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Multiple Sound Source Location Estimation in
Wireless Acoustic Sensor Networks using DOA
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Abstract—In this work, we consider the data-association
problem for the localization of multiple sound sources in a
wireless acoustic sensor network (WASN), where each node is
a microphone array, using direction of arrival (DOA) estimates.
The data-association problem arises because the central node
that receives the multiple DOA estimates from the nodes cannot
know to which source they belong. Hence, the DOAs from the
different nodes that correspond to the same source must be found
in order to perform accurate localization. We present a method
to identify the correct association of DOAs to the sources and
thus accurately estimate their locations. Our method results in
high association and localization accuracy in realistic scenarios
with missed detections, reverberation, noise, and moving sources
and outperforms other recently proposed methods. It also incor-
porates a bitrate reduction scheme in order to keep the amount
of information that needs to be transmitted in the network at
low levels without affecting performance.

Index Terms—data-association, localization, direction of ar-
rival estimates, microphone arrays, wireless acoustic sensor
networks

I. INTRODUCTION

ENABLING machines to estimate the locations of the
active sound sources from their emanating acoustic sig-

nals has always been an attractive problem in the research
community. Inference of location information is crucial in
many applications, such as wildlife monitoring [1], [2] and
speech enhancement for robust signal acquisition [3].

When multiple acoustic sensors are used to monitor an
acoustic environment, we usually refer to this setup as a
Wireless Acoustic Sensor Network (WASN) [4]. The nodes
may consist of a single microphone or a microphone array, i.e.,
multiple microphones arranged in a pre-defined geometry, and
are distributed at different locations in the monitored area. The
nodes are equipped with a processing unit to perform signal
processing operations, and a wireless communication module
to communicate with other nodes or a central node which is
known as the “fusion center”.

Generally, in such a setup, the localization of the acoustic
sources can be performed at the fusion center, with information
received by the nodes and a suitable model that relates this
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information with the location of the source(s) of interest. In the
literature, different sources of information have been studied,
such as the energy [5], [6], temporal [7], [8] and/or directional
features [9]–[12], and spatial likelihood functions such as the
steered response power (SRP) function [13]–[15]. The reader
is referred to [16] for a review of localization approaches using
various types of information from the nodes.

However, practical considerations about the sensor network
itself, such as the wireless nature of the nodes and their limited
processing capabilities, as well as possible requirements for
real-time processing, pose several limitations and challenges
that must be taken into account. Due to their limited pro-
cessing power, the nodes cannot carry out very complex and
computationally intensive operations while restrictions in the
bandwidth usage limit the amount of information that can be
transmitted in the network. Finally, since the nodes operate
individually, the acquired audio signals at different nodes will
not be synchronized.

When each node is a microphone array, it can estimate
and transmit direction-of-arrival (DOA) estimates of the active
sound sources. DOA estimates describe the direction from
which sound is propagating with respect to a node in each
time instant. The location of a source can be estimated at the
fusion center by fusing the DOA measurements, also known
as bearing measurements. Although such approaches require
increased computational complexity in the nodes—to perform
the DOA estimation—, they attain low bandwidth usage as
only DOA estimates need to be transmitted. Also, since the
DOA estimation is carried out in each node individually, the
audio signals at different nodes need not be perfectly syn-
chronized. Finally, the variety of broadband DOA estimation
methods for acoustic sources available in the literature makes
it easy to obtain such estimates: several methods have been
proposed such as the broadband MUSIC [17] and ESPRIT [18]
algorithm, methods based on Independent Component Analy-
sis (ICA) [19] and Sparse Component Analysis (SCA) [20].

In the single source case, the location of a source can
be estimated by the intersection of lines emanating from
the nodes’ locations at the direction of the nodes’ estimated
DOA, as illustrated in Fig. 1, a method which is called
triangulation. Since the DOA estimates will be contaminated
by noise, several approaches have been proposed to tackle this
estimation problem, including the Stansfield estimator [21],
the orthogonal vectors (OV) estimator [22], the single-source
grid-based (GB) method [9], [23], maximum likelihood non-
linear estimators [24]–[28], approaches based on instrumental
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Fig. 1. Example cell with four sensor nodes (blue circles), and the estimated
source location (red circle) based on triangulation of the estimated DOAs
(θ̂1–θ̂4).

variables [29], [30] and total least squares [25], [31].
However, the focus of this paper is on the estimation of

the locations of multiple simultaneous sound sources from
their DOA estimates, which is much more complex than its
single source counterpart. A fundamental problem is that the
fusion center receiving the multiple DOA estimates from each
node (one DOA for each detected source) cannot know to
which source each DOA belongs. This is known as the data-
association problem. The correct association of DOAs from
the nodes that correspond to the same source must be found,
otherwise location estimation will result in “ghost” sources,
i.e., locations not corresponding to real sources.

The data-association problem is illustrated in Fig. 2 with
an example in a two-node WASN with two active sound
sources. The solid lines show the DOAs to the first source
and the dashed lines show the DOAs to the second source.
Intersecting the DOA lines from the nodes results in 4 possible
source locations. When intersecting the DOAs that correspond
to the same source, i.e., the two solid lines and the two
dashed lines, the correct source locations are estimated (red
circles). When the erroneous combination of DOAs is used, the
estimation results in “ghost” sources (white circles). When the
correct association of DOAs from the nodes to the sources is
found, the multiple source localization problem decomposes
into multiple single-source localization problems which are
straightforward to solve by applying any single-source location
estimator proposed in the literature to the resulted DOA
associations.

Also, when multiple sources are active, some nodes may
not be able to detect some sources, thus underestimating their
number. As a result of such missed detections, the number of
detected sources—and thus the number of estimated DOAs—
can vary across the nodes and through time. This can occur in
several situations, such as when the sources are close together
in terms of their angular distance with respect to a node or
when a source is located far away from a node. As illustrated
in our previous work [32], the problem of missed detections
occurs very often in practice and it is an important aspect
to the location estimation problem which—to the best of our
knowledge—has not been examined so far.

In this work, we propose a novel approach to address the
data-association problem for localizing multiple sound sources
using DOA estimates. Our method is based on the extraction
of features at the nodes (one feature for each detected source).

1 2

Fig. 2. Illustration of the data-association problem in a two-node WASN with
two active sound sources. The four possible source locations may either be
the true sources’ locations (red circles) or locations of “ghost” sources (white
circles) as the result of using bearing lines that do not correspond to the same
source.

The association of DOAs to the sources is found by comparing
the corresponding features and separating them into groups
according to their similarity. We propose the use of features
that describe how the frequency components of the captured
signals at each node are distributed to the sources and we
show that these features are robust to missed detections and
noise. We also propose a greedy algorithm for the association
of the DOAs based on the similarity of their corresponding
features. Our algorithm can work with an arbitrary number
of nodes and sources, results in high association accuracy
and is computationally efficient. As the features need to be
transmitted to the fusion center for the association procedure
to be performed, we also study how to reduce the amount of
information that needs to be transmitted. We propose a scheme
that reduces the bitrate requirements of our method up to 88%
without affecting its accuracy.

Parts of this work has also been presented in [32]. This
current work presents an improved and more detailed method-
ology, especially in the following respects: (i) it takes into
consideration the realistic and practical aspect of the amount
of information that the method requires to be transmitted in the
network and proposes solutions in order to significantly reduce
the bitrate requirements without affecting performance, and (ii)
it provides a more detailed performance analysis, especially
in terms of the association algorithm’s execution time and
in terms of the method’s potential to localize moving sound
sources.

The remainder of this paper is organized as follows: Sec-
tion II reviews the current state-of-the-art methods for the data-
association problem. Section III describes the considered data-
association and localization problem. The proposed method is
presented in Section IV, while an approach to reduce the bi-
trate requirements is detailed in Section V. Section VI provides
an experimental validation of our method and Section VII
concludes our work.

II. STATE-OF-THE-ART METHODS FOR THE
DATA-ASSOCIATION PROBLEM

Using only the estimated DOAs from the nodes, some
approaches try to address the data-association problem by
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enumerating all possible DOA combinations from the nodes,
estimating a set of initial location estimates using all possible
combinations and then deciding which of the initial location
estimates correspond to the true sources’ locations. In this
spirit, our previously proposed grid-based method for multiple
sources [9], [23] decides on the final location estimates using
heuristic approaches: for each initial location estimate it mea-
sures the angular distance between the DOA combination that
used to generate that estimate and the DOAs that correspond to
the estimated location. The initial location estimates with the
smallest distance are reported as the final location estimates.

The method in [33] incorporates the data-association to the
localization procedure by designing a non-linear estimator that
each time is initialized with a different estimate from the set of
the initial location estimates. For each initial location estimate,
the estimator is expected to converge to a location of a true
source. However, as illustrated in [9], in the presence of missed
detections and high noise, the performance of this approach
severely degrades as the estimator converges to the locations
of “ghost” sources thus not being able to correctly identify the
true sources’ locations.

Other approaches tried to solve the data-association problem
prior to the localization procedure. When the correct associ-
ation of DOAs from the nodes to the sources is estimated
beforehand, the multiple source localization problem decom-
poses into multiple single source localization problems, which
can be conveniently solved using any of the single source loca-
tion estimators which are available in the literature. In [34] the
data-association problem is viewed as an assignment problem
and is formulated as a statistical estimation problem which
involves the maximization of the ratio of the likelihood that
the measurements come from the same target to the likelihood
that the measurements are false-alarms. However, the proposed
solution is NP-hard when three or more nodes are considered.
Some sub-optimal solutions tried to solve the same problem
in pseudo-polynomial time [35], [36].

The clustering of intersections of bearing lines in scenarios
with no missed detections is introduced in [37]. The moti-
vation behind this approach is based on the observation that
intersections between pairs of bearing lines that correspond
to the same source will be close to each other, forming
clusters around the locations of the true sources that reveal
the correct DOA associations. On the contrary, intersections
from bearing lines that do not belong to the same source
will be randomly distributed in space. Another approach that
also utilizes intersections of pairs of bearing lines in order to
decide the locations of the sources is discussed in [10], but
again the presence of missed detections results in significant
performance drop.

The availability of additional information—apart from the
DOA estimates of the detected sources—can generally lead to
more efficient solutions. The method of [38] associates each
detected DOA with a binary mask in the frequency domain that
can be used to separate the corresponding source signal. The
association of DOAs to the sources is found by comparing
the binary masks across different nodes. The DOAs of the
masks that correlate the most are assigned to the same source.
Again, the method does not consider missed detections, while

the association algorithm was designed for the limiting case
of two nodes.

III. PROBLEM STATEMENT, DEFINITIONS, AND
ASSUMPTIONS

Consider a WASN with M nodes, where each node is a mi-
crophone array. In the sequel, the terms node and microphone
array will be used interchangeably. The proposed method is not
attached to a specific microphone array geometry or number
of microphones. We assume the presence of a central node
(fusion center) which is responsible for the location estimation.
The nodes in the network are connected to the fusion center
over wireless links.

In the acoustic environment that is monitored by the WASN,
we assume that K sound sources are simultaneously active.
The number of sources is assumed to be known. Each array
uses a method to estimate the azimuth DOAs of the active
sources in each time instant and transmits these estimates to
the fusion center. Note that, although the number of sources
is known, an array may not be able to detect some of the
sources. We refer to these situations as missed detections.
Missed detections can occur for several reasons: due to the
challenging setup in terms of reverberation and noise, because
some sources may be located close together in terms of their
angular separation for an array to discriminate between them,
or because they are located far away from the array. As a result,
the number of DOAs each array transmits may be less than K
and may also vary in time and across the arrays. In general,
each array can detect up to K sources. However, we assume
that each source is detected by at least one array, which is
a necessary condition to find the DOA associations for all K
sources.

When the correct association of DOAs to the sources is
found, the location estimation can be carried out by simply
applying a single source location estimator to the resulted
DOA associations. To estimate the location of a source in the
two-dimensional space, at least two azimuth DOA estimates
are required. Thus, for localization we consider only the
sources that have been detected by at least two arrays.

In such a setup, we aim to estimate the correct association
of DOAs from the nodes to the arrays and the final locations
of the sources.

IV. PROPOSED METHOD

The main idea of the proposed method is to utilize additional
information—apart from the DOA estimates—to solve the
data-association problem. In this spirit, each microphone array
estimates and transmits features associated with each source it
detects. For the same source, such features must be “similar”
across the different arrays. We denote such features as the
association features. Apart from the design of such features,
the second major part of the solution consists of the association
algorithm that finds the DOA combinations whose associated
features are most “similar”.
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Fig. 3. Example of association features for a WASN with M = 4 arrays
(columns) and K = 2 sound sources (rows). The colors indicate the
association features that correspond to the same source in different arrays
and are most similar to each other. In this example, array 2 and array 4 have
exhibited missed detections thus detecting and estimating the corresponding
association feature for only one source.

A. In-node feature extraction

The feature extraction is based on the assumption that
each time-frequency bin belongs to at most one source. The
assumption that only one source is dominant in each time-
frequency bin is known as the W-disjoint orthogonality (WDO)
assumption and has been shown to be valid especially for
speech signals [39], [40]. The feature computation is based
on the estimation of narrowband DOA estimates in each time-
frequency bin and the assignment of each bin to a source
based on the corresponding estimated DOA. The features are
computed for each time-frame and represent the number of
times each frequency bin was assigned to a source in the last
B frames, where B refers to the history length or block size.
Each feature is associated to a source and provides an estimate
of the distribution of the frequency components to that source.

The microphone array signals at each array m are trans-
formed into the Short-Time Fourier Transform (STFT) do-
main, resulting in the signals Xm,i(τ, `) where i is the mi-
crophone index and τ , ` denote the time-frame and frequency
bin index respectively. In the sequel, we omit m and τ as
the procedure is repeated in each array for each time-frame.
We also denote as L the set of frequency bins ` up to a
maximum frequency `max. We set `max to the spatial-aliasing
cutoff frequency which depends on the array geometry and
describes the frequency up to which reliable DOA estimates
can be found.

In each frequency ` ∈ L we estimate a DOA, resulting in the
narrowband DOA estimates φ(L). For the narrowband DOA
estimation any method available in the literature can be uti-
lized. Also, a broadband DOA estimation method estimates the
number of detected sources K̂ and their corresponding DOAs
θ̂ = {θ̂1, . . . , θ̂K̂}. This can be achieved with an arbitrary
broadband DOA estimation method, e.g., by processing the
narrowband DOA estimates with a matching-pursuit algorithm
as proposed in [20], [41].

Then, the frequencies in L are assigned to the detected
sources. The assignment is based on the DOAs of the sources

Algorithm 1 Feature computation at the mth node
Input: Frame of microphone array signals Xfr(`) in the frequency domain,
History length B, User-defined threshold ε
Output: Association Features Fm,k(`) for each detected source k

for each frequency bin ` in L do
φ(`) = Narrowband DOA Estimation(Xfr(`))

end for
(θ̂, K̂) = Broadband DOA Estimation(Xfr)
Fm,k(`) = 0, k = 1, . . . , K̂
for each frame τ ′ between the current frame τ and B previous frames do

for each frequency bin ` in L do
k ← argmin

p

(
A(φτ ′ (`), θ̂p

)
if A
(
φτ ′ (`), θ̂k

)
< ε then

Fm,k(`)← Fm,k(`) + 1
end if

end for
end for

θ̂ at the current frame and the narrowband DOA estimates
in each frequency bin φτ ′(`) for each frame τ ′ between the
current and B previous frames. A frequency bin ` ∈ L is
assigned to source p (with corresponding direction θ̂p) if the
following two conditions are met:

A(φτ ′(`), θ̂p) < A(φτ ′(`), θ̂q), ∀q 6= p, (1)

A(φτ ′(`), θ̂p) < ε, (2)

where A(X,Y ) denotes an angular distance function that
returns the difference between X and Y in the range of [0, π]
(see Appendix for details on its computation). In other words,
Eqs. (1) and (2) suggest that a given frequency bin is assigned
to the source whose DOA is closest to the estimated DOA at
that bin, as long as that distance does not exceed a pre-defined
threshold ε. When Eq. (2) is not satisfied, the given frequency
bin is rejected and not assigned to any of the sources.

Since the assignment is carried out for the frequency bins
for the current and B previous frames, a histogram can be
formed for each detected source that counts how many times
each frequency bin was assigned to that source. Note that since
B frames are considered, a frequency bin can be assigned
to a source up to B times. These histograms constitute
the proposed association features which are transmitted to
the fusion center together with the estimated DOAs for the
detected sources. The proposed feature extraction procedure
is presented in Algorithm 1.

Since all the arrays receive the same signals—albeit with
relative phase differences—the histograms across the arrays
that belong to the same source are expected to be similar.
As each histogram is associated with a source’s DOA, the
grouping of the histograms in K groups, based on their
similarity, is expected to reveal the association of DOAs from
the arrays to the K sources.

An example of these association features is shown in Fig. 3
for a WASN of 4 microphone arrays with two active sound
sources. The colors indicate the histograms that correspond
to the same source at the different arrays. The association
features (i.e., histograms) that correspond to the same source
are expected to be “similar”. In this example, two arrays have
exhibited missed detections thus being able to detect only one
source and thus estimating a single association feature.
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(a) (b) (c)
Fig. 4. Example of the association algorithm for M = 4 arrays and K = 3 sources. (a) First, an assignment of features to K groups is created for the set of
features Fm for each array. The empty boxes represent the empty groups, as the corresponding arrays have detected less than K sources. (b) The algorithm
finds the assignment (array 1 and 2 in this example) that, when merged, produce the best score according to (5) and merges them. (c) The merging operations
stop when a single assignment G remains.

Algorithm 2 Association Algorithm
Input: Features F , Number of Sources K
Output: Assignment G

S ←
⋃
i
CreateInitialAssignment(Fi,K) (Fig. 4(a))

while |S| > 1 do (Fig. 4(b))
(i, j) ← argmin

i,j

Score(Merge(Si,Sj))

S ← S \ (Si ∪ Sj) ∪Merge(Si,Sj)
end while
G ← GetF inalAssignment(S) (Fig. 4(c))
while min

p,q
Score(G[F ip ↔ F jq ]) < Score(G) do

G ← G[F ip ↔ F jq ]
end while

B. Data-association algorithm at the fusion center

Given the estimated association features, the goal of the
association algorithm, which is carried out at the fusion center,
is to group them according to their similarity in K groups. We
remind the reader that K is the number of sources which is
assumed to be known. As each feature is associated with a
DOA estimate, the grouping of the features will reveal the
association of DOAs from the arrays to the sources, which is
indicated by the different colors in the example of Fig. 3. In
this section, we formally define the data-association problem
as an assignment problem of the association features to K
groups.

Let F denote the set of all association features and Fm
denote the set of features Fm,k, k = 1, . . . , K̂m for all detected
sources from the mth array. The problem is to find a set G that
contains K groups of features, denoted as Gi, i = 1, . . . ,K,
Gi ∈ G, such that:
(a) features from the same array cannot be assigned to the

same group,
(b) each feature must be assigned to exactly one group, and
(c) all groups contain features that are “similar” to each other.
We call the set G an assignment of features to groups. As
each feature corresponds to a source’s DOA, the resulting K
groups provide the association of DOAs across the arrays for
the K sources. We proceed by proposing and defining a way
to measure the quality of an assignment.

Let D be a function measuring the dissimilarity of two fea-
tures, taking values in [0, 1]. We define the score of each group
Gi as the maximum pairwise dissimilarity of its contained

features:
Score(Gi) = max

p,q
D(F ip, F

i
q), (3)

where F ip denotes the pth feature of group Gi.
We define the overall score of an assignment G as the

maximum score among the scores of its contained groups
Gi ∈ G:

Score(G) = max
i
Score(Gi). (4)

Our goal is to find an assignment that minimizes (4), while
satisfying constraints (a) and (b) mentioned above. Thus,
the solution to the data-association problem can be formally
defined as:

argmin
G

Score(G). (5)

In case two assignments result in the same score, we sort
the scores of their groups in descending order and compare
their maximum non equal score. The motivation behind this
formulation of the data-association problem is that we want
to find an assignment where all groups contain features that
are as similar as possible to each other, since the contained
features in each group correspond to the same source.

The next step is to deduce an algorithm that can efficiently
solve (5). A straightforward approach would be to exhaustively
enumerate all possible assignments and choose the one that
satisfies (5). Although it can guarantee to find the assignment
with the minimum score, such a naive brute-force approach
cannot be realized in practice due to its prohibitively large
computational requirements, as the number of possible as-
signments can grow as (K!)M . Next, we derive a greedy
algorithm that can efficiently solve (5). The algorithm—shown
in Algorithm 2—does not necessarily identify the optimal
solution, but it is simple, fast, and as our experimental results
indicate, it finds good solutions in practice.

First, for each set Fm, m = 1, . . . ,M we create an
assignment Sm. The assignment contains K groups, where
each group contains a single feature. If the array has exhibited
missed detections, thus having estimated less than K features,
some groups are left empty. This procedure is illustrated in
Fig. 4(a). The algorithm then tries to greedily merge those
assignments Sm until only one remains. The merging is done
by considering all possible ways to merge two assignments
and selecting the one which produces the best possible score
according to (5) (Fig. 4(b)). The possible ways to merge the
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Fig. 5. Example of a histogram with N` = 16 bins (a) before and (b) after
a decimation process by a decimation factor of d = 2.

assignments equals K!. This is known as the Linear Bottleneck
Assignment Problem [42], which can be solved efficiently in
polynomial time. However, when K is relatively small, a
brute-force approach is often faster. The algorithm finishes
when only a single assignment, G, remains (Fig. 4(c)).

Then, in order to further refine the estimated assignment,
we perform a second greedy step. In this step, we select two
features F ip and F jq from different groups i and j and try
to swap them in order to further reduce the score of G; for
brevity, we use G[F ip ↔ F jq ] to refer to the new assignment in
which F ip and F jq are interchanged. We also allow one of them
to be empty or, in other words, to move a feature from one
group to another. The algorithm terminates if no such pair
exists. As our results in Section VI-C indicate, this second
greedy step was found to result in significant performance
gain.

V. REDUCING TRANSMISSION REQUIREMENTS

In terms of transmission requirements, each array must
transmit the histogram (association feature) for every source
it detects to the fusion center. In this section, we quantify the
transmission requirements of our method and propose how to
reduce the amount of information that needs to be transmitted.

The number of bins in a histogram equals the number
of frequency bins that are processed. As discussed in Sec-
tion IV-A, the processing for the extraction of the histograms is
performed for a frequency range up to frequency `max. Let N`
denote the number of frequency bins available for processing,

i.e., the number of frequency bins up to frequency `max. Given
a history length of B frames, the maximum cardinality of a
given bin in the histogram is B. Thus the number of bits
required to transmit a histogram is dN` log2(B)e.

We propose to reduce the transmission requirements by
reducing the number of bins in the histograms by performing
a decimation process as follows: Let h : A → B be a
function describing a histogram where its domain corresponds
to the frequency bin indices, i.e., A = {1, . . . , N`} and
its range corresponds to the cardinality of each bin, i.e.,
B = {0, 1, . . . , B}. A decimated version of h by a factor
of d can be formed by grouping each consecutive d bins and
summing their cardinalities according to:

h′(x) =
d∑
k=1

h (d(x− 1) + k) , (6)

where h′ : C → D with C = {1, . . . , dN`

d e} and D =
{1, . . . , d ·B}. After the decimation process the domain of the
new histogram has been shrunk by a factor of d and the range
of possible values for each bin is now d · B. The number of
bits Nb required to transmit the decimated histogram depends
on the history length B, the number of bins N`, and the
decimation factor d through:

Nb = d
N`
d

log2(d ·B)e. (7)

The initial histogram, without any decimation, corresponds to
the case where d = 1. An example of a histogram and its
decimated version by a factor of d = 2 is shown in Fig. 5. In
this example, the initial histogram has N` = 16 bins and its
maximum cardinality is 10, thus requiring d16 log2(10)e = 54
bits for transmission. After decimation by d = 2 the number
of bins have reduced to N`

d = 8 and the maximum cardinality
is now 20, thus requiring 35 bits. As we will show in
Section VI-E, we can apply a decimation process by a factor of
16 to our histograms, thus significantly reducing the amount
of information that needs to be transmitted in the network,
without degradation in performance.

VI. EVALUATION

To evaluate the proposed method we performed simulations
on a square cell of a WASN with dimensions of V = 4 meters
with M = 4 nodes which were configured as shown in Fig. 1.
Each node was an 8-element uniform circular microphone
array with 5 cm radius. The sound sources were speech
recordings of 2 sec. duration, sampled at 44.1 kHz, and had
equal power when placed at the center of the cell. The signal-
to-noise ratio (SNR) was measured as the ratio of the power of
each source signal when located at the center of the cell to the
power of the noise signal. To simulate different SNR values we
added white Gaussian noise at each microphone, uncorrelated
with the source signals and the noise at the other microphones.
Note that this framework results in different SNR at each array
depending on how close the source is to the arrays.

We simulated a room of dimensions of 10× 10× 3 meters
using the Image-Source method [43] and produced signals of
omnidirectional sources at different reverberation conditions.
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TABLE I
EXPERIMENTAL PARAMETERS

parameter notation value

room 10× 10× 3 m.
WASN cell square

WASN side length V 4 meters
node type 8-element uniform circular

array, 5 cm radius
number of nodes M 4

framesize 2048 samples
overlapping in time 1024 samples

FFT size 2048 samples
sampling frequency Fs 44.1 kHz

highest frequency for processing `max 4 kHz
threshold for frequency assignment ε 10◦

history length (block size) B 21 frames (0.5 sec.)
decimation factor d 1

The WASN cell was placed at the middle of the room. Both
the nodes and the sources were placed at 1.5 m. height. More
specifically, the nodes were placed at (5, 3, 1.5), (7, 5, 1.5),
(5, 7, 1.5), and (3, 5, 1.5). In terms of number of sources,
we considered scenarios of two and three simultaneously
active speakers. Each simulation was repeated 30 times and
the sources were placed at different locations within the cell
with independent uniform probability. For narrowband DOA
estimation we used the method proposed in [44], which is
designed for the uniform circular array geometry. For the
estimation of the broadband DOAs of the sources in each
time frame, we applied our previously proposed methodology
of [20], [41]. Note that in our evaluation, we use circular
microphone arrays and the DOA estimation methods employed
are tailored for this specific array geometry. However, the
proposed methodology is independent of the array geometry
and the DOA estimation method in the sense that any DOA
estimation method available in the literature can be employed
to infer the narrowband and broadband DOA estimates.

For processing we used frames of 2048 samples with 50%
overlap. The FFT size was 2048. We set `max to 4 kHz which
is the spatial aliasing cutoff frequency for our given array
geometry. The threshold ε for the frequency assignment in
Eq. (2) was set to 10◦ and we used a history length of B = 21
frames, which corresponds to 0.5 seconds. As a dissimilarity
measure in (3), we used the Pearson Correlation Coefficient
distance which is defined as [45]:

D(X,Y ) =
1− rX,Y

2
, (8)

where rX,Y is the Pearson correlation coefficient between
X and Y . Eq. (8) takes values in the range [0, 1]. The
parameters are summarized in Table I and are used throughout
our experimental evaluation, unless stated otherwise.

A. Evaluation Metrics

To measure the association accuracy we utilize two metrics.
The first is denoted as Metric 1 and measures the percentage
of time frames where a correct DOA association is found.
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Fig. 6. Data-association accuracy for two sources in an anechoic environment
for different values of SNR and C2.

We define a DOA association as correct when all DOAs are
assigned to the correct source from all the arrays.

When an association is not correct, it means that some
DOAs from some arrays are assigned to an erroneous source.
However, although the association is erroneous there are still
pairs of DOAs from different arrays that were associated cor-
rectly. As an example, let us assume that in Fig. 4(c) the DOA
that corresponds to feature F4,1 was erroneously assigned to
the source that corresponds to the first group. While this
association is erroneous—according to Metric 1—there are
pairs of DOAs from arrays that are associated correctly, such
as the pairs (F1,1, F2,1), (F1,2, F3,1),(F3,1, F4,2), (F1,2, F4,2),
and so on, while other pairs are associated erroneously, such
as pairs (F1,1, F4,1), (F2,1, F4,1). Of course, the more these
correct pairs of DOAs are, the less impact an erroneous pair
will have to the data-association and thus to the localization
error. To quantify the correct “parts” of a DOA association—
that it can albeit be erroneous according to the definition of
Metric 1—we use our second metric (denoted as Metric 2),
which counts the percentage of correct pairwise associations
between all pairs of arrays.

B. Robustness to missed detections

First, we evaluate the efficiency of our proposed association
features and our proposed association algorithm in scenarios
with missed detections. We assume that the DOAs of the
sources in each time-frame, i.e., vectors θ̂ at each array are
known. We define Cs as the number of arrays that detected s
sources, i.e., C2 = 3 indicates that three arrays detected two
sources. To simulate missed detections, we fix Cs and remove
some DOAs from some arrays until the desired value of Cs is
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Fig. 7. Data association accuracy of the proposed method for three sources
in an anechoic environment for different values of SNR and C3.

reached. The removed DOAs as well as the arrays that exhibit
the missed detections are selected at random in every frame,
under the constraint that each source must be detected by at
least one array (Section III).

Fig. 6 depicts the data-association accuracy (using the two
aforementioned metrics) for an anechoic scenario of two active
sound sources for all possible values of C2, i.e., the number
of arrays that detected the two sources. For comparison,
Fig. 6 also presents the results using the association fea-
tures proposed in [38] (denoted as [Swartling 2011] in the
figure). These features were modified to work with circular
microphone arrays. For association, we applied our proposed
association algorithm on the features extracted from [38], as
the association algorithm proposed in [38] works only for
the case of two arrays. From Fig. 6 it is evident that our
approach is robust to missed detections, achieving more than
90% accuracy for all SNR cases and all values of C2.

On the other hand, the association features proposed in [38]
are less robust to noise and missed detections. A severe
performance degradation is evident, especially when missed
detections are present (C2 < 4). A key reason for that is the
fact that the association features were not designed to handle
missed detections: when a source is not detected, the method
of [38] erroneously assigns its frequencies to the other sources,
thus degrading the association performance. Our proposed
method avoids such erroneous assignments through the use
of Eq. (2). It is noteworthy that our proposed approach can
accurately find the correct association of DOAs to the sources,
even in the extreme case where all arrays detected only one
source, i.e., C2 = 0. Finally, the features of [38] cannot handle
the case where C2 = 0 (the corresponding area in Fig. 6 is

SNR (dB)
0 5 10 15 20

A
ss

oc
. A

cc
ur

ac
y 

(%
)

0

10

20

30

40

50

60

70

80

90

100

T60 = 250 ms, Metric 1
T60 = 400 ms, Metric 1
T60 = 600 ms, Metric 1
T60 = 250 ms, Metric 2
T60 = 400 ms, Metric 2
T60 = 600 ms, Metric 2

(a)

SNR (dB)
0 5 10 15 20

A
ss

oc
. A

cc
ur

ac
y 

(%
)

0

10

20

30

40

50

60

70

80

90

100

T60 = 250 ms, Metric 1
T60 = 400 ms, Metric 1
T60 = 600 ms, Metric 1
T60 = 250 ms, Metric 2
T60 = 400 ms, Metric 2
T60 = 600 ms, Metric 2

(b)

Fig. 8. Data-association accuracy of the proposed method for different SNR
values and reverberation conditions for (a) two and (b) three active sound
sources.

left blank). In this case, the association features of [38] cannot
provide any useful information in order to estimate the correct
association of DOAs to the sources.

Fig. 7 depicts the association accuracy, using Metric 1 and
2, for an anechoic scenario of three active sound sources and
different values of SNR and C3, i.e., the number of arrays that
detected three sources. For each value of C3 the figure presents
the mean association accuracy over all possible combinations
of C2 and C1. Again, the robustness of the proposed approach
to missed detections is evident: our method achieves high
accuracy for all SNR values even in the case where missed
detections are so prominent that none of the arrays detected
three sources, i.e., C3 = 0.

C. Data association algorithm

We now demonstrate the effectiveness of our data associ-
ation approach to more realistic scenarios with reverberation,
where the DOAs of the sources in each time frame are
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Fig. 9. Data association accuracy of the proposed method, using Metric 1, for
different values of the history length in anechoic and reverberant conditions.

estimated using the method of [20], [41]. The data-association
accuracy for two and three active sound sources in scenarios
with reverberation time T60 = 250, 400, and 600 ms is
shown in Fig. 8. It can be observed that, while the association
accuracy (Metric 1) decreases with increasing reverberation
time, most of the DOAs between pairs of arrays (Metric 2)
are still associated correctly both for the two and three sources
case. This indicates that while association errors in frames
occur more often, most DOA pairs are assigned to the correct
source.

In contrast to the results in Section VI-B, the values of C2

and C3 now vary in each time frame, as the DOAs of the sound
sources are now estimated. Thus, C2 and C3 depend on how
many sources the DOA estimation method was able to detect
at each array at each time frame. To quantify how often missed
detections occur, we counted in how many frames each value
of C2 and C3 occurs. We observed that for the two sources
case, approximately in only 12% of the frames all four arrays
detected two sources, in 21% of the frames C2 = 3, in 33% of

the frames C2 = 2, in 19% of the frames C2 = 1, and in 15%
of the frames all arrays detected only one source, i.e., C2 = 0.
The problem of missed detections becomes even more evident
in the three sources case where in approximately 62% of the
frames none of the arrays detected three sources (C3 = 0),
in 34% of the frames only one array detected three sources
(C3 = 1), and in only 5% of the frames the value of C3 is
greater than one. These numbers not only reveal once again
the robustness of our method to missed detections, but also
highlight the importance of the association method to take
into account missed detections, as they occur very often in
practice.

Moreover, in Fig. 9 we demonstrate how the history length
B can affect the association accuracy. We consider two and
three active sound sources in anechoic conditions and in a
scenario with reverberation time T60 = 600 ms, and we plot
the association accuracy (using Metric 1), versus SNR for
history lengths of 0.1, 0.25, and 0.5 seconds. In the two sources
case, the performance is improved when increasing the history
length from 0.1 seconds to 0.25 and 0.5 seconds, especially
in the reverberant scenario. However, the performance when
using a history length of 0.25 and 0.5 seconds is very similar.
In general, there is an obvious performance improvement—
especially for the three sources case—as the history length
increases, both in anechoic and reverberant conditions, show-
ing that increasing the history length makes the association
features more robust to noise and reverberation. However,
increasing the history length also increases the latency of the
system, in turn decreasing responsiveness.

Finally, we evaluate the ability of our proposed associa-
tion algorithm to find the optimal solution, according to the
problem we defined in Section IV-B. As a greedy algorithm,
our proposed data-association algorithm is not guaranteed to
find the optimal solution to the problem defined by Eq. (5).
As described in Section IV-B, the optimal solution can be
guaranteed by exhaustively testing all possible assignments
and choosing the one with the minimum score according to
(5). We call this approach the brute-force version of the asso-
ciation algorithm. This version is impractical as the number of
assignments under test is prohibitively large when the number
of sources and nodes increases.

To demonstrate the ability of our greedy association algo-
rithm to solve (5), we compare the solutions it provides with
the optimal solution derived by the brute force version of
the algorithm where all possible assignments are examined.
Also, in order to quantify the performance gain of each of
the two steps of our data-association algorithm, we include
in the comparison another version of our algorithm where
only the first greedy step is performed. The comparison was
made on scenarios of two and three active sound sources, on
all 30 source configurations, different SNR and reverberation
conditions (SNR ranging from 0 dB to 20 dB with a step of
5 dB, and reverberation times of T60 = 250, 400, 600 ms).
We observed that our greedy algorithm was able to find the
optimal solution in 97.22% of the time frames for the two
sources and in 84.31% of the time frames for the three sources
cases. Moreover, even in the cases where the optimal solution
cannot be found, the association accuracy results in Fig. 8
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TABLE II
MEAN AND STANDARD DEVIATION (IN MILLISECONDS) FOR THE

EXECUTION TIME OF THE GREEDY AND BRUTE FORCE VERSION OF OUR
DATA-ASSOCIATION ALGORITHM FOR TWO AND THREE ACTIVE SOUND

SOURCES

Two Sources
Greedy Brute Force

Mean 3.37 ms 1.93 ms
Std 0.69 ms 0.43 ms

Three Sources
Greedy Brute Force

Mean 7.58 ms 181.90 ms
Std 2.38 ms 28.97 ms

reveal that our greedy algorithm can still find good solutions.
In contrast, the version of our algorithm that performs only the
first greedy step was able to find the optimal solution in only
66.43% of the frames for the two sources case and in only
28.52% of the time frames for the three sources case. Thus,
a significant performance gain is achieved due to the second
greedy step of the proposed data-association algorithm.

To quantify the performance gain of our greedy association
algorithm in terms of computation time, Table II compares
the mean execution times of the greedy and brute force
versions. The execution times were measured in MATLAB
on a Windows desktop PC with a Core i7 CPU running at
3.4 GHz with 16 GB RAM. Note that while the absolute
execution times may be highly dependent on the machine
and the programming language, we are only interested here in
the relative times between the two versions of the algorithm.
It can be observed that, while the brute force version is
computationally more efficient for the case of two active sound
sources, it becomes impractical for the case of three active
sound sources due to the high number of possible assignments
that it needs to test. On the other hand, the execution time of
the greedy version in the three sources case remains in the
same order of magnitude compared to the two sources one.

D. Location estimation accuracy

When the correct association of DOAs to the sources is
found, the locations of the sound sources can be estimated
by applying a single source location estimator to the corre-
sponding DOA associations. In this section, we evaluate the
localization accuracy of our proposed approach and compare
it with the use of the association features extracted from [38]
(denoted as [Swartling [2011]). For comparison, we also
include the localization performance of our multiple source
grid-based estimator, which we proposed in [9] (denoted as
[Griffin 2015]). This estimator infers a location for every
possible DOA combination from the arrays and on a second
step decides which locations correspond the true sources’
locations, using no additional information apart from the DOA
estimates.

In order to localize the sound sources using the proposed
method and the method of [38], we apply our previously
proposed single-source grid-based location estimator [9] on

the estimated DOA associations. To measure the localization
performance we use the root-mean square error (RMSE) over
all sources, all 30 different source configurations and over all
frames where each source was detected by at least two arrays,
which is a necessary condition to infer a location estimate
for all sources. These frames represent the 90% and 63%
of all frames under test for the two and three sources case
respectively. As the use of the association features of [38]
cannot provide a DOA association in some cases (for example
when C2 = 0 for the two sources case and C3 = 0 for the three
sources case) we consider for this method only the frames
where a DOA association can be estimated. These frames
represent the 83% and 36% of the total frames under test for
the two and three sources case respectively. These numbers
highlight again the advantage of our proposed method in terms
of its ability to find a DOA association even in scenarios with
severe missed detections.

Figures 10 and 11 depict the location error for various
reverberation conditions and for scenarios with two and three
simultaneously active sound sources. The location error when
using the estimated DOAs but assuming that the correct
association of DOAs to the sources is known (denoted as
Perfect Association) is also included to represent the best-case
scenario. As expected the localization performance degrades
with increasing reverberation time. The performance of the
best-case scenario with perfect associations also degrades as
the DOA estimates suffer from larger noise due to the high
reverberation conditions. In general, it can be observed that the
proposed method always achieves the best localization perfor-
mance, providing location estimates very close to the best-
case especially for the higher SNR values and for both two
and three active sound sources. The other two methods always
perform worse than the proposed one, and their performance
degradation is more evident in the three sources case.

E. Reduction in transmission requirements

In this section, we evaluate the performance of our proposed
decimation process applied to the association features in order
to reduce the amount of information that needs to be trans-
mitted by the nodes. We examine the effect of the decimation
factor on the data-association and localization accuracy and
investigate how much we can reduce the transmitted informa-
tion without affecting performance.

Fig. 12 depicts the association accuracy using Metric 1 for a
scenario of three active sound sources for different decimation
factors, namely d = 1 (i.e., no decimation), d = 2, d = 4, d =
16, and d = 32 and for different reverberation conditions. The
corresponding localization error, when the single-source grid-
based method [9] is applied on the estimated DOA associations
is shown in Fig. 13. It can be observed that the performance for
all decimation factors up to d = 16 is very similar to the case
where no decimation is applied (i.e., d = 1). The association
and localization performance exhibits higher degradation when
a decimation factor of d = 32 is used.

To quantify the gain in terms of reduction in information
that must be transmitted, we can use Eq. (7) to calculate how
many bits are required to transmit an association feature (i.e.,
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(c) T60 = 600 ms

Fig. 10. Localization error as a percentage of cell side length V = 4 meters for two active sound sources and different reverberation scenarios.
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Fig. 11. Localization error as a percentage of cell side length V = 4 meters for three active sound sources and different reverberation scenarios.

histogram) for every value of d: 813, 499, 296, and 97 bits
for d = 1 (i.e., no decimation), d = 2, d = 4, and d = 16,
respectively. These numbers are obtained by substituting into
Eq. (7) the block size B = 21, and the number of bins
N` = 185, which results from an FFT size of 2048 samples,
a sampling frequency of 44.1 kHz and a maximum frequency
for processing `max = 4 kHz (see Table I). The results suggest
that, by applying a decimation process by a factor of d = 16 to
the estimated association features, we can reduce the amount
of information that is required to transmit a histogram by
almost 88%, with minor losses in the association and location
estimation performance.

Finally, for the tested scenario of three simultaneously active
sound sources, Table III depicts the worst-case and average
bitrate requirements for a node. The worst-case corresponds to
the case where all arrays detected all sources, thus requiring to
transmit the maximum possible number of association features,
which in the case of three sources is three. However, in a
realistic situation missed detections will occur and thus the
nodes will rarely need to transmit three association features.
This corresponds to the average case in Table III which
depicts the average bitrate over all 30 different tested source
configurations, all SNRs, and reverberation times.

F. Moving sources

Finally, we demonstrate our method’s ability to perform
data-association and accurate location estimation in scenarios

TABLE III
WORST-CASE AND AVERAGE TRANSMISSION REQUIREMENTS, (IN KBITS

PER SECOND) FOR A NODE FOR THREE ACTIVE SOURCES.

Worst-case bitrate Average bitrate

no decimation 105 Kbps 63 Kbps
d = 2 64 Kbps 39 Kbps
d = 4 38 Kbps 23 Kbps
d = 16 12 Kbps 8 Kbps

with moving sources. Fig. 14 depicts the location estimates for
all time frames, when the single-source grid-based method [9]
is applied to the estimated DOA associations for a simulated
scenario with one moving and one static source (Moving1) at
T60 = 400 ms reverberation time. The sources were 5 seconds
in duration. The WASN setup and simulation parameters were
the same as shown in Table I. A decimation process by a factor
of d = 16 was applied to the association features to reduce
bitrate needs. The static source was located at (5, 4) meters and
the moving one starts from point (6.5, 6) meters and moves on
a straight line to point (3.5, 6) meters. Finally, Fig. 15 depicts
the location estimates for a scenario of two moving sound
sources (Moving2) at T60 = 400 ms reverberation time. The
first source starts again from point (6.5, 6) meters and moves
on a straight line to point (3.5, 6) meters, while the second one
starts from point (3.5, 4) meters and moves on a straight line
to point (6.5, 4) meters. It can be observed that in both cases,
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(c) T60 = 600 ms

Fig. 12. Association accuracy using Metric 1 for three active sound sources, different reverberation conditions, and different values of the decimation factor
in the association features.
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Fig. 13. Localization error as a percentage of cell side length V = 4 meters for three active sound sources, different reverberation conditions, and different
values of the decimation factor in the association features.

the method produces accurate and smooth location estimates,
indicating its ability to localize moving sources.

To evaluate the effect of the history length in the case
of moving sources, Table IV presents the location error and
the DOA association accuracy, using Metric 1, for the two
aforementioned scenarios (Moving1 and Moving2) for different
values of the history length. The results—which are in accor-
dance with the ones in Fig. 9 for the two sources case—show
that the 0.1 second history exhibits the worst performance,
while the performance for the 0.25 and 0.5 seconds history is
very similar, with the 0.25 seconds history exhibiting slightly
higher DOA association accuracy but also slightly higher
location error.

Finally, we evaluate the effect of the moving source’s
velocity to the data-association and localization accuracy. We
consider a scenario of one static source at (5, 4) meters and
one moving source, at T60 = 400 ms reverberation time. The
moving source moves on a straight line from point (6.5, 6) to
point (3.5, 6) and then back to point (6.5, 6). We simulated
different velocities for the moving source, from slow to fast
walking speeds, namely v = 2 km/h, v = 4 km/h, and v =
6 km/h and applied the proposed methodology to estimate
the association of DOAs from the arrays to the sources and
the final sources’ locations. The WASN setup and simulation
parameters were the same as shown in Table I and a decimation
process by a factor of d = 16 was applied. The experiment
was repeated 10 times. Fig. 16 shows the data-association
accuracy using Metric 1 and the location estimation error for
various SNR levels and various values for the history length.
As expected, the performance degrades when the velocity of
the source increases. Again, a history length of 0.5 seconds

TABLE IV
LOCALIZATION ERROR AS A PERCENTAGE OF THE CELL SIDE LENGTH V =

4 METERS AND DATA-ASSOCIATION ACCURACY USING METRIC 1, FOR
MOVING SOURCES FOR DIFFERENT VALUES OF THE HISTORY LENGTH.

Moving1 Moving2

Metric 1 RMSE Metric 1 RMSE
100 ms history 84% 7.02% 82% 9.80%
250 ms history 88% 5.17% 86% 8.25%
500 ms history 87% 5.16% 84% 7.94%

exhibits the best performance, while a history length of 0.1
seconds exhibits the worst performance. As in the previous
experiments with two active sound sources, the performance
when using a history length of 0.25 seconds is very similar
to the one when using a history length of 0.5 seconds. It is
generally evident that the speed of a moving source does not
affect the choice of the history length. This can be explained
by the fact that during the design of the association features,
the narrowband DOA estimates in the B previous frames are
compared to the broadband DOA estimates of the sources
in the current frame. As a result, if the DOA of the source
has significantly changed in the last B frames, the distance
between the narrowband DOA and the broadband DOAs of
the sources will be large and the corresponding frequencies
will not be taken into account due to Eq. (2). Finally, it can
be observed that the method provides satisfactory performance
even in the case where the moving source moves as fast as 6
km/h, validating again its ability to localize moving sources.
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Fig. 14. Location estimates of the proposed method for all time frames for
a scenario with one moving and one static sound source at T60 = 400 ms
reverberation time.
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Fig. 15. Location estimates of the proposed method for all time frames for
a scenario with two moving sound sources at T60 = 400 ms reverberation
time.

VII. CONCLUSIONS

In this work, we considered the data-association problem
for the localization of multiple sound sources using DOA
estimates in a wireless acoustic sensor network where each
node is a microphone array. We presented an approach that
can find the correct association of DOAs from the microphone
arrays to the sources with high accuracy, thus decomposing
the multiple source localization problem into multiple single-
source localization problems that can be easily solved using
a variety of DOA-based location estimators available in the
literature.

Our proposed approach utilizes additional information—
apart from the DOA estimates—that consists of association
features that describe how the frequency components of the
captured signals are distributed to the sources. Using simu-
lations and comparisons with other state-of-the-art methods
we confirmed the efficiency of our method to accurately
solve the data-association and localization problem in realistic
scenarios with missed detections, reverberation, noise, and
moving sources. Finally, to account for the practical limitations
in the amount of information that needs to be transmitted in
the network, we incorporated our method with a scheme that
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Fig. 16. (a) Data-association accuracy using Metric 1 and (b) localization
error as a percentage of the cell side length V = 4 meters for a scenario
of one static and one moving source with different velocities v and different
values for the history length.

can reduce its bitrate needs of up to 88% without affecting its
performance.

APPENDIX

COMPUTATION OF THE ANGULAR DISTANCE

The angular distance function returns the distance between
angles X and Y in the range [0, π]. A simple way to compute
the angular distance is to define the unit vectors:

Ux =
[
cos(X) sin(X)

]T
, (9)

Uy =
[
cos(Y ) sin(Y )

]T
(10)

and evaluate the angle between the two vectors. The angular
distance is thus given by:

A(X,Y ) = acos(UTx Uy), (11)

where acos(·) denotes the inverse cosine function.
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An equivalent way to compute the angular distance, that
does not involve the evaluation of trigonometric functions, is
by defining the distances:

AX,Y = (X − Y )mod(2π), (12)

AY,X = (Y −X)mod(2π) (13)

which are in the range of [0, 2π] and taking the minimum one:

A(X,Y ) = min(AX,Y , AY,X). (14)
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