and A. Vigasin

And the LEFE-ChAt program And LIA SAMIA

Increase of the absorption in SWA region due to BPS continuum

Paynter and Ramaswamy, JGR (2012)

Absorption cross-section due to WML and continuum

Increase of the absorption in SWA region due to MT_CKD V2.5 continuum

Paynter and Ramaswamy, JGR (2011)

The (arbitrary) definition of the continuum

Disagreement with the CAVIAR data (In the center of the window)

Disagreement with the CAVIAR data (In the center of the window)

Experimental data at RT In the 1.6 µm window

The different contributions to the extinction coefficient

In the center

High energy edge

Evidence of the contribution of water adsorbed on the mirrors

Comparison with the MT_CKD model and the far-wings approach (Ma)

Conclusion & Outlooks

- We provide a complete and empirical line list between 5850-7920 cm⁻¹
- Evidence of some deficiencies in HITRAN2012

Adopted for the next edition of the GEISA database

- Water vapor continuum: Measurement of C_s + temp. dep. in the 1.6 μ m window
- ⇒ Experimental constraints for the models

Perspectives:

- Other TW (2.3 and 1.25 μm)
- Extend the T range + Foreign continuum

Determination of the rotational temperature in the sample

Experimental C_s cross-sections in the NIR

From Ptashnik et al, JGR (2011)

Temperature dependence of C_s

Challenging measurements

Temperature dependence for the dimer

According to Vigasin JQSRT (2000):

$$C_{s}(v,T) = C_{s}^{0}(v) \left(\frac{T_{0}}{T}\right)^{n-2} \exp\left\{\frac{D_{0}}{k}\left(\frac{1}{T} - \frac{1}{T_{0}}\right)\right\}$$

With $D_0 = 1105 \pm 10$ cm⁻¹ (dissociation energy of the dimer) *n* : from 1.5 (harmonic oscillator approximation limit) to 4 (free internal rotations)

No wavelength dependence

Pressure dependence of the loss rate

1011)

The CRDS technique

Cavity Ring Down

Cavity Ring Down

Cavity Ring Down

Base line stability

The different contributions to the extinction coefficient

Comparison with previous experimental results near RT

Evidence of the contribution of water adsorbed on the mirrors

 $\alpha(\nu) = \alpha_{WML} + \alpha_{WC} + \alpha_{ads}$

Comparison with previous experimental results near RT

Bicknell et al

Calorimetric-interferometric method Search for low - absorption regions in the 1.6 - and 2.1 -µm atmospheric windows. J. Dir. Energy 2006;2:151-61.

Comparison with previous experimental results near RT

Ptashnik et al IAO TOMSK L=612 m $C_s = (3.4\pm2) \times 10^{-23} \text{ cm}^2 \text{ molec}^{-1} \text{ atm}^{-1}$

Bicknell et al

Calorimetric-interferometric method Search for low - absorption regions in the 1.6 - and 2.1 -µm atmospheric windows. J. Dir. Energy 2006;2:151-61.

Introduction

Remote sensing of the Earth's atmosphere requires an accurate characterization of the transparency windows

Experimental CRDS setup

 T_{diode} : -10°C – 60°C (~ 35 cm⁻¹) Spectral sampling: 2×10⁻³ cm⁻¹

80 DFB laser diodes 6nm/diode

+ ECDL

Large spectral coverage
5850 – 8330 cm⁻¹ (1.72-1.20 μm)

An ultra-sensitive technique...

Typical noise level in routine: $\alpha_{min} \sim 5 \times 10^{-11} \text{ cm}^{-1}$

2% light attenuation (~400 000 km)

... with a high dynamics

Dynamics > 4 orders of magnitude

Origin of the continuum?

Water dimer = two weakly bounded water molecules

Far-wings of the monomer absorption lines

Collision-induced absorption bands (CIA)