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Abstract

The problem of automatic audio to score alignment is nowadays well
understood, leading to high accuracies even for polyphonic music signals with
several instruments playing at the same time. Traditionally, the evaluation
metrics rely on the distance between the ground truth and the estimated
note onsets, considering a fixed tolerance threshold (e.g. 200 ms). This
criterion is suitable for many applications such as page turning or informed
sound source separation. However, other applications as automatic musical
accompaniment require more advance alignment, considering musical aspects
such as tempo in order to control the time differences between onsets of
consecutive notes, leading to aligned scores with more musical meaning.

The aim of this master thesis is to provide a solution to guide the align-
ment process from a more musical point of view in order to implement an
automatic musical accompaniment system. To this end, the most reliable
score follower algorithm of the MIREX competition is used as a base line
and extended taking into account the musical restrictions. The proposed
method is based on Dynamic Time Warping (DTW), where a tempo con-
troller is enforced within the minimum cost path computation in a novel
way.
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Rodŕıguez, Dara Dabiri and Hector Parra. Also all the others for such a great
time in Barcelona. Finally I would like to thank Caterina for her patience
and understanding; this would have not been possible without you.

ii



“thesis” — 2014/9/14 — 21:39 — page iii — #4

Contents

1 INTRODUCTION 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 2

2 STATE OF THE ART 3
2.1 Audio to Score alignment . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Early approaches to score following . . . . . . . . . . . 4

2.2 Currently used techniques for Score alignment . . . . . . . . . 5
2.2.1 Statistical methods . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Dynamic Time Warping . . . . . . . . . . . . . . . . . 7
2.2.3 Other approaches . . . . . . . . . . . . . . . . . . . . . 11

2.3 MIREX - Audio to Score Alignment task . . . . . . . . . . . . 12
2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Offline applications . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Online applications . . . . . . . . . . . . . . . . . . . . 16

3 METHODOLOGY 19
3.1 Preprocessing Stage . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 States Definition . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Spectral Patterns Learning . . . . . . . . . . . . . . . . 21

3.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Observation Model . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Path Computation . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Offline DTW based on Ellis . . . . . . . . . . . . . . . 27
3.2.4 Online implementation . . . . . . . . . . . . . . . . . . 29
3.2.5 Online DTW with restrictions . . . . . . . . . . . . . . 30
3.2.6 DTW with estimation velocity . . . . . . . . . . . . . . 30
3.2.7 Anchor points decision . . . . . . . . . . . . . . . . . . 31

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



“thesis” — 2014/9/14 — 21:39 — page iv — #5

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Music Collections . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 MIREX measures . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Subjective evaluation . . . . . . . . . . . . . . . . . . . 34

4 RESULTS 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Objective results . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Overall precision . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Standard offset . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Accuracy results . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Subjective results . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 CONCLUSIONS 40
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



“thesis” — 2014/9/14 — 21:39 — page v — #6

List of Figures

1.1 Alignment evaluation . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Basic audio to score alignment diagram . . . . . . . . . . . . . 4
2.2 Basic diagram of HMM . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Example of dynamic time warping applied to score following

presented in (Dixon, 2005) . . . . . . . . . . . . . . . . . . . . 9
2.4 Block Diagram of the Proposed Score Follower in (Carabias

et al., 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Diagram of the musical accompaniment shown in (Dannen-

berg, 1985) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Architecture of the Automatic Page-Turner from (Arzt, 2007) 17

3.1 Block diagram of the proposed method . . . . . . . . . . . . . 19
3.2 (a) MIDI Ground-Truth Transcription. (b) Combinations ac-

tivation matrix. (c) Notes-to-combination matrix (d) States-
to-combination matrix (e) Notes-to-state matrix . . . . . . . 22

3.3 Similarity matrix . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Global minimum path calculated by offline approach on top

of the similarity matrix . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Global minimum path calculated by online approach on top

of the similarity matrix . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Example of jumps type . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Global minimum path calculated by online approach with re-

strictions on top of the similarity matrix . . . . . . . . . . . . 31
3.8 Summed correlation between each state and the others with

the ”anchor” states in red . . . . . . . . . . . . . . . . . . . . 32

4.1 Estimated path using Offline algorithm . . . . . . . . . . . . . 38
4.2 Estimated path using Online with correlation algorithm . . . . 38

v



“thesis” — 2014/9/14 — 21:39 — page vi — #7

List of Tables

2.1 Review of MIREX Score Following task . . . . . . . . . . . . . 14
2.2 Table with an historical review of audio to score alignment

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Comparison of MIREX Score following task algorithms . . . . 26

4.1 Overall precision results . . . . . . . . . . . . . . . . . . . . . 36
4.2 Standard offsets results . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Accuracy results . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Subjective results . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



“thesis” — 2014/9/14 — 21:39 — page 1 — #8

Chapter 1

INTRODUCTION

1.1 Motivation

Real music performances tend to be irregular in time due to the use of tempo
as an expressivity facet. In the growing research field of Music Information
Retrieval (MIR) most of the research problems need a previous alignment of
the audio coming from the performance and some metadata like the score or
the lyrics. There are a large amount of approaches to automatically align two
time series but for some particular applications the results of such alignment
is not good enough. The usual methodologies to validate the alignment
results make use of a tolerance window. If a detected onset falls within the
range of the tolerance window it is accepted as correct. If we synthesize the
output of such approaches, the time differences within the tolerance window
of consecutive onsets lead to a ”non natural” musical performance in terms
of tempo regularity. This problematic is shown in 1.1; due to the tolerance
window criteria all the instances in the estimation are considered correct but
we the output is irregular in time. This irregularity is perceptually unpleasant
if we synthesize it.

Thus, applications such as automatic musical accompaniment need a par-
ticular alignment that takes care of the regularity of tempo.

1
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Figure 1.1: Alignment evaluation

1.2 Goals

The main goals of the thesis are the following:

• Provide background and a review of the literature in the field of audio
to score alignment

• Develop a new method for online audio to score alignment considering
tempo

• Implement different approaches to the problematic

• Evaluate our methods with state of the art techniques in the field.

• Discuss our results, conclude the work and discuss future work and
possible applications.

1.3 Structure of the thesis

In chapter two an historical review of score alignment is presented. Further-
more, the related state of the art techniques and approaches to this field
are discussed. In chapter three the methodology applied in this research is
presented, including the approach to the score alignment process and the
feature extaction step as well as the collection of databases and the evalua-
tion methods. In chpater four, results are presented and discussed. Chapter
five provides suggestions for future work in the field and summarizes the
contributions made in the scope of this research.

2
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Chapter 2

STATE OF THE ART

This section reviews relevant concepts related to audio to score alignment as
well as the main used techniques and evaluation methods. It is structured
in four subsections. The first one defines audio to score alignment from two
different prespectives; online and offline. In the second subsection, the most
used techniques nowadays in the field of score alignment are briefly explained.
The last section reviews several applications that make use of audio to score
alignment. A table that summarize the different approaches to the topic is
presented at the end of the section.

2.1 Audio to Score alignment

2.1.1 Overview

Audio to score alignment (or score matching) is the task of synchronizing
an audio recording of a musical piece with the corresponding symbolic score.
Assuming that a human music performance has tempo variations due to
both, musical expression or performance errors, the aim of audio to score
alignment is to characterize time differences between the performance and
the event timings written in the score. This alignment or synchronization is
achieved traditionally by extracting some features from the audio signal and
then finding the best match between the feature sequence and the score. A
basic diagram of the system is shown in 2.1.

There are two different approaches to the problem depending on how the
alignment is processed; offline and online. In the offline version the whole
performance is used for the alignment process. This allows the system to
”look into the future” while establishing the matching. This approach is
used when the application does not require a realtime alignment process and

3
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Figure 2.1: Basic audio to score alignment diagram

it can reach higher precision. On the contrary, in the online version (a.k.a
Score following) the alignment is performed as the signal is acquired. It can
be viewed as the task of deciding ”where” is the performance according to
its score.

The audio to score alignment problem has been addressed the beginning
of the ’80 (Dannenberg, 1985; Vercoe, 1984) and in this thirty years we can
distinguish two different epochs according to the used techniques. While un-
til 1997 most of the approaches were using string matching techniques, since
then two main methods coming from the speech recognition research field
were introduced; hidden markov models and dynamic time warping. Nowa-
days still those are the most common approaches to address score following.

2.1.2 Early approaches to score following

One of the first systems (Dannenberg, 1985) was designed by Dannenberg to
follow a monophonic MIDI input using dynamic programming and high-level
symbolic representation of the performance. Both the input and the score
are converted to strings in order to perform the best match between them.
The aim of that system was to perform a real-time musical accompaniment
system for soloist musicians. Since this approach was not able to deal with
polyphonic signals, as it was designed to deal with monophonic instrument,
it was extended later on thinking on piano performances.

In the same year another score following system was presented by Vercoe
(Vercoe, 1984) with the same purpose; an automatic accompaniment system.
In this ”Synthetic Performer” system the author wanted to use pitch as the
main audio feature but, because at that time pitch detection was not fast
enough to provide reliable results in real-time, information from the finguers
of the musician was added. This information was acquired through a series

4
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of optical sensors installed on the keys of a flute. Then, the alignment is done
by pattern matching techniques. This two primary systems presented slight
differences in performance and bigger differences in the approach. While Ver-
coe’s system is more responsive, assuming skilled musicians changing tempo
on purpose, Dannenberg achieved more robustness being less confident with
the musicians skills or his pitch detection algorithms.

Another approach also based on pitch information was introduced by
Puckette in the EXPLODE system (Puckette, 1990; Puckette and Lippe,
1992). The technique used in this score follower is based on a list of previously
unmatched notes. A pointer to the current note is used by the algorithm to
search for the maximum matching in three steps; first tries to match the
played note coming from the performance to a note in the list (to see if it is
some skiped note), then tries to match it with the current note and finally to
a note in the near future. This system was used for real live music concerts
at IRCAM until it was tested with the composition of Philippe Manoury’s
En Echo in 1993. This piece showed that the use of a finite alphabet of
tempered-scale pitches does not work for all the possible music repertoire,
leading to a more sophisticated method (Puckette and Jolla, 1995) that take
into account the vibrato of the singing voice.

2.2 Currently used techniques for Score alignment

As commented before, in the last two decades mainly two different approaches
coming from the research on speech processing have emerged in the field
of audio to score alignment. This section describes this two methods and
reviews some alternative well-known approaches.

2.2.1 Statistical methods

HMM

Hidden Markov Models (HMMs) are widely used for statistical modeling of
nonstationary stochastic processes and are widely used for speech and music.
A HMM can be described as a finite state machine where transition between
states are ruled by probability functions. In every transition the following
state has a value associated to a given probability. Probabilities from one
state to another depend only on a limited previous states that is usually set
to one. This transition probabilities are modeled as a Markov chain. The
states are not directly observable (what is called ”hidden”) and we can only
know the value emitted by each state, that is called observation. A basic
diagram is shown in 2.2. The decoding then is the search of the optimal

5
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sequence of states given a sequence of observations. The set of parameters
of a HMM can be trained to maximize the probability of a given set of
observation sequences. A more detailed discussion on HMM theory can be
found on Rabiners work.(Rabiner, 1989)

Figure 2.2: Basic diagram of HMM

One of the first approaches to score matching using HMM was introduced
in (Cano et al., 1999). Their system is built with three different HMMs
models according to each kind of observation; a note, a no-note and a silence.
The ”note” model is constructed with three different states that correspond
roughly to the energy envelope of a pitched sound; attack, sustain and release.
The ”no-note” model, related to non pitched sounds, is built in the same
manner. Finally the ”silence” model has a single state due to its nearly
flat energy envelope along the time. The lenghts of the notes are modeled
with self-transitions and the Viterbi algorithm is performed to achieve the
alignment.

Another approach to score following was the system developed in (Raphael,
1999) where a particular decoding technique is used instead of the Viterbi
algorithm. According to the information in the score each different kind of
note is modeled using several graph topologies due to its time behavoir; long
notes, short notes and ornamentations.

A similar approach for the decoding part was used in (Orio and Déchelle,
2001). In this algorithm two categories of states that represent notes are
considered; normal states (n-states) and ghost states (g-states). The g-states
are used to model three different type of performance errors according to
the score; wrong note, extra note and skipped note. Then the performance
is modeled by a two level HMM. The sequence of states is then decoded

6
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by a dynamic programming based algorithm instead of the classical Viterbi
method. This work is detailed and extended in (Cont, 2004).

While most of the previous approaches were designed for monophonic
inputs or polyphonic instruments with the same timbre (piano or guitar),
in (Cont, 2006) a system to deal with complex polyphonic music was pre-
sented. As in the previous algorithms, the score is defined as a hidden Markov
chain of states representing sequential events but multipitch observation us-
ing Non-negative Matrix Factorization (NMF). The pitch classes used for the
matching process are learnt offline using sound examples databases.

Also considering polyphonic music as the input and using the previous
works developed in IRCAM for automatic musical accompaniment Raphael
developed the Musical Plus One (MPO) (Raphael, 2010). This system is
composed of three sub-tasks called ”Listen”, ”Predict” and ”Play”. In the
first step is where the onsets of the notes are identified using the same hidden
Markov model approach used in previous works.

Afterwards, a score following system to separate sound sources, the Sound-
Prism, was presented in (Duan and Pardo, 2011). In this work each frame is
represented by a pair of values; score postion and tempo. The sequence of
states is inferred using particle filtering.

Other approaches were presented afterwards using also particle filtering
for decoding. A particle filter is an algorithm that estimates a latent variable
given some observables variables (Arulampalam et al., 2002). It is been used
lately for score following algorithms like the one used in (Otsuka et al., 2011).
In this approach the observable variable is the audio signal and the latent
variables are the score position and tempo. The particle filter estimates the
distribution of the position and tempo as the density of particles. Finally, the
algorithm outputs three type of values corresponding to the score position,
the tempo and an estimation confidence number. According to this estima-
tion value, the system reports either both the score position and tempo or
only the tempo, in order to switch between the two levels of the system; ”Lis-
ten” (just needs tempo) or ”Play” (needs both score position and tempo).
The auhtors state two main advantages of their approach: enables incremen-
tal and simultanious estimation of the score position and tempo and can be
done in real-time due to multi-threading computing technique.

2.2.2 Dynamic Time Warping

Overview

Dynamic Time Warping (DTW) is a technique used to align time series or
sequences widely used in speech recognition, data mining and information

7
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retrieval. The series are presented by 2 vectors U = u1, ..., un and V =
v1, ..., vn containing feature vectors in each position. The alignment of the
two sequences is done by computing the local distances between the different
positions. This distances are represented in a m × n matrix the positions
of which are the cost, calculated usually with the Euclidian distance, for
aligning each pair (ui, vi). A 0 cost means a perfect match and the other
costs are all positives. Once this matrix is computed, the DTW algorithm
finds the minimum cost path W = W1, ...,Wi. Each Wk represent an ordered
pair (ik, jk) of aligned vector positions according to the cost matrix built in
the previous stage. Then the cost of a path is the sum of the local match
costs of the path D(W ):

D(W ) =
l∑

k=1

dU,V (ik, jk)

The cost path has to satisfy three constraints to reach the expected results:

1. W is bounded by the end of both sequences: W1 = (1, 1) and Wl =
(n,m)

2. W is monotonic: ik+1 >= ik and jk+1 >= jk

3. W is continuous

Often other global path constraints are used to reduce the complexity of
the computing, i.e. the limitation of the path to lie within a fixed distance
of the diagonal.

The minimum cost path is computed by dynamic programming, technique
that consists in two stages;

1. Forward step: the lower-cost path is calculated for all the neighbors in
the matrix plus the cost to get from the neighbor to the current point.
This is done recursively with:

D(i, j) = min


D(i, j − αj) + d(i, j)
D(i− α, j) + d(i, j)

D(i− αi, j − αj) + σd(i, j)


Where αi ranges from 1 to I and αj ranges from 1 to J . To assure
diagonality σ is used. Then the cost for more similar frame pairs is
zero and the other pairs have positive costs.

2. Traceback stage: the global path is obtained by tracing the recursion
backwards from the final position D(I, J).

8
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So alignment of DTW is essentially done in 3 steps:

• Extraction of comparable features from the 2 time series

• Calculation of local distances between the feature vectors of the 2 times
series

• Computation of the optimal path with respect to the global distance

A graphic example of the method is shown in 2.3

Figure 2.3: Example of dynamic time warping applied to score following
presented in (Dixon, 2005)

DTW for score alignment

The DTW algorithm needs two sequences with the same type of data to
perform an alignment process. In the case of score following the two sequences
are the score and the performace. The score is often treated as an audio
signal by converting it to MIDI and then using a synthesizer to create an
audio file. (Hu et al., 2003). Once both sequences are audio signals some
feature extraction processing is performed.

Most of the approaches take advantage of the spectral representation of
the audio data provided by the Fast Fourier Transform (FFT). This represen-
tation is often mapped into a more compact version, i.e. the one presented
in (Dixon, 2005), where the spectrum is compressed into 84 frequency bins.
The frequency axis is logarithmic at high frequencies and linear at low fre-
quencies, providing a simulation of the linear-log frequency sensivity of the
human auditory system.

9
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Another mapping of the frequency spectrum is achieved by using the
chroma scale (Hu et al., 2003). This vector consists of 12 elements containing
the spectral energy envelope of one pitch class. The chroma vector is com-
puted by mapping the frequency bins to nearest step in the chromatic scale.
This method proved to perform significantly better than other approaches
using MFCC due to the timbre independence of chroma, at is shown in (Hu
et al., 2003), and it is still used nowadays for orchestral performance com-
panion (Prockup et al., 2013). A particular use of this feature is presented
in (Suzuki et al., 2006). In order to take dynamics into account the sum of
chroma and delta chroma vectors is added to the algorithm. First, chroma
vectors are normalized by the sum of the elements and second the difference
from current and previous frames is computed. This two features character-
ize not only the pitch classes of the performance but the energy envelope,
leading to the best results of the MIREX 2010 Real-time to Score Alignment
task.

Several other approaches to the feature extraction process have been pre-
sented depending on the particular application and the type of input data.
The optimal features for polyphonic music, the alignment of which is more
critical according to the selected feature, are discussed in (Joder et al., 2013).

Dixon’s Implementation of the DTW algorithm

The first attempt to implement DTW online was done by Simon Dixon
(Dixon, 2005). In this approach a low-level spectral representation of the
signal is performed as the first step of the processing. Then the data is
mapped into 84 frequency bins in a linear-log way; linear for frequencies be-
low 370 Hz and logarithmic with semitone spacing for frequencies from 370
Hz up to 12.5 kHz. The Euclidian distance is used to create a matrix with
the distances of the two feature vectors in which the DTW is computed.

The time and space complexity of the standard implementation of DTW
is quadratic in the length of the sequences, leading to some limits for an onlie
aplication. To solve that, Dixon proposed a constant constraint of DTW in
order to get a linear algorithm. Then a forward estimation of the minimum
path is performed.

DTW implementation using Spectral factorization

The high accuracy current results in score following (MIREX 2013) is achieved
also using a DTW-based algorithm (Carabias et al., 2012). This system has
two separate stages; a preprocessing step and the alignment, as it is shown
in 2.4. In the first step the different states are defined as an unique combi-

10
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nation of notes in a particular time location. These states are used as basis
functions for the alignment. A method based on NMF is used to learn the
basis functions and then to search these states in each frame of the perfor-
mance, resulting in a distorsion matrix that shows the cost of each state at
each frame. Finally, the alignment is achieved applying the DTW to the
distorsion matrix.

Figure 2.4: Block Diagram of the Proposed Score Follower in (Carabias et al.,
2012)

2.2.3 Other approaches

Graphical Models

Graphical models are graphs in which nodes represent random variables.
They provide a tool for dealing with uncertainity and complexity, issues
that commonly emerge working with real music performances. To deal with
such complex systems, graphical models base their design in the notion of
modularity, where a complex system is built by combining simpler parts. A
detailed discussion is presented in (Murphy, 2001).

C. Raphael was the first to use this approach for audio alignment (Raphael,
2006). He stated that previous approaches were not considering proper mod-
els for note lengths; either constraining it to some range or modeled as ran-
dom, with their distribution depending on a global tempo or learned from
past examples. In Raphael’s algorithm a note-level model representing both

11
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tempo variations and note-by-note deviations is presented. This model is
then combined with a model based on pitch information.

Bayesian Networks

Another graphical approach to represent uncertainity is a Bayesian Network
(BN). As discussed in (Heckerman, 1995), it is a knowledge representation
that combines expert domain knowledge and statistical data. The learning
process, similar to the neural networks mehtod, is done by encoding the
expert knowledge in a Bayesian network and then using a database to update
this knowledge.

A real-time accompaniment system was presented using this method
(Raphael, 2001) to represent the joint distribution on the times at which
the notes from the soloist and the accompaniment are played. This system
consists of three different components; ”listen”, ”synhtesize” and ”antici-
pate”. The first is modeled using HMM, the second consists is where the
audio file is synthesized according to the variables tempo detected in the
performance and the third uses the BN to mediate between the two previous
states.

This approach was used lately in (Flossmann and Widmer, 2011) for
musical retrieval purposes.

2.3 MIREX - Audio to Score Alignment task

The Music Information Retrieval Evaluation eXchange (MIREX)1 holds a
Real-time Audio to Score Alignment task (also known as Score Following)
since 2008.

Database

The database consists of 3 datasets composed by recordings of human played
peformances and their corresponding symbolic representations of the score
(in MIDI format). The audios are recorded with a sample frequency of 44.1
kHz and a 16 bits quantization in wave format. The content of these datasets
is:

1. Composed by 46 recordings extracted from 4 distinct musical pieces

1http://www.music-ir.org/mirex/wiki/MIREX_HOME
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2. Consists of 10 human played J.S. Bach four-part chorales. Each piece
is performed by a quartet of instruments: violin, clarinet, tenor sax-
ophone and bassoon that are recorded separately. The recordings are
then mixed to create 10 performances with four voices.

3. Composed by 3 piano performances of the Prelude in G minor op.23 -
5 by Serguei Rajmaninov

Evaluation metrics

The main metric to evaluate the Score Following task in MIREX is the aligned
rate (AR) or precision. It is defined as the proportion of correctly aligned
notes in the score and it ranges from 0 to 1. An note is considered correct
if its onset does not deviate more than 2000 ms from the ground truth. The
not reported notes that are present in the reference are considered as missed
notes, and the notes with start times outside the 2000 ms threshold are
considered misaligned notes. Other metrics considered in MIREX are;

• Miss rate: percentage of missed score events

• Misalign rate: percentage of misaligned events

• Mean offset: average sign-valued time offset

• Average offset: average absolute-valued time offset between an esti-
mated note onset and its real onsets.

• Standard offset: standard deviation of sign-valued time offset.

• Average latency: difference between detection time and the time the
algorithm processes the audio.

These measures are calculated both over the whole dataset and for each
sound, leading to two different precision rates;

• Overall precision rate: percentage of correct aligned score events

• Piecewise precision rate: average for each piece of the value

Last years summary

As commented previously, the Score Following task is been adressed in MIREX
since 2008 but it uses the evaluation metrics from the preceding section since
2010. In 2.1 a review of the algorithms presented in the task is shown de-
tailing their alignment technique, the used feature and the total precision.

13
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Year First author Features Alignment technique Total precision
2013 ChunTa Chen - - 67,10 %
2013 Julio J. Carabias Spectral functions using NMF DTW 86,70 %
2012 ChunTa Chen - - 67,10 %
2012 Ryuichi Sakamoto chroma, onsets SCRFs, LDS 52,81 %
2012 Julio J. Carabias Spectral functions using NMF DTW 83,01 %
2011 ChunTa Chen - - 64,90 %
2011 Kosuke Suzuki chroma DTW 67,11 %
2010 Andreas Arzt low-level spectral representation DTW 50,84 %
2010 Zhiyao Duan multipitch, tempo HMM 49,11 %
2010 Francisco J. Rodriguez Serrano multipitch DTW 32,17 %
2010 Francisco J. Rodriguez Serrano multipitch DTW 32,44 %
2010 Kosuke Suzuki chroma and delta chroma DTW 73,97 %

Table 2.1: Review of MIREX Score Following task

2.4 Applications

This section reviews several applications of audio to score alignment in two
separate sections; offline and online applications.

2.4.1 Offline applications

As commented previously, in the offline score alignment the whole perfor-
mance is available for the alignment process. Thereby, non causal algorithms
can be developed, leading to higher matching precision results. In this section
the main applications that take advantage of this property are reviewed.

Intelligent audio editors

The widely used audio editing softwares allow multi-track recordings to be
manipulated by moving notes, correcting pitch and making other post pro-
cesses to the audio information. As this work can be costly in time and
money due to the increasing demand of the music industry, some ”intelli-
gent” tools were developed to automatically make adjustments to note pitch,
timing and dynamic level. This intelligent audio editors, as the one presented
in (Dannenberg, 2007), take advantage of the higher accuracies of the offline
audio alignment approaches.

Music retrieval applications

One of the challenges in Music Information Retrieval (MIR) is to find the cor-
respondences among different representations of the same music composition.
The alignment of these representations is crucial for a proper comparison.

In (Hu et al., 2003) an audio matching and alignment system for music
retrieval is presented. The algorithm is based on DTW and several audio

14
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features. Both the query and the MIDI database are converted to chroma and
MFCC repesentations to obtain two comparable sequences of vectors. After a
normalization step, a similarity matrix is create by computing the Euclidian
distance between the vectors. The alignment is achieved by computing DTW
to the matrix.

A particular approach to MIR is Query-by-humming (QbH). This is ba-
sically a music retrieval system that involves taking a user-hummed melody
as the input query. The query is then compared to an existing database to
obtain a ranked list of music closest to the query. In (Mcnab et al., 1996),
string matching techniques are used for such a purpose.

Score-informed Source Separation (Offline)

The approach to source separation that is guided by a musical score is usu-
ally known as score-informed source separationand is widely used nowadays.
A key ingredient of such a problem is the labeling of audio with symbolic
pitches. In order to do that, an audio to score alignment process is impera-
tive.

One of the first examples of this method is presented in (Woodruff et al.,
2006). In this approach a source separation system is implemented aim-
ing to separate sound sources from stereo mixtures to allow remixings of the
recordings. The system uses knowledge of the written score and spatial infor-
mation from an anechoic, stereo mixture. Here, the alignment is performed
by converting the MIDI file (score) and the audio file into a chromagram
representation. Then the next step uses DTW to find the best alignment
using the Euclidian distance between the two chroma vectors.

A more recent approach to source separation using knowledge from the
score is presentd in (Hennequin et al., 2011). In this case the information in
the score is used to initialize an algorithm which computes a representation
of the spectrogram. This representation is computed with a non-matrix
factorization (NMF) technique. The separation of the sources in the mixture
is achieved with time-frequency masks that the algotihm provides.

Another approach, using also NMF, is the one related in (Fritsch, 2013).
Here, the separation method is composed of two different phases consisiting
of two consecutive NMF routines; one to learn the components of each in-
sturment from the score and the other to fit these components to the actual
mixture. As in many other cases, a MIDI score is used to synthesize each
instrument separately. Then, a dynamic time warping (DTW) algorithm is
used to align the synthesized signals on the mix.

A review of the research problem and its state of the art techniques is
presented in (Ewert et al., 2014).

15
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2.4.2 Online applications

The online approach to score alignment, usually known as score following,
has a broad variety of applications. These applications are real-time so the
alignment algorithm has to deal with the trade off between accuracy and
velocity.

Automatic musical accompaniment

The first automatic musical accompaniment of a soloist musician was devel-
oped by Dannenberg (Dannenberg, 1985) using string matching techniques
and dynamic programming. In this approach, the computer is given a score
containing parts for the soloist and for the corresponding accompaniment.
The problem is then divided in three different parts;

• recognise what the soloist is doing

• match the input to the score

• produce and accompaniment

For the alignment process first the score and the audio input are converted
to strings and then the best match between these strings is computed. A
basic diagram of the system is shown in 2.5.

Another more recent approach to automatic musical accompaniment is
the Antescofo system presented by Cont(Cont, 2007). The system is able to
anticipate the events and to respond to them in real-time while reproducing
electronic scores. It is based in an statistical approach to score following but
it enables, in advanced use, temporal interaction between the performance
and the electronic score.

Figure 2.5: Diagram of the musical accompaniment shown in (Dannenberg,
1985)

16
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Afterwards, several automatic musical accompaniment systems consider-
ing different musical inputs were developed by the same author. Some exam-
ples are the approach focused in musical ensembles (Grubb and Dannenberg,
1994) and using piano(Dannenberg and Raphael, 2006).

Automatic page turning

One of the most succesful applications of score following is the Polyphonic
Score Following (PSD) algorithm used in the Tonara Ltd. system. This
approach is based on stochastic alignment to track the musician’s position in
the score regardless of performance mistakes, noise or tempo variations. An
automatic page-turning based on Dixon’s work (Dixon, 2005) is presented
in (Arzt, 2007). The score is represented here as MIDI and then converted
into an audio file by a software synthesizer. Then the matcher step receives
one audio frame from the performance, calculates its feature vector, hands
it over to the matching algorithms, waits until they are done and then start
with the next frame. The architecture of the system is shown in 2.6.

Figure 2.6: Architecture of the Automatic Page-Turner from (Arzt, 2007)

Score-informed Source Separation (Online)

The first online system that addressed score-informed source separation in an
online fashion is the SoundPrism system presented by Duan in (Duan and
Pardo, 2011). The aim of system is to separate single-channel polyphonic
music into source signals. As commented before, it is essential to have the
performance aligned to the score before performing the source separation
step.

An HMM approach is used to model the score follower step. The obser-
vation model is based on multi-pitch estimation and the score position and
tempo are inferred using particle filtering, as commented previously.
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First author Techniques Features Year

B. Vercoe String matching Tempo and pitch 1984
R. Dannenberg String maching Pitch 1984

B. Vercoe String maching Pitch 1990
L. Grubb DP, string matching Pitch 1994

M. Puckette DP, string matching Instantaneous pitch 1995
R. Mcnab String maching Pitch, onsets 1996
P. Cano HMM F0, F0 error, Delta F0, ZCR, energy, Delta energy 1999

C. Raphael HMM Pitch 1999
N. Orio DTW Spectral peaks plus a model of attacks and silences 2001
N. Orio HMM Energy envelope, log energy, even-aodd harmonics ratio 2001

C. Raphael Bayesian Network, HMM Note onset times 2001
N. Hu DTW Chroma, MFCC 2003

S. Dixon DTW modified for online purposes Spectrum 2005
K. Suzuki DTW, locally constrained Sum of chroma and delta chroma vectors 2006

C. Raphael Hybrid graphical model Tempo and pitch 2006
A. Cont Hierarchical HMM, NMF Multi-pitch 2006

R. Dannenberg DTW RMS and F0 2007
A. Artz DTW (Dixon approach) Spectrum 2007

C. Raphael Bayesian Network, HMM Tempo and pitch 2009
C. Raphael HMM Note onset times 2010
T. Otsuka Particle Filters Tempo and pitch 2011

Tonara Ltd. Stochastic approach unknown 2011
Z. Duan HMM, particle filters Multi-pitch, tempo 2011

J.J. Carabias DTW, Spectral factorization Spectral templates using NMF 2012
M. Prockup DTW Chroma 2013

Table 2.2: Table with an historical review of audio to score alignment systems
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Chapter 3

METHODOLOGY

In this section, we describe the proposed framework for realtime audio-to-
score alignment. In 3.1 the block diagram of the proposed method is shown.
As can be seen, the framework has two stages. The preprocessing stage must
be computed beforehand and only the MIDI score is required. Then, once
the parameters are learned, alignment can be computed in realtime.

The successive stages displayed in 3.1 are detailed below.

Figure 3.1: Block diagram of the proposed method

3.1 Preprocessing Stage

The pre-processing stage is taken from the approach by J.Carabias (Carabias
et al., 2012) that performed the best result in the MIREX 2012 Score Fol-
lowing task. In this stage, the parameters for the alignment are learned from
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the score, which must be provided beforehand using MIDI representation.
This stage is performed in two successive steps; states definition and spectral
patterns learning, that are detailed below.

3.1.1 States Definition

The aim of this stage is to compute a compressed representation of the score.
First, each unique combination of notes is computed. Then, the states define
the sequence of this notes combinations, as is shown in 3.2. To compute
this states, first the binary ground-truth transcription matrix GT(n, τ) (see
figure 3.2(a)) is inferred from the MIDI score, where τ is the time in frames
referenced to the score (MIDI time) and n are the notes in MIDI scale.
In figure 3.2(a) the MIDI score involves just one instrument (a piano) but
more instruments can be defined in a score. for that cases n index refers to
each note of the different instruments. Consequently, the number of total
notes for a composition, N , is obtained as the number of different notes per
instrument multiplied by the number of different instruments. The score
defines a consecutive sequence of M states. Each state m is defined by its
combination of notes (for all instruments). Also, the score informs about
the time changes from one state to the next state. In fact, a score follower
must determine the time (referenced to the input signal) of all transitions
between states. There are only K unique combination of notes in a score
where K ≤M because some states represent the same combination of notes.

From the ground-truth transcription matrix GT(n, τ), we obtain the fol-
lowing decomposition of binary matrixes:

GT(n, τ) = Q(n, k)R(k, τ) (3.1)

where Q(n, k) is the notes-to-combination matrix, k the index of each
unique combination of notes, K the number of unique combinations for the
score and R(k, τ) represents the activation of each combination in MIDI time.
In figure 3.2(c), the note-to-combination matrix Q(n, k) is represented. This
matrix contains the notes belonging to each combination but no informa-
tion about MIDI time. Conversely, R(k, τ) matrix retains the MIDI time
activation per combination but no information about the notes active per
combination, as can be seen in figure 3.2(b).

In order to obtain the information for MIDI states required to perform the
alignment, the notes-to-combination matrix Q(n, k) is further decomposed
as

Q(n, k) = S(n,m)H(m, k) (3.2)
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where S(n,m) is the notes-to-state matrix, m the index for the MIDI
states, M the number of states and H(m, k) represents the unique combi-
nation k of notes active at each state m. In figure 3.2(e), the notes-to-state
matrix S(n,m) is represented, this matrix contains the notes belonging to
each state, while H(m, k) matrix informs about the combinations active at
each state, as can be seen in figure 3.2(d).

The matrixes here defined will be used in the next stages to perform the
alignment and are computed from the MIDI score.

3.1.2 Spectral Patterns Learning

When a signal frame is given to a score follower, the first step should be to
compute a similarity measure between the current frame and the different
combinations of notes defined by the score. Our approach is to compute a
distortion between the frequency transform of the input and just one spectral
pattern per combination of notes. A spectral pattern is here defined as a fixed
spectrum which is learned from a signal with certain characteristics. The
use of only one spectral pattern per combination allows us to compute the
distortions with a low complexity signal decomposition method. This means
that our method must learn in advance the spectral pattern associated to
each unique combination of notes for the score. To this end, a state-of-the-
art supervised method based on Non-Negative Matrix Factorizacion (NMF)
with Beta-divergence and Multiplicative Update (MU) rules is used, but in
this work, we propose to apply it on synthetic signal generated from the
MIDI score instead of the real audio performance.

First of all, let us define the signal model as

Y(f, τ) ≈ Ŷ(f, τ) = B(f, k)G(k, τ) (3.3)

where Y(f, τ) is the magnitude spectrogram of the synthetic signal, Ŷ(f, τ)
is the estimated spectrogram, G(k, τ) matrix represents the gain of the spec-
tral pattern for combination k at frame τ , and B(f, k) matrix, for k =
1, ..., K, represents the spectral patterns for all the combinations of notes
defined in the score.

When the parameters are restricted to be non-negative, as it is the case
of magnitude spectra, a common way to compute the factorization is to min-
imize the reconstruction error between the observed spectrogram and the
modeled one. The most popular cost functions are the Euclidean (EUC)
distance, the generalized Kullback-Leibner (KL) and the Itakura-Saito (IS)
divergences. Besides, the Beta-divergence (see eq. 3.4) is another commonly
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Figure 3.2: (a) MIDI Ground-Truth Transcription. (b) Combinations ac-
tivation matrix. (c) Notes-to-combination matrix (d) States-to-combination
matrix (e) Notes-to-state matrix
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used cost function that includes in its definition the three previously men-
tioned EUC (β = 2), KL (β = 1) and IS (β = 0) cost functions.

Dβ(x|x̂) =


1

β(β−1)

(
xβ + (β − 1)x̂β − βxx̂β−1

)
β ∈ (0, 1) ∪ (1, 2]

x log x
x̂ − x+ x̂ β = 1

x
x̂ + log x

x̂ − 1 β = 0

(3.4)

In order to obtain the model parameters that minimize the cost function,
in (Lee et al., 2000) Lee proposes an iterative algorithm based on MU rules.
Under these rules, Dβ(Y(f, τ)|Ŷ(f, τ)) is shown to be non-increasing at each
iteration while ensuring non-negativity of the bases and the gains. Details are
omitted to keep the presentation compact, for further information please read
(Lee et al., 2000; Nantes, 2011). For the model of eq. (3.3), multiplicative
updates which minimize the Beta-divergence are defined as

B(f, k)← B(f, k)�

(
Y(f, τ)� Ŷβ−2(f, τ)

)
GT (τ, k)(

Ŷβ−1(f, τ)
)

GT (τ, k)
(3.5)

G(k, τ)← G(k, τ)�
B(f, k)

(
Y(f, τ)� Ŷβ−2(f, τ)

)
B(f, k)

(
Ŷβ−1(f, τ)

) (3.6)

where operator � indicates Hadamard product (or element-wise multipli-
cation), division and power are also element-wise operators and (·)T denotes
matrix transposition.

Finally, the method to learn the spectral patterns for each state is de-
scribed in Algorithm 1.

Algorithm 1 Method for learning spectral patterns combinations

1 Initialize G(k, τ) as the combinations activation matrix R(k, τ) and
B(f, k) with random positive values.

2 Update the bases using eq. (3.5).
3 Update the gains using eq. (3.6).
4 Normalize each spectral pattern of B(f, k) to the unit β-norm.
5 Repeat step 2 until the algorithm converges (or maximum number of

iterations is reached).

As explained in section III-A1, R(k, τ) is a binary combination/time ma-
trix that represents the activation of combination k at frame τ of the training
data. Therefore, at each frame, the active combination k is set to one and
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the rest are zero. Gains initialized to zero will remain zero, and therefore the
frame becomes represented with the correct combination.

The case of the combination in which there is not any active notes must
be initialized beforehand. In those MIDI frames where no signal is defined
(silence frames) and in order to avoid numerical problems, we propose to
initialize the spectral patterns associates to silence combination to a constant.
Note that a similar solution has been used in (Gemmeke et al., 2011) to
overcome the silence problem on an automatic speech recognition framework.

3.2 Alignment

In this stage, the alignment between the score and the audio performance is
accomplished in realtime once computed the information from the prepro-
cessing stage.

3.2.1 Observation Model

As explained in section 3.1.2, the spectral patterns B(f, k) for the K different
combinations of notes are learned in advance using a MIDI synthesizer and
kept fixed. Each spectral pattern models the spectrum of a unique combina-
tion.

Now, the aim is to compute the gain matrix G(k, τ) and the cost matrix
D(τ, t) that measures the suitability of each combination of notes belonging
to each MIDI time τ to be active at each frame t (referenced to the signal
input) by analyzing the likelihood between the spectral patterns B(f, k) and
the input signal spectrogram1. From the cost matrix D(τ, t), a classical DTW
approach can be applied to compute the alignment path.

To this end, we propose to use the realtime single-pitch constrained
method proposed in (Carabias-Orti et al., 2013). Although this method
was designed to address music transcription of monophonic signals, it can be
adapted for Score Following of polyphonic signals because only one combi-
nation will be active at a time. In this transcription method, the optimum
combination kopt is chosen to minimize the Beta-divergence function at frame
t under the assumption that only one gain is non-zero at each frame. Tak-
ing the combinations as the index of gains G(k, τ), this assumption is fair
because only a unique combination k of notes is active at each time (at least
when producing the audio signal).

1Note that we are using X and t instead of Y and τ to represent the signal magnitude
spectrogram and the time frames to distinguish between real world and synthetic signals.
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Thus, the signal model with the single-combination constraint for the
signal input vector at time t, xt(f), is defined as follows.

xt(f) ≈ x̂kopt,t(f) = gkopt,tbkopt(f) (3.7)

where x̂kopt,t(f) is the modeled signal for the optimum combination kopt
at frame t.

kopt(t) = arg min
k=1,...,K

Dβ (xt(f)|gk,tbk(f)) (3.8)

The signal model assumes that when combination k is active all other
combinations are inactive and, therefore, the gain gk,t is just a scalar and
represents the gain of the k combination. The model of eq. (3.8) allows the
gains to be directly computed from the input data X(f, t) and the trained
spectral patterns B(f, k) without the need of an iterative algorithm, making
the computation really fast. To obtain the optimum combination at each
frame, we must first compute the distortion obtained by the projection of
each combination at each frame and then select the combination that achieves
the minimum distortion as the optimum combination at each frame.

For Beta-divergence, the cost function for combination k and frame t can
be formulated as

Dβ(xt(f)|gk,tbk(f)) =∑
f

1

β(β − 1)

(
xβt (f) + (β − 1)(gk,tbk(f))

β − βxt(f)(gk,tbk(f))β−1
)

(3.9)

The value of the gain for combination k and frame t is then computed by
minimizing eq. (3.9). Conveniently, this minimization has a unique non-zero
solution due to the scalar nature of the gain for combination k and frame t
(see more details in (Carabias-Orti et al., 2013)).

gk,t =

∑
f

xt(f)bk(f)(β−1)∑
f

bk(f)β
(3.10)

Finally, the distortion matrix for each combination at each frame is de-
fined as:

Φ(k, t) = Dβ(xt(f)|gk,tbk(f)) (3.11)

where β can take values in the range ∈ [0, 2].
As can be inferred, the distortion matrix Φ(k, t) provides us information

about the similitude of each combination k spectral pattern with the real
signal spectrum at each frame t. Using this information, we can directly
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compute the cost matrix between the MIDI time τ and the time of the input
signal t as

D(τ, t) = RT (τ, k)Φ(k, t) (3.12)

where R(k, τ) is the combinations activation matrix defined in section III-A1.
The process is detailed in Algorithm 2.

Algorithm 2 Distortion matrix computation method

1 Initialize B(f, k) with the values learned in section 3.1.2.
2 for t=1 to T do
3 for k=1 to K do
4 Compute the gains gk,t using eq. (3.10).
5 Compute current value the distortion matrix Φ(k, t) using eq. (3.11).
6 end for
7 end for
8 Compute the cost matrix D(τ, t) between MIDI time and input signal

time using (3.12).

3.2.2 Path Computation

The computation of the maximum similarity path part is the main concern
of this master thesis. We chose a Dynamic Time Warping (DTW) approach
due to its good results in the MIREX Score Following task, a comparison
of the algorithms presented for this task in the latest years is presented in
3.1. As it is shown, the DTW performs better than other approaches for this
task.

Year DTW-based algorithms Other algorithms Best approach (total precision)

2013 1 1 DTW (86,70 %)
2012 1 2 DTW (83,01 %)
2011 1 1 DTW (67,11 %)
2010 4 1 DTW (73,97 %)

Table 3.1: Comparison of MIREX Score following task algorithms
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3.2.3 Offline DTW based on Ellis

The beginnning of this master thesis implementation of DTW is the one pro-
vided by Dan Ellis 2 in a DTW Toolbox for MATLAB. The provide routines
are:

• simmx.m: a utility to calculate the full local-match matrix i.e. calcu-
lating the distance between every pair of frames from the sample and
template signals.

• dp.m: implementation of the simple dynamic programming algorithm
that allows three steps - (1,1), (0,1) and (1,0) - with equal weights.

• dp2.m: experimental alternative version that allows 5 steps - (1,1),
(0,1), (1,0), (1,2), and (2,1) - with different weights to prefer sloping
paths but without a hard limit on regions in which matches are found.

• dpfast.m: fast version that uses a MEX routine (dpcore) to execute
the non-vectorizable inner loop. Also allows user-specified step/cost
matrix.

• dpcore.c: C source for the MEX routine that speeds up dpfast.m.

We make use of the dpfast.m and dpcore.m to built our first offline ap-
proach DTWofflineTmxTr. From the distorsion martrix coming from NMF
process a matrix of real time against midi time is built, simply by replicating
the states according to its durations (taken from the midi score). The final
similarity matrix on which the DTW is applied is shown in 3.3, using the
sample 01-ba-cl-sx-vl from the polyphonic database provided by prof. Duan
3. The similarity values are shown with the color scale used in MATLAB
for the imagesc function; the blue range colors stand for high similarity and
the red range colors for low. A maximum similarity path is clearly displayed
around the diagonal of the matrix. In order to mantain the diagonality of
the estimation we ”tune” the cost matrix. We restrict the costs proposed by
Ellis, that allows three different type of steps (1,1), (0,1) and (1,0), to only
two steps (1,1) and (1,0), considering that a group of notes in the real audio
can only be estimated as one state in the score. This leads the algorithm
to always move forward. Both the similarity matrix and the cost matrix are
passed to the Ellis code, that first computes the cumulated cost matrix and
finally gives us the global minimum path. The path is achieved thanks to

2D.Ellis http://www.ee.columbia.edu/˜dpwe/resources/matlab/dtw/
3Duan http://www.ece.rochester.edu/˜zduan/resource/Resources.

html
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Figure 3.3: Similarity matrix

a traceback algorithm performed from the antidiagonal of the matrix. An
example of the global minimum path estimated with this approach is shown
in 3.4, using the same sample.

Figure 3.4: Global minimum path calculated by offline approach on top of
the similarity matrix

As its shown, this approach is highly effective in terms of finding the
correct path and could be used for aplications that do not need real-time
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alignment.

3.2.4 Online implementation

As one of the goals of this thesis is the implementation of an alignment al-
gorithm for an automatic accompaniment system, it own nature leads to an
online approach to the alignment process. For such a purpose we imple-
mented an online version of the previous approach DTWonlineTmxTr. In
a straightforward fashion, this approach gives an estimated position in the
midi score for each time. The DTW is calculated only for the current time
and then the estimated position is given as the minimum cumulated cost of
the time. A result of this approach is shown in 3.5. As some notes are played
more than one time in the performance and some other are not played in the
way expected by the score, their feature vectors are more similar to other
feature vectors in different places of the score, leading to the wrong estima-
tions of the path shown in the figure. Although the algorithm is given the

Figure 3.5: Global minimum path calculated by online approach on top of
the similarity matrix

maximum similarity for each time, it does not have musical meaning because
a score is played usually in a monotonic fashion; one event consecutively to
the previous one. In order to achieve a variation of the path around the
diagonal of the matrix, meaning that the performance is following the events
of the score consecutively, we propose several restrictions for the minimum
search in the next section.

29



“thesis” — 2014/9/14 — 21:39 — page 30 — #37

3.2.5 Online DTW with restrictions

In order to restrict the minimum path search in some particular time ranges,
we first propose a global restriction according to our musical background; a
score is usually played with tempo variations no larger than 4 times slowly
and 4 times faster. Assuming that the tempos for music peformance are
usually between 40 bpm and 240 bpm, playing 4 times faster or slower will
still stand in the usual tempo range. To achieve that, the search of the
minimum is restricted in three different ways for each state/group of notes.
The state duration is defined as the number of frames of the state in the
original score.

1. time is below stateduration/4: the search is restricted to the duration
of the state

2. time is between stateduration/4 and stateduration ∗ 4: the search is
restricted to the current and next state

3. time is above stateduration ∗ 4: the search is restricted to the next
state.

To allow this type of jumps the cost matrix proposed by Ellis is also changed
to consider (1,2),(1,3),(1,4),(2,1),(3,1) and (4,1) steps. With this restrictions
the algorithm only searchs for local similarities and we avoid the radical
jumps produced in the previous approach due to similarities among different
times in the score. Even so, the algorithm tends to change a lot due to near
similarities and, although in a general point of view it keeps close to the
diagonal, is not as regular as the tempo performance.

3.2.6 DTW with estimation velocity

In real musical performances the tempo is usually changed regularly and
stretched around a basis tempo. For this novel approach we assume that the
note onset that we want to estimate is probably related to the tempo the
performer is been playing up to that time. With this assumption we built
a model that compute the estimation velocity and change the cost matrix
according to it in order to push the DTW in the desired direction. The
velocity is calculated as the mean of the type of jump that the path does
in a particular range time. The mean was chosen for its better results after
testing with different statistical operators as meddian or mode. The range
time is the duration of 4 consecutives states and it was chosen empirically
after some tests. The weights of the cost matrix are changed according to
the calculated estimation velocity; the weight of the step more similar to the
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velocity is kept as 1, the weigths of the closest steps are changed to 1.1 and
the others to 1.3. An example is presented in 3.6.

Figure 3.6: Example of jumps type

The estimation velocity is computed as mean(typeofjump) = (3 ∗ 1 + 2 ∗
2)/5 = 1, 4 so we would kept (1,1) = 1, change (1,2) = 1,1 and change the
others to 1,3.

The DTWonlinerestrictions algorithm uses the global constraints from
the previous section and the DTW tunning proposed here. An estimated
score position for each time is shown in 3.7.

Figure 3.7: Global minimum path calculated by online approach with restric-
tions on top of the similarity matrix

3.2.7 Anchor points decision

It is been shown that, although the local restrictions of DTW help the reg-
ularity of the estimated path, there are some places in the score where the
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algorithm has not the certainty of where to go. Moreover, there are other
places where the certainity of which state is being played is so high. This
certainty happens in the states with notes that only appear few time in the
score. Computing the spectrum cross-correlation of such state gives substan-
tial lower results than computing it for a state with notes that appear more
often in the score. These particular places in the score are taken as ”anchor”
points where the estimation velocity is calculated. Before starting the align-
ment process, a correlation between each state and the rest is calculated.
This correlation is then summed to obtain the total similarity between each
state and the others. Using the findpeaks MATLAB function to the -1 ma-
trix obtained in the previous step, several minimum point are selected. We
restrict the minimum peak distance to 3 to avoid having too close anchor
points. An example of the summed correaltion is shown in 3.8. If some of
the selected states is a silence it is discarded due to the fact that silence can
be used by musicians to change tempo.

Figure 3.8: Summed correlation between each state and the others with the
”anchor” states in red

3.3 Evaluation

3.3.1 Introduction

In this section the evaluation criteria is reviewed, as well as the used music
collections. The evaluation is splitted into two categories; one from a quanti-
tative point of view based in the MIREX evaluation framework (Davies et al.,
2009) and the other from a qualitative point of view related to perceptual
experimenst. As one of the goals of this thesis is to implement an algorithm
to be used by an automatic accompaniment system, we want to provide a
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perceptual improvement of the aligned audio in the sense that some tempo
regularity is kept in the output of the system. This goal confronts directly
with the pursued goal of having a high precision but we want to achieve a
trade-off between ”naturality” and accuracy.

3.3.2 Music Collections

Although larger digital music databases can be found nowadays, for our
particular task we need both the transcripted MIDI score and the manually
time-aligned ground truth file. In this section we present one well known
music collection widely used to validate score alignment algorithms. We also
used the MIREX database to test our final algorithm but, since the ground
truth is not provided in this collection, the results are not reviewed in this
section.

Bach10 Dataset

In order to adress some music processing research problems, Duan and Pardo
(Duan and Pardo, 2011) prepared the Bach10 Music Dataset. It is a poly-
phonic database that can be used for Audio-score Alignment as well as Multi-
pitch Estimation tracking and Source Separation. The dataset consists of of
the audio recordings of each part and the ensemble of ten pieces of four-part
J.S.Bach chorales, as well as their MIDI scores, the annotated ground-truth
for each piece. The instruments of the audio recordings are violin, clarinet,
saxophone and bassoon.

The three different types of data were generated diferently; while the
MIDI files were downloaded from the Internet the audio recordings were
recorded part by part with the musicians isolated while listening the record-
ings of others through headphones.

The ground-truth pitches and notes of the audio recordings were first
generated for each part and then combined with other parts. The audio of
the mix and each individual part were processed with a window size of 46 ms
and a 10 ms hop. The first window was centered at 23 ms from the beginning.
For each frame of the mix a RMS threshold of 0.075 is applied to discard
the unvoiced ones. For theses frames no ground pitch of any individual part
is detected. In the voiced frames a robust single pitch detection algorithm
(de Cheveigne and Kawahara, 2002) is performed for each individual part to
detect the ground pitch value. Then some manual corrections were done to fix
some apparent errors. Ground-truth notes were then formed by connecting
ground-truth pitches in adjacent frames manually.
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The alignment between audio and MIDI used as ground-truth were ob-
tained through human annotation. The auhtors built a software to record
and modify human tapped beats. A musician tapped beats using a keyboard
while listening to the adio file. This way the obtained a ground truth align-
ment between audio beat times and MIDI beat times. Then, in the text file
the beat time alignment for each note in the MIDI file is linearly interpolated.

The data of this music collection it also can be extended by exploring the
combinations of different parts of each piece. The maximum number of audio
recordings that can be generated for each piece is 15, containing four mono-
phonic parts, six duets, four trios and one quartet. Although the temporal
dynamics of these new recordings are the same as the original one, they can
be used to test algorithms in different polyphonies and instrumentations.

3.3.3 MIREX measures

We have used the same evaluation metrics than in MIREX, as commented
in 2.3. However, we decided to use an evaluation window of 200 ms instead
of the 2000 ms window used in the MIREX Score Following task. We have
considered that a window this size is too large to distinct the tiny changes
in time that a musician can do while playing..

3.3.4 Subjective evaluation

As one of the goals of this thesis is to increase the regularity of the alignment
process a perceptual evaluation shold be done to test if this goal is achieved.
We want the algorithm to produce an output that, once synthesized, could
provide a sense of ”naturality” for the audience. For such a purpose we
synthesize the outputs of the different approaches to design a straightforward
perceptual test. The synthetic signals are generated using Timidity++ with
the FluidR3 GM soundfont in the same way that in the pre-process stage of
the algorithm. The test should be done by musicians, musicologists or users
with high musical knowledge. The synthesized audios will be presented to
the users blindly (without knowing wich algorithm is used). The users will
be asked to rate the sounds according to how natural they sound to them.
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Chapter 4

RESULTS

4.1 Introduction

To evaluate our hypothesis we implemented four different algorithms accord-
ing to the different steps explained in chapter 3. We tested all the algorithms
with the music collection discussed in 3.3.2 in order to get comparable re-
sults of our approaches to the problem. We have been using the following
algorithms;

• Offline: is the offline DTW explained in 3.2.3 based on Ellis approach.
It computes the whole distorsion/similarity matrix and uses backtrac-
ing to find the aligned path.

• Online: is our particular approach to an online version of DTW. It
simply computes the minimum cumulated cost in the current time, as
is explained in 3.2.4

• Online with restrictions: as it is shown in 3.2.5 and 3.2.6 is an algorithm
based on the online version but with two type of tunings; a global
restriction and a tuning of the cost matrix of the DTW according to
the estimation velocity.

• Online with correlation: is similar to the previous one but the estima-
tion velocity is calculated in some particular times as is explained in
3.2.7.

For the evaluation of the results we use the Offline algorithm as a reference
to compare the following approaches. As we want to affect the behavior of the
DTW in a way that makes it more regular, we expect to lose some alignment
precision. Thus, the best result that we can achieve is the one this algorithm
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gives. On the other hand, we expect the Online algorithm to be the worst due
to its own nature. As it takes the maximum global similarity for each time
it should be confused by repeated notes placed in different times. For the
other two approaches we expect them to perform in a more regular fashion
during time, with an slight improvement of the precision for the Online with
correlation.

In this section the objective results using the MIREX metrics are re-
viewed. We also discuss some subjective results according to tempo natural-
ity perception of the synthesized output for the different approaches.

4.2 Objective results

4.2.1 Overall precision

The overall precision rate for the four algorithms is presented in 4.1.

Overall precision

Offline 94.98 %
Online 2.02 %
Online with restrictions 82.62 %
Online with correlation 84.67 %

Table 4.1: Overall precision results

As it is shown the best overall precision is achieved with the offline al-
gorithm due to its ”knowledge of the future”. As the minimum path is
computed having the whole audio, the decision of which is the optimal path
is taken with a higher certainity. On the other hand, the Online approach
gives a very low precision as expected, due to its ”freedom” to pick the global
minimum cumulated cost in each time. As expected, the approach using pre-
decided time places where calculate the estimation velocity performs slightly
better than using some arbitrary places. Although the precision of this two
algorithms is not as high as in the Offline approach, it is still quite good.

4.2.2 Standard offset

As commented previously, the standard offset shows the standard time de-
viation according to the annotated ground truth. The results for the four
evaluated algorithms are shown in 4.2. As expected, the lowest value is
achieved with the offline algorithm and the highest with the online. In the
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Standard offset [ms]

Offline 47.02
Online 54.59
Online with restrictions 47.90
Online with correlation 51.15

Table 4.2: Standard offsets results

case of our two proposed algorithms the one using the correlation shows a
slighlty highest value than the online with restrictions. This effect occurs
probably due to the fact that in the online with correlation approach the es-
timation velocity is calculated in fewer places. Thus, the DTW performance
is forced in a particular direction during a longer period, leading this way to
slight time deviations.

4.2.3 Accuracy results

In 4.3 the other global measures are shown, as well as the previous ones.
Precision corresponds to Overall precision, Miss corresponds to one percent-
age of missed notes, Missalign is the average misalignment in miliseconds,
As.Offset is the average offset in miliseconds and Std Offsets corresponds to
standard offset in miliseconds. As is shown in the table, the two proposed

Precision Miss Missalign Av.Offset Std Offset

Offline 94.98 0 0.05 33.02 47.02
Online 2.02 0.12 0.90 40.06 54.49
Online with restrictions 82.62 0 0.17 32.64 47.90
Online with correlation 84.67 0 0.15 25.09 51.15

Table 4.3: Accuracy results

algorithms resulting from this research (Online with restrictions and Online
with correlation) are able to align all the notes in the music collection. More-
over, the average offset is much lower than in the basic Online approach and
quite close to the best result, achieved by the Offline algorithm.
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4.2.4 Regularity

The objective of this thesis is to achieve a more regular performance of the
DTW algorithm. Before a perceptual evaluation of the results a comparison
between the Offline approach and our final Online with correlation algorithm
is shown in 4.1 and 4.2.

Figure 4.1: Estimated path using Offline algorithm

Figure 4.2: Estimated path using Online with correlation algorithm

The audio used to compare this two approaches is the first from the
music collection commented in 3.2.2. In both figures the estimated path in
a particular excerpt of time is shown on top of the confusion matrix. As
we desired, the path in the Online with correlation approach is clearly more
regular. This tendency is perceived along the whole collection. The Online
with restrictions algorithm shows a similar behavior but is not as good in
terms of precision and accuracy. Therefore, it seems that the algorithm
performs as is expected for the goal of this research. Still, the regularity of
the path is not directly linked to a more regular performance in terms. Thus,
a perceptual test is peformed in the following section.
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4.3 Subjective results

As commented in 3.3.4, we built a straightforward perceptual test to verify
the tempo regularity of the proposed approach. For such experiment we
synthesize all the audios from the used database commented in 3.3.2 using
the tools related in 3.3.4 for the four algorithms related in 4.1. We also
use the algorithm proposed in (Carabias et al., 2012) to compare the results
to a state of the art approach to the problem. The audios were presented
to five musicaly trained users (more than four years of musical studies).
After listening to each audio, the users were asked to grade how ”natural”
it sounded in terms of tempo in a five points scale from one being the least
regular to five being the most similar to a human performance. An average
of the results for the whole database for each algorithm are shown in 4.4.
As expected from previous objective results, the Online approach show the

Algorithm Average rate

Offline 3.82
Online 1
Online with restrictions 3.02
Online with correlation 3.40
J. Carabias 2012 2.85

Table 4.4: Subjective results

lowest grade and the Offline the best one. Even so, the interesting comparison
is between the two proposed algorithms in this work and the one proposed
by J. Carabias. In this case, we can see a slighlty improvement of the tempo
regularity percieved by the users.
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Chapter 5

CONCLUSIONS

The aim of this research is to adress the problem of audio to score alignment
from a musical oriented point of view, meaning that we want an output that
could be used as a musical accompaniment for the input sound with a musi-
cal sense of tempo. For such prupose we started with the implementation of
a DTW-based algorithm based on the previous work from J.Carabias, that
had the best results on the last MIREX Score Following task. Although this
approach shows high precision rate results, once we synthesize the output the
audio does not have a natural feeling in terms of tempo. This effect occurs
because the evaluation criteria considers a correct onset as falling within a
200 ms window centered in the corresponding annotated onset. Thus, two
consecutive correct onsets could be respectively at -100ms and +100ms, lead-
ing to non regular tempo performance of the output. The proposed method
focus on the performance of the dynamic time warping, using a combination
of restrictions to force the algorithm to perform in a more regular fashion.
The restrictions are applied according to what we called estimation velocity,
that is somehow related to the input sound tempo. To evaluate the perfo-
mance of the approach several algorithms are presented considering different
type of restrictions. The results show that the applied restrictions lead to a
more regular performance of the alingment process while keeping still good
results in terms of precision. Furthermore, subjective analysis indicate that
the output of this approach seems to have more musical meaning and sounds
more natural.
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5.1 Contributions

According to the goals defined in the Introduction section, in the scope of
this research the following contributions have been made;

• A review of state of the art approaches to score alignment, their tech-
niques and feature extraction methods and their applications.

• Implementation of a basic online score alignment algorithm based on
Dynamic Time Warping.

• A method to calculate the estimation velocity of the DTW performance.

• A method to restrict the performance of the DTW according to the
estimation velocity.

• Implementation of a novel online score alignment algorithm based on
previous knowledge about ”where” the estimation velocity calculation
is done.

• Analysis of the perceptual differences between the synthesized output
of different approaches to score alignment.

5.2 Future work

Based on the results of this study, the following aspects could be of interest
for future studies in the field:

• Consider musicology knowledge for the ”anchor points” decision rewied
in 3.2.7. As commented previously, musicians use tempo as an expres-
sivity facet, changing it during the performance. Although this changes
in tempo varies from one performance to another, there are some re-
current patterns that can be used to improve our algorithm.

• Development of an Automatic Musical Accompaniment for educational
and musicological purposes.

• Research on ”naturality” in perception of tempo changes to improve
the algorithm.
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