

REVIEW on "RECEIVERS for RADIO ASTRONOMY" REPORT

ALESSANDRO ORFEI, INAF-IRA Istituto Nazionale di Astrofisica – Istituto di Radioastronomia

Download at http://rx2017.inaf.it/RX2017/review.html

OVERVIEW of the TALK

Part 1 REPORT FRAMEWORK

Part 2 **REPORT CONTENTS**

Part 3 RECOMMENDATIONS

Part 1 REPORT FRAMEWORK Terms of Reference, Working Group, Executive Summary

PART 1: MOTIVATIONS

INPUT COMING FROM STEVEN TINGAY, HEAD OF SECTION II OF THE INAF SCIENTIFIC DIRECTORATE, ON SPRING 2016

<<...to review <u>the existing and future radio astronomical receivers</u> for the INAF radio telescope facilities. This initiative is the first step of a more general process aimed at <u>harmonizing and coordinating efforts and resources in radio astronomy</u>. The receiver review included the front-end developments underway within INAF, the existing instrumentation requiring major maintenance/repair, and <u>a roadmap for future</u> <u>receiver developments at INAF.</u> >>

FUTURE (*Tingay talk at the Workshop***)**

- Development of a "five+ year plan" for receiver development at INAF, agreed by the major stakeholders (scientists, technologists, and observatories/institutes)
- Science-driven and serves the broad community
- Project managed: Project Scientist, Project Engineer, Project Manager for each development
- A Project Plan for each project (science case, reviewed design process, accurate costs and schedule, staff dedicated to task, milestones etc)

PART 1: DESIRED OUTCOME

PART 1: TASK FLOW

APPOINTED WORKING GROUP

P. Bolli, M. Beltrán M. Burgay, P. Marongiu, T. Pisanu INAF – Osservatorio Astrofisico di Arcetri

INAF – Osservatorio Astronomico di Cagliari

C. Contavalle, A. Orfei, C. Stanghellini, G. Zacchiroli, A. Zanichelli INAF – Istituto di Radioastronomia

Period: June 6th, 2016 to April 13th, 2017

69 PEOPLE INVOLVED

20 IRA 20 OAC 8 OAA 2 OACT 2 INAF-HQ 1 IASF-BO 2 ASI 2 UNIVERSITIES 12 FOREIGN PEOPLE

Workshop on March 21, 2017 at INAF Headquarter, Roma

✓ 49 PARTICIPANTS

Streaming at <u>https://www.youtube.com/watch?v=wpcV8YdV6HQ</u>

- ✓ Report: 260 pages A4 size, 12 Chapters + 4 Appendices
- Report final version 7.1 June 1st, 2017
 Report version 8.0 October 17th, 2017

(communication to INAF DS and President) (under publication, about 60 copies)

Paper in progress on the results of the international survey, to be submitted on a referred review.

Part 2 REPORT CONTENTS Chapters 1 to 10 + Appendices

PART 2: INFRASTRUCTURE ITALIAN TELESCOPES

MAIN CHARACTERISTICS					
	MEDICINA	ΝΟΤΟ	SRT		
Inauguration Date	October 18 th , 1983	October 28 th , 1988	September 30 th , 2013		
Location	Medicina (Bologna)	Noto (Siracusa)	S. Basilio (Cagliari)		
Diameter (m)	32	32	64		
Optics	Parabola/Cassegrain	Parabola/Cassegrain	Shaped Parab./Greg.		
Foci	Primary/Secondary	Primary/Secondary	Prim./Second./BWG		
Total Surface Accuracy	700 to 900 micron	350 to 400 micron	305 to 500 micron		
Active Surface	No	Yes	Yes		
max/min Antenna Gain (K/Jy)	0.16/0.11 C/K-band	0.16/0.11 C/Q-band	0.66/0.52 K/L-band		
Pointing Accuracy	0.002 [°] Az/El	0.002 [°] Az/El	0.002° Az/El		
Frequency Agility	Yes	Partially Yes	Yes		
Major maintenances status	Completion in 2018	To do	Completed in 2017		

PART 2: INFRASTRUCTURE BACK-ENDS AT THE ITALIAN TELESCOPES

Technical Specs	TotalPower	XARCOS	SARDARA	DFB3	DBBC2	DiFX Correlator
Features	Continuum	Full Stokes spectroscopy Zoom mode	Full Stokes spectroscopy	Pulsar; spectroscopy	VLBI	- 3 servers- 50TB storage
Nr. of Input	2; 4; 14	8 or 16	2	4	16	- 10G connection +
Input BW (MHz)	300; 730; 1250; 2000	125; 250	300; 500; 1250; 2300	256; 512; 1024	512; 1024; 0.512 to 32 in Baseband mode	40G Infiniband - VDIF standard - 720GB/h
Integ. time	1 - 1000 ms	10 s	Up to 0.5 ms	0.1 ms	1 – 60 s	correlation
Channels	Not applicable	2048	1024 or 16348	2048 to 8192	firmware not available	rate with 3 antennas @ 1Gb/s
Freq. or Time Resolution	Not applicable	Up to 250 Hz	90 KHz	0.008 – 8 ms	1 Hz	
Interface	Ether./TCP	Ether./TCP	Ether./TCP	Ether./TCP	FILA10G	

PART 2: INFRASTRUCTURE OPACITY EFFECTS AT THE ITALIAN SITES: A COMPARISON

GLOBAL mm VLBI ARRAY (GMVA) at 86 GHz					S	RT today			
Station	Altitude (m)	D (m)	Tsys at zenith (K)	Gain (K/Jy)	SEFD (Jy)	(estimate at 86 GHz)OpacityTsys (K)Gain (K/Jy)SEFD (Jy)EL=45°EL=45°EL=45°			SEFD (Jy) EL=45°
GBT	807	100	100	0.73	137	0.25	124	0.14	865
Effelsberg	319	80	140	0.14	1000	0.35	148	0.12	1182
Plateau de Bure	2552	33	180	0.22	818	Assumed r	eceiver nois	se = 50K at 86GH	łz
Pico Veleta	2850	30	100	0.15	654				
Yebes	931	40	150	0.09	1667			ES POINTING IS	AN ISSUE!
VLBA (8x25m)	300//3763	25	100	0.040	2500		MEDIC	NA refurbishe	d
KVN (3x21m)	120;260;320	21	200	0.062	3226		(estim	ate at 86 GHz))
Onsala	20	20	250	0.049	5102		Tsys (K)	Gain (K/Jy)	SEFD (Jy)
Metsähovi	33	14	300	0.017	17647	Opacity	EL=45°	EL=45°	EL=45°
LMT (prelim)	4640	32	240	0.14	1714	0.25	124	0.09	1383
ALMA	5059	80	90	1.32	68	0.35	148	0.07	2089
BEWARE! Assumed	BEWARE! Assumed Opacity = 0.1					Assumed r	eceiver nois	se = 50K at 86GH	łz

PART 2: RECEIVERS IN OPERATION OFFER OF FREQUENCY BANDS

S = mono-feed; D = dual-feed; M = multi-feed; DF = dual frequency; + = crossed dipoles

PART 2: RECEIVERS AGILITY IN CHANGING THE BANDS

		FREQUENCY AGILITY	
TELESCODES	Primary to	Among Primary	Among Secondary
TELESCOPES	Secondary	focus receivers	focus receivers
MEDICINA	4 min	≤ 45 sec	≤ 14 sec
ΝΟΤΟ	4 min	10 sec	4 hour
SRT	4 min	2 min	2 min
Parkes		2 min + manual change	
Mopra			some min
Nobeyama			1 min
VERA			No agility
KVN			Simultaneity
Tianma			seconds
Pico Veleta			2-bands simultaneous
Onsala25			sec to 1 hour
Onsala20			sec to 30 min
Effelsberg	30 min	1 min + manual change	30 sec
GBT	10 min	2 hour	1 min
Yebes			No data

DYNAMIC SCHEDULING POSSIBLE.

VERY IMPORTANT TO OBSERVE AS MUCH AS POSSIBLE AT HIGH FREQUENCIES!

PART 2: RECEIVERS IN OPERATION PERFORMANCE

SEFD of receivers in operation: medium class antennas

SEFD of receivers in operation: large class antennas

PART 2: RECEIVERS UNDER DEVELOPMENT

PART 2: RECEIVERS INTERNATIONAL PROJECTS & IDEAS for FUTURE

Part 3 RECOMMENDATIONS Chapters 11, 12

PART 3: AIMS, RECIPIENTS and TIME SCALE

C

RXs FINALIZATION at SRT				
	BAND(GHz)	REMARKS		
5-band	3-4.5	Unique in International scenario. SD continuum observations		
C _{low} -band	4.2-5.6	Most used in VLBI. Hottest topics in today radio astronomy		
Q-band	33-50	Unique in Intnl scenario. SD spectroscopy; join more VLBI networks		
ALMA 2+3-band	67-116	SD spectroscopy; join more VLBI networks		

RX FINALIZATION at MEDICINA					
	BAND(GHz)	REMARKS			
Ku-band	13.5-18	Continuous coverage 13-26GHz for continuum and redshifted spectral lines			

RX FINALIZATION at NOTO					
	BAND(GHz)	REMARKS			
TELESCOPE		Recover a full and reliable operation of the antenna			
S/X/L-band	2.2-2.4/8.2-9.0/1.3-1.8	Mandatory to serve our commitment in EVN and Geo-IVS			
W-band	85.9-86.5	Join more VLBI networks. Very low priority.			

PART 3: 2019 and BEYOND

RECOMMENDED RX at SRT						
MFEED W-band (19 pixel)	Considerable interest in such front-ends emerged from the Call for Ideas (2 proposals).					
PAF C-band	Relevant interest both as a technological demonstrator and as a new receiver to perform cutting-edge science (3 proposals from the Call for Ideas). A PAF receiver matches with the involvement of INAF in the SKA AIP project (PHAROS2).					

VALUABLE PROJECTS FOR FUTURE EVALUATION						
BRAND	6 astro VLBI current frequencies by one RX only. New bands up to 15.5 GHz. Includes the new standard for Geodetic observations (1 proposal).					
W-band 400 pixel BOLOMETER	Coming from De Bernardis (Roma-La Sapienza). New scientific application for SRT (similar activities at IRAM and GBT).					

PART 3: 2019 and BEYOND

RECOMMENDED RX at MEDICINA

SIMULTANEOUS K/Q/W-band

A niche in which also the smaller Italian radio telescopes can give a substantial contribution. Strong collaborations are already in place with the KVN and VERA arrays (1 proposal from the Call for Ideas).
 Calibrating tropospheric delay at 3mm, via K-band, increase coherence time.
 IT NEEDS AN UPGRADE OF THE ANTENNA SURFACE ACCURACY.

PART 3: TIME LINE and WORKLOAD

STATUS	RT	RX	2017	2018	2019 and BEYOND	
	SRT	S-band	OAC	OAC		
z	SRT	C _{low} -band	IRA,OAC,OAA	OAC	OF 4 OVE	ER 6 RX IS
R	SRT	Q-band	IRA,OAC	IRA	IN A (QUITE
NDE	SRT	iALMA 2+3	IASF-BO	IASF-BO		ED STAGE,
IN	MED	Ku-band	IRA,OAA	IRA	NEEDS V	ERY FAST
	NOTO	S/X/L-band	IRA	IRA	DECIS	SIONS.
	ΝΟΤΟ	W-band		IRA		
s S	SRT	PAF C-band			OAC	
	SRT	MFEED W-band			OAC	
DED PROJE		SIMULTANEOUS K/Q/W-band			IRA	

PART 3: DEVELOPMENT at 3mm

STATUS	RT	RX NAME	FREQUENCY RANGE (GHz)	Inst.neous BW (MHz)	OUTPUT and POL.
WORK IN PROGRESS	SRT	ex-IRAM	84-116	500	1 C
WORK IN PROGRESS	SRT	iALMA 2+3	67-116	8000	2 L
STAND BY	NOTO	MPIfR	85.9-86.5	100	1 C
AVAILABLE	NOTO	ex-IRAM (x2)	84-116	500	1 C
	SRT	MFEED 19	70-116	> 8000	2 L x 19
NEW PROJECTS (from Call for Ideas)	SRT	BOLOMETER 400	80-100	20000	400
	MED	SIMULTANEOUS K/Q/W-band	18-26/33-50/80-110	TBD	2C/2C/2C

PART 3: FINANCIAL CONSIDERATIONS

STATUS	RT	RX	2017-2018 (K€)	2019 and BEYOND (K€)	
	SRT	S-band	Fully funded		
7	SRT	C _{low} -band	Fully funded		
SRT		Q-band	600 (19 feeds) 180 (7 feeds)		
UND	SRT	iALMA 2+3	80		
MED NOTO NOTO		Ku-band	Fully funded		
		S/X/L-band	80 (Now Funded)		
		W-band	Negligible		
γ	SRT	PAF C-band		2700	
EW	SRT	MFEED W-band		1700	
PRO	MED	SIMULTANEOUS K/Q/W-band		2400 (w AS) 1600 (w/o AS)	
TOTAL			760 (19 feeds) 340 (7 feeds)	6800 (w AS) 6000 (w/o AS)	

PART 3: A PROPOSAL

PROJECT MANAGEMENT

Project Scientist & System engineering methodologies Each new receiver should be assigned to a well-designed management scheme to limit delays & financial issues and to maintain high the scientific interest of the receiver.

Local responsibility Each project should be in charge of a specific group and locally managed. Interactions and scientific collaborations among classical groups and also extended to other **INAF** groups (IASF, SKA group) are encouraged.

Coordination The development of radio astronomical instrumentation coordinated under the supervision of Section II of the INAF Scientific Directorate.

Call for Projects A survey of the interest of the astronomical community in new instrumentation should be conducted by INAF periodically. Permanent commission Composed by astronomers and technologists who will regularly meet to review the status of the ongoing projects and issue recommendations.

needed!

De

DOMS

V mm-Workshop Bologna, November 7-10 2017