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Abstract— This article proposes a novel strategy based on
control input filtering for mitigating the effects of deception
attacks on control and sensor measurement signals. We as-
sume an adversary who can tamper data transmitted from a
communication network in order to degrade the plant perfor-
mance. The proposed strategy consists on adding multiple-input
multiple-output (MIMO) filters to the control loop, between the
received control actions and the plant actuators. The filter’s
goal is to dynamically steer the reachable set induced by
the attack signals to a safe region of the state space. The
article provides a filter synthesis method under the form of
a semidefinite programming problem, yielding such filters in
a way that attack-free control signals are distorted as little as
possible, and plant trajectories are contained in the safe set.
At the end of the paper, a set of simulations demonstrate the
effectiveness of the approach.

I. INTRODUCTION

The connectivity of control systems is rapidly growing,
with the goal of increasing performance. On the other
hand, this often means that controllers are now connected
with the plant though a network that might be unsecured,
increasing the risk of cyberattacks [1]. In particular, attacks
that tamper with system’s signals (sensing and control) are
now considered as one of the main threat for control systems.
Such attacks aim to disrupt the control system’s operations in
order to degrade its performance, by means of the so-called
deception attacks [2]. The control engineering community is
actively investigating in order to cope with such attacks [1],
[3]. A special attention is directed towards stealthy attacks,
a type of attack that aims to remain invisible with respect to
all safety-enforcing agents acting on the closed-loop system
(e.g. fault detectors, operators) [4]–[6].

The literature features a number of promising recently-
developed methods to reduce the effect of (stealthy) at-
tacks on closed-loop systems. These methods aim to de-
sign/redesign elements of the closed-loop system (e.g. con-
troller, fault detector) to mitigate the effect of (stealthy)
attacks [3], and they are often referred to as mitigation
methods. Among the mitigation methods, set-theoretic tools
relying on the computation of reachable sets have revealed
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their potential to make sure that the plant states avoid
dangerous states. This last approach includes attack analysis
to quantify the effect of (stealthy) attacks against systems [7],
and then safety enforcement to force the system trajectories
to avoid physical degradation [8]–[11]. It includes design of
secure controllers [8]–[10], design of secure fault detector
[7], [12] and saturation of control signals [11].

In this article, we consider False Data Injection (FDI)
attacks, a class of deception attacks that inject malicious
signals into the true sensing and control signals. We assume
these attacks aim to drive the plant dynamics to a part of the
state space leading to physical degradation. We propose a
set-theoretic method to synthesize a filter placed between
the plant and a remote controller to guarantee the plant
safety. In a previous work [13], a method has been presented
to synthesize filters for open-loop systems (the plant) that
might be subject to actuator attacks only. Such filters process
the control inputs before they reach the plant, enforcing by
design that actuator attacks cannot lead the plant to physical
degradation. Here, we propose a set-theoretic method to
synthesize safety-preserving filters for closed-loop systems,
including a plant, a controller, and a fault detector. Moreover,
we now consider stealthy actuator and sensor attacks that try
to avoid raising an alarm in the fault detector. To the best
of our knowledge, stealthy actuator attacks with respect to
a fault detector have not yet been explored in set-theoretic
methods.

The remainder of this manuscript is organized as follows.
Section II presents the system under study and states the
research problem. Section III provides a preliminary tool
(reachability and ellipsoidal approximations of reachable
sets) to perform the filter synthesis. Our main results to
synthesize the filters are presented in Section IV. Lastly in
Section V, we apply our results on a simulation example to
illustrate the performance of our tools.
Notation: The symbol R stands for the real numbers, Rn×m

is the set of real n×m matrices, and R>0 (R≥0) denotes
the set of positive (non-negative) real numbers. Matrix A⊤

indicates the transpose of matrix A and diag(a1, ..., an)
corresponds to a diagonal matrix with diagonal elements
a1, ..., an. The identity matrix of dimension n is denoted by
In, and 0 is a matrix of only zeros of appropriate dimensions.
The notation A ⪰ 0 (resp. A ⪯ 0) indicates that the matrix A
is positive (resp. negative) semidefinite, i.e., all the eigenval-
ues of the symmetric matrix A are positive (resp. negative)
or equal to zero, whereas the notation A ≻ 0 (resp. A ≺ 0)
indicates the positive (resp. negative) definiteness, i.e., all the
eigenvalues are strictly positive (resp. negative). The notation
E(Φ, ϕ̄) stands for an ellipsoidal set of dimension φ with
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shape matrix Φ ∈ Rφ×φ, Φ ≻ 0 and centered at ϕ̄. For
ellipsoids centered at the origin, we simply write E(Φ).

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

In this section, we present the class of systems and attacks
under study, and state the research problem.

A. Plant Dynamics (Σp)

We consider linear time-invariant plants Σp of the form:

Σp

{
ẋp(t) = Apxp(t) +Bpup(t),

yp(t) = Cpxp(t),
(1)

with time t ∈ R>0, plant state xp(t) ∈ Rnp , control input
up(t) ∈ Rm, sensor measurements yp(t) ∈ Rl, and plant
matrices Ap ∈ Rnp×np , Bp ∈ Rnp×m and Cp ∈ Rl×np

with stabilizable (Ap, Bp) and detectable (Ap, Cp). The plant
transmits yp(t) through an unsecured/public network to a
remote station equipped with a dynamic controller Σc and
an anomaly detector Σd, see Figure 1. The remote station
receives a networked version, ỹ(t), of the system output
yp(t). Vector ỹ(t) is used by Σd to compute alarm signals
and by Σc to compute control actions uc(t), which are sent
back to the plant. The plant receives a networked version,
ũ(t), of uc to close the loop. Both ỹ(t) and ũ(t) are subject
to potential FDI attacks, δy(t) and δu(t), at the network, see
Figure 1.

B. Controller Dynamics (Σc)

We consider output dynamic controllers Σc of the form:

Σc

{
ẋc(t) = Acxc(t) +Bcỹ(t),

uc(t) = Ccxc(t) +Dcỹ(t),
(2)

with controller state xc(t) ∈ Rnc , networked sensor data
ỹ(t) ∈ Rl, control actions uc(t) ∈ Rm, and matrices
Ac ∈ Rnc×nc , Bc ∈ Rnc×m, Cc ∈ Rm×nc and Dc ∈ Rm×l.
We assume that, for ỹ(t) = yp(t), i.e., no network effects,
the plant in closed loop with controller Σc has a globally
asymptotically stable equilibrium point.

C. Adversarial Capabilities
We consider FDI attacks that aim to drive the plant dynam-

ics to a part of the state space where physical degradation
occurs – referred here to as critical states. These critical states
could model, for instance, the inter-vehicle distance that
should satisfy safety constraints. We assume the adversary
is capable of additively injecting signals, δu(t) and δy(t),
to true control actions uc and/or true sensor measurements
yp(t), respectively, at the unsecured network. The adversary
can compromise up to su control actions, su ∈ {1, . . . ,m},
and sy sensor measurements, sy = {1, . . . , l}. We introduce
adversary’s selection matrices, Λu and Λy , to be able to select
how the additive signals δu(t) and δy(t) affect uc(t) and
yp(t) (for sensitivity analysis). Hence, the transmitted control
actions, ũ(t), and the transmitted sensor measurements, ỹ(t)
take the form: {

ũ(t) = uc(t) + Λuδu(t),

ỹ(t) = yp(t) + Λyδy(t),
(3)

with additive actuator attack δu(t) ∈ Rsu , additive sensor
attack δy(t) ∈ Rsy , and adversary’s selection matrices
Λu ∈ Rm×su , and Λy ∈ Rl×sy We assume resource-
limited adversaries that can inject bounded signals δu(t) and
δy(t). We remark that most FDI attacks have constraints
in the signals that they can inject due to physical limi-
tations (power/bandwidth), computing limits (speed, mem-
ory), and/or attack strategy (stealthiness, jamming, replay).
We capture limited resources as hard ellipsoidal bounds,
Eu(U , ū) and Ey(Y, ȳ), on the injected signals (δu(t), δy(t)):

Eu(U , ū) :=
{
δu|(δu − ū)⊤U(δu − ū) ⩽ 1

}
, (4)

Ey(Y, ȳ) :=
{
δy|(δy − ȳ)⊤Y(δy − ȳ) ⩽ 1

}
, (5)

for some known positive definite matrices U ∈ Rsu×su , Y ∈
Rsy×sy and vectors ū ∈ Rsu , ȳ ∈ Rsy .

D. Fault Detector (Σd)

We consider a remote station equipped with a model-based
fault detector, Σd, to pinpoint the occurrence of faults and
attacks in the plant dynamics. We consider residual-based
detectors comprised of a Luenberger state observer and a
static change detection rule:

Σd


˙̂xp(t) = Apx̂p(t) +Bpuc(t) + Lr(t),

r(t) = ỹ(t)− Cpx̂p(t),

a(t) =

{
1 if (r(t)− r̄)⊤Π(r(t)− r̄) > 1,

0 if (r(t)− r̄)⊤Π(r(t)− r̄) ≤ 1,

(6)

with estimated plant state x̂p(t) ∈ Rnp , alarm signal a(t) ∈
R, observer gain L ∈ Rnp×l, positive definite detector matrix
Π ∈ Rl×l, Π ≻ 0, and detector center r̄ ∈ Rl. We assume
the observer gain L and detector parameters (Π, r̄) have been
designed such that (Ap − LCp) is Hurwitz and a(t) = 0 in
the absence of faults/attacks. That is, a successful detection
occurs when a(t) = 1 and either δu(t) or δy(t) are different
from zero for some t ≥ 0. Note that, given (1), (3), and
(6), the estimation error e(t) := xp(t) − x̂p(t) satisfies the
following differential equation:

Σe

{
ė(t) = (Ap − LCp)e− LΛyδy(t) +BpΛuδu(t)

}
. (7)

Hence, the estimation error e(t) and residual r(t) converge
to the origin in the attack-free case.

E. Attack Models
We consider two types of FDI attacks, stealthy and non-

stealthy. Stealthy attacks aim to damage the integrity of
the system while enforcing the fault detector in (6) not to
raise alarms. Stealthy attacks are constrained in the sense
that the adversary must carefully choose (δu(t), δy(t)) such
that (r(t) − r̄)⊤Π(r(t) − r̄) ≤ 1. They are usually slow
persistent attacks with low power. On the other hand, (non-
stealthy) attacks aim to damage the integrity of the plant
while ignoring the detector. Non-stealthy attacks often induce
fast and/or large damage to the system, but have an increased
risk of being detected. Let Er(Π, r̄) denote the stealthy set
of residuals:

Er(Π, r̄) :=
{
r|(r − r̄)⊤Π(r − r̄) ≤ 1

}
, (8)
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Fig. 1: Closed-loop system under attacks with the safety-preserving filter to synthesize.

If the injected (δu(t), δy(t)) enforce that the residual satisfies
(8), no alarms will be raised in the fault detector (so we say
that these attacks are stealthy). In this article, we cover both
stealthy and non-stealthy attacks. Results vary slightly from
one case to the other.

To characterize the safety in the presence of attacks, we
introduce the following notion of safe sets.

Definition 1 (Safe Set) The safe set Xs ⊆ Rn of plant Σp

in (1) is the set of states xp ∈ Xs that guarantee a safe and
proper operation of the plant. The safe set Xs is the part of
the state space that excludes critical states – states that, if
reached, compromise the plant physical integrity.

Safe sets exclude, by definition, all critical states from the
state space of the plant in (1).

In the remainder of this section, we present the filter
dynamics that we aim to synthesize, and state the research
problem we seek to address.

F. Safety-Preserving Filters (Σf )

We propose to protect the plant Σp in (1) against (stealthy)
actuator/sensor attacks by filtering control actions, ũ(t), that
might have been corrupted by attack signals (δu(t), δy(t)) in
(3) before they are applied to the plant. That is, we pass ũ(t)
through a filter to enforce, by design, that it is impossible
for (stealthy) actuator/sensor attacks to drive the plant outside
the safe set Xs. The filter output, ũf (t), reaches the plant
to shape the closed-loop system reachable set, see Figure 1.
We consider linear time-invariant filters of the form:

Σf

{
ẋf (t) = Afxf (t) +Bf ũ(t),

ũf (t) = Cfxf (t) +Df ũ(t),
(9)

with filter state xf (t) ∈ Rnf , filter input ũ(t) ∈ Rm (poten-
tially corrupted control actions received from the network),
filter output ũf (t) ∈ Rm (the control inputs to be applied to
the plant), and filter matrices Af ∈ Rnf×nf , Bf ∈ Rnf×m,
Cf ∈ Rm×nf , and Df ∈ Rm×m to be designed. We allow
for partial filtering in the sense that not all control actions
ũ(t) are filtered. That is, we allow for some ũ(t) to get
through the filter and reach the system directly (without
having been distorted by the filter). It follows that the control

inputs driving the plant, up(t), can be written as follows:

up(t) = Γcũ(t) + Γf ũf (t), (10)

where Γc ∈ Rm×m and Γf ∈ Rm×m are diagonal se-
lection matrices used to select which control actions are
unfiltered/filtered. Matrices Γc and Γf satisfy:

Γc + Γf = Im. (11)

G. Closed-Loop System Dynamics (Σ)

After having defined the plant dynamics (1), controller
dynamics (2), attack signals (3), and fault detector dynamics
(6), we can now write the stacked closed-loop dynamics, Σ,
under FDI attacks as follows:

Σ

{
ż(t) = Az(t) +Bũf (t) + Eδy(t) + Fδu(t),

ũ(t) = Cz(t) +Gδy(t) +Hδu(t),
(12)

with stacked state z := [x⊤p , x
⊤
c , e

⊤]⊤ ∈ Rnz , nz = 2np+nc,
and matrices A, B, E, F , C, G, and H given in (13).

We next write the dynamics Σ in (13) in feedback inter-
connection with the filter in (9) (see Figure 1). Define the
extended state ζ := [z⊤, x⊤f ]

⊤ ∈ Rn, n = nz + nf . Then,
the filtered system under attacks can be writte as follows:

ζ̇(t) = Ãζ(t) + Ẽδy(t) + F̃ δu(t). (14)

with matrices Ã, Ẽ, and F̃ given in (13).
We can now state the research problem we seek to address.

Problem 1 Given the stacked dynamics (12), the filter dy-
namics (9), the safe set Xs in Definition 1, and the stealthy
set Er in (8), find filter matrices (Af ,Bf ,Cf ,Df ) such that
the plant trajectories are contained in Xs for all resource-
limited actuator/sensor injection attacks satisfying (4)-(5).

The solution to Problem 1 aims to enforce that the state
trajectories of (1) subject to (stealthy) actuator/sensor attacks,
in series interconnection with the filter (9), are constrained
inside the safe set Xs.

III. PRELIMINARY RESULTS

In this section, we introduce some preliminary results
from [14] that will be used to derive the main result of the
manuscript (the solution to Problem 1).
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A :=

 Ap +BpΓcDcCp BpΓcCc 0
BcCp Ac 0

BpΓcDcCp −BpDcCp BpΓcCc −BpCc Ap − LCp

 , B :=

BpΓf

0
BpΓf

 , E :=

 BpΓcDcΛy

BcΛy

BpΓcDcΛy −BpDcΛy − LΛy

 ,
F :=

BpΓcΛu

0
BpΓcΛu

 , C :=
[
DcCp Cc 0

]
, Ã :=

[
A+BDfC BCf

BfC Af

]
, Ẽ :=

[
BDfG+ E

BfG

]
, F̃ :=

[
BDfH + F

BfH

]
,

G :=
[
DcΛy

]
, H :=

[
Λu

]
, (13)

Definition 2 (Reachable Set) The reachable set Rζ(t) at
time t ∈ R>0 from initial condition ζ(t0) ∈ Rn is the set of
states ζ(t) that satisfy the differential equation (14), over all
attack signals (δu(t), δy(t)) satisfying (4)-(5), i.e.,

Rζ(t) :=

ζ(t)
∣∣∣∣∣∣∣
ζ(t0) ∈ Rn,

ζ(t) satisfies (14), δu(t) ∈ Eu(U , ū),
and δy(t) ∈ Ey(Y, ȳ).

 .

(15)

Note that, because the attack signals (δu(t), δy(t)) are
bounded, the set Rζ(t) always exists if A in (14) is Hurwitz;
which is true when filter and system matrices Af , A are both
Hurwitz due to the block triangular structure of Ã.

A. Ellipsoidal Outer Approximation of Rζ(t)

Because the exact computation of Rζ(t) is not tractable,
we compute an outer ellipsoidal approximation Eζ(Q) of
Rζ(t) using a set-theoretic method reliying on some prop-
erties of positively invariant sets [15].

Definition 3 The ellipsoidal set Eζ(Q) is invariant for the
dynamical system (14), if for all initial states ζ(t0) ∈ Eζ(Q),
and all δu(t) ∈ Eu(U , ū), δy(t) ∈ Ey(Y, ȳ), the trajectories
ζ(t) of (14) satisfy ζ(t) ∈ Eζ(Q),∀ t ≥ 0.

By Definition 3, any invariant ellipsoidal set Eζ(Q) is an
outer ellipsoidal approximation of Rζ(t). In previous work
[14], we have provided sufficient conditions for ellipsoidal
sets to be invariant for a class of linear-time invariant systems
as (12) subject to peak-bounded inputs as δu(t) and δy(t)
and when ζ(t) is constrained to remain inside a given set
E(Ξ, ξ̄) with Ξ ⪰ 0. The method is based on the search
of a Lyapunov-like function, V (ζ) = ζ⊤Qζ, with certain
properties using Linear Matrix Inequalities (LMIs) [16].
Here, instead of having ζ(t) ∈ E(Ξ, ξ̄), we want to constrain
the residuals r(t) to belong to the stealthy set Er (for stealthy
attacks), i.e., r(t) ∈ Er(Π, r̄). Hence, the constraint changes.
First, from the definition of r(t) in (6), it is easy to verify
that r(t) = Cpe(t) + Λyδy(t), where e(t) is the estimation
error satisfying (7). Then, the stealthy set formulation (8) can
be written as an inequality in terms of estimation error e(t)
and the attack signal δy(t). Moreover, because e(t) can be
written in terms of the extended state ζ(t) as e(t) = Γζ(t)
with Γ = [0 0 Inp

0], the stealthy set (8) can be written
in terms of ζ(t). We can now state the following lemma,
adapted from [14], used to find invariant ellipsoidal sets for
the closed-loop system dynamics (14) with peak-bounded

attack signals (δu(t), δy(t)) (3) and residuals r(t) within the
stealthy set Er(Π, r̄).

Lemma 1 (Invariant Ellipsoidal Set [14]) Consider the
extended system dynamics (13)-(14). If there exist matrix
Q ∈ Rn×n and constants α, β, λ, ρ ∈ R≥0 satisfying:

−J − αK − βL− λM − ρN ⪰ 0, (16)
Q ≻ 0, (17)

with

J =


Ã⊤Q+QÃ 0 QẼ QF̃

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 ,

K =


Q 0 0 0
∗ −1 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , L =


0 0 0 0
∗ 1− ȳ⊤Y ȳ ȳ⊤Y 0
∗ ∗ −Y 0
∗ ∗ ∗ 0

 ,

M =


0 0 0 0
∗ 1− ū⊤U ū 0 ū⊤U
∗ ∗ 0 0
∗ ∗ ∗ −U

 ,

N =


−Γ⊤C⊤

p ΠCpΓ Γ⊤C⊤
p Πr̄ −Γ⊤C⊤

p ΠΛy 0
∗ 1− r̄⊤Πr̄ r̄⊤ΠΛy 0
∗ ∗ −Λ⊤

y ΠΛy 0
∗ ∗ ∗ 0

 ;

(18)

then, ζ(0)⊤Qζ(0) ⩽ 1 ⇒ ζ(t)⊤Qζ(t) ⩽ 1, for all t ≥ 0,
δy(t) ∈ Ey(Y, ȳ), δu(t) ∈ Eu(U , ū), and r(t) ∈ Er(Π, r̄).

To consider the case of non-stealthy attacks, we just remove
the term ρN from (16) in Lemma 1. This term provides the
extra constraint needed only if the adversary tries to avoid
raising an alarm in the fault detector.

IV. PROBLEM FORMULATION AND SOLUTION

In this section, we propose a synthesis framework, built
around Lemma 1, to find filter matrices solving Problem 1
in terms of the solution of a series of semidefinite programs.

A. Safety Enforcement

To prevent damage from (stealthy) attacks, the plant states
must remain inside the safe set Xs. Here, we model/embed
Xs as an ellipsoid Es(Ψ, ψ̄) satisfying (19), which can be
written in terms of the stacked system state z(t):

Es(Ψ, ψ̄) := {z|(z − ψ̄)⊤Ψ(z − ψ̄) ⩽ 1}, (19)
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with a known positive semi-definite matrix Ψ ∈ Rnz×nz

and vector ψ̄ ∈ Rnz . Matrix Ψ could be, in general, rank-
deficient, as only part of the plant states might be subject to
safety constraints – Es can even coincide with Rnz×nz by
picking Ψ = 0, meaning that none of the system states are
subject to a safe zone.

To enforce safety, we want to guarantee that the system
states z belong to the safe set Es(Ψ, ψ̄). If the conditions of
Lemma 1 are satisfied, all trajectories of the extended state
ζ = [z⊤, x⊤f ]

⊤ belong to the ellipsoidal set Eζ(Q). Because
we want to enforce safety on the system states z(t) (see (19)),
we work with the projection of Eζ(Q) onto the z-hyperplane
(the system state space). By [17, Appendix A.3, Lemma 10],
this projection is also an ellipsoid, Ez(Qz), with shape matrix
Qz = Q1 −Q2Q

−1
3 Q⊤

2 and

Q :=

[
Q1 Q2

∗ Q3

]
. (20)

Hence, if the conditions of Lemma 1 hold, z(t) ∈ Ez(Qz),
and therefore, to guarantee safety, we require

z(t) ∈ Ez(Qz) ⊆ Es(Ψ, ψ̄). (21)

B. Distortion Constraint

By filtering ũ(t), we degrade the control performance as
we are changing the dynamics of the control signals applied
to the plant. To reduce this degradation, we introduce a
distortion metric that quantifies the difference between ũ(t)
and up(t) in the frequency domain. Define the distortion
signal w(t) := up(t) − ũ(t) in the attack-free case, i.e., for
δy(t) = δu(t) = 0. By replacing up(t) by (10), ũ by (12)
and ũf by (9), the distortion signal w(t) can be written in
terms of the extended state ζ(t) as w(t) = Cwζ(t) with

Cw :=
[
ΓcC + ΓfDfC − C ΓfCf

]
(22)

We treat this w(t) as a performance output for the closed-
loop dynamics (14). Note that, in the filter-free case, up(t) =
ũ(t), so w(t) = 0 for all t ≥ t0. To reduce the degradation
due to the filter, we want to make z(t) small in some
appropriate sense. For system (14), with input ũ(t) and
output w(t), let Tũ→w(s) denote the transfer matrix from
ũ(t) to w(t), i.e., Tũ→w(s) := Cw(sIn − Ã)−1. Given this
transfer matrix, we use its H∞ norm to quantify the effect
of ũ(t) on w(t), i.e., ||Tũ→w(s)||H∞ . If no filter is in place,
the norm is trivially zero, and as we let ũ and up be more
different, the norm grow unbounded. An upper bound on
this norm is used to shape the filter dynamics so that the
change in the dynamics of control inputs is constraint. That
is, when designing the filter to guarantee safety, we also seek
to enforce that the norm of Tũ→w(s) is below a predefined
level γ ∈ R≥0. We use this γ to modulate how much we are
willing to sacrifice in terms of control performance to enforce
safety. By the bounded-real lemma [16], ||Tũ→w(s)||H∞ is
less than or equal to γ ∈ R≥0, if there exists a positive

definite matrix Q and constant ϵ ∈ R≥0 satisfying:

LH∞ :=

Ã⊤Q+QÃ 0 C⊤
w

∗ −(γ − ϵ)Im 0
∗ ∗ −γIm

 ⪯ 0 (23)

C. Filter Synthesis Problem

After having derived conditions to (i) synthesize the filter
so that safety of the plant is guaranteed; and (ii) limit the
change of dynamics in the control inputs, we can now re-cast
Problem 1 above in terms of our new notation.

Problem 2 (Filter Synthesis Problem) Find the filter ma-
trices κ := (Af , Bf , Cf , Df ) such that (i) the ellipsoidal
set Eζ(Q) is invariant under the closed-loop system dynamics
(14) for attack signals δu(t) ∈ Eu(U , ū), δy(t) ∈ Ey(Y, ȳ),
and residuals r(t) ∈ Er(Π, r̄) (for stealthy attacks); (ii)
the system state z(t) belong to the safe set Es(Ψ, ψ̄), i.e.,
z(t) ∈ Es(Ψ, ψ̄); and (iii) the ||Tũ→w(s)||H∞ is upper
bounded by γ.

An optimal solution to Problem 2 can be obtained by
solving an optimization problem; however, because now κ :=
(Af , Bf , Cf , Df ) are variables in the synthesis problem,
the blocks QÃ, QẼ and QF̃ in matrix J of the constraint
(16) are not convex in (κ,Q). Following the results in [18],
we propose an invertible linearizing change of variables such
that, in the new variables, we can cast an equivalent synthesis
program that has convex cost and affine constraints.

D. Change of Variables and Convex Reformulation

Let Q be positive definite and of the form:

Q =

[
Y N

N⊤ Ỹ

]
, Q−1 =

[
X M

M⊤ X̃

]
, (24)

where Y , N , Ỹ , X , M , X̃ ∈ Rn×n; and Y , Ỹ , X , X̃ are
positive definite matrices. Define the following matrices

Π1 :=

[
X In
M⊤ 0

]
, Π2 :=

[
In Y
0 N⊤

]
. (25)

Using block matrix inversion formulas, it is easy to verify
that Y X+NM⊤ = I and N⊤X+Ỹ M⊤ = 0, and therefore
QΠ1 = Π2. Define the change of filter variables:
Âf := NAfM

⊤ +NBfCX + Y BCfM
⊤ + Y AX + Y BDfCX,

B̂f := NBf + Y BDf ,

Ĉf := CfM
⊤ +DfCX,

D̂f := Df ,

(26)

with Âf ∈ Rn×n, B̂f ∈ Rn×m, Ĉf ∈ Rm×n, D̂f ∈ Rm×m.
If M and N have full rank, and the synthesis variables
ν := (X,Y, Âf , B̂f , Ĉf , D̂f ) are given, we can always
extract filter matrices (Af , Bf , Cf , Df ) satisfying (26). The
aim is to formulate an optimization problem that is convex
in the synthesis variables ν.
Invariance: First consider the invariance constraints, (16)-
(17). Blocks QÃ, QẼ and QF̃ in matrix J are now nonlinear
in (κ,Q). The aim is to find equivalent constraints that are
affine in ν. Define Q(ν) := Π⊤

1 QΠ1 with Π1 defined in
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(25). Using matrix inversion formulas, we have Q(ν) =
diag(X,Y ), which is linear in ν. If Π1 is invertible, Q(ν) is
a congruence transformation of Q; and therefore Q ≻ 0 ⇔
Q(ν) ≻ 0, [16]. Moreover, by Schur complement properties,
we have Q(ν) ≻ 0 ⇔ (X ≻ 0 and Y X − I ≻ 0). Because
we have Y X+NM⊤ = I (see the text below (25)), we can
conclude that Q(ν) ≻ 0 implies Y X − I = −NM⊤ ≻ 0.
Then, using singular value decomposition of Y X−I , we can
always find full rank N and M , which implies that Π1 is
invertible for X ≻ 0. Hence, the following matrix inequality
will replace (17) in the synthesis problem:

Q(ν) =

[
X In
In Y

]
≻ 0. (27)

Next, consider (16) and define F := diag[Π1, I, I]. F is
invertible if Q(ν) ≻ 0 (see the above discussion). It follows
that, for invertible F , (17) is equivalent to F⊤(−J−αK−
βL− λM − ρN

)
F ⪰ 0. Define the matrices:

J ′ := F⊤JF =


A(ν)⊤ +A(ν) 0 E (ν) F(ν)

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 ,
(28)

K ′ := F⊤KF =


Q(ν) 0 0 0
∗ −1 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , (29)

L′ := F⊤LF =


0 0 0 0
∗ 1− ȳ⊤Y ȳ ȳ⊤Y 0
∗ ∗ −Y 0
∗ ∗ ∗ 0

 , (30)

M ′ := F⊤MF =


0 0 0 0
∗ 1− ū⊤U ū 0 ū⊤U
∗ ∗ 0 0
∗ ∗ ∗ −U

 , (31)

N ′ :=


−G(ν) H(ν) −I(ν) 0

∗ 1− r̄⊤Πr̄ r̄⊤ΠΛy 0
∗ ∗ −Λ⊤

y ΠΛy 0
∗ ∗ ∗ 0

 ⪰ F⊤NF ,

(32)

where

A(ν) := Π⊤
1 QÃΠ1 =

[
AX +BĈf A+BD̂fC

Âf Y A+ B̂fC

]
,

E (ν) := Π⊤
1 QẼ =

[
BD̂fG+ E

B̂fG+ Y E

]
,

F(ν) := Π⊤
1 QF̃ =

[
BD̂fH + F

B̂fH + Y F

]
,

G(ν) :=
[
R̄X +XR̄⊤ − In XR′

∗ R′

]
⪯ Π⊤

1 (Γ
⊤CpΠCpΓ)Π1,

I(ν) := Π⊤
1 Γ

⊤C⊤
p ΠΛy =

[
XR′′′

R′′′

]
,

H(ν) := Π⊤
1 Γ

⊤C⊤
p Πr̄ =

[
XR′′

R′′

]
,

R′ :=

[
0 0
∗ C⊤

p ΠCp

]
,R′′ :=

[
0

C⊤
p Πr̄

]
,R′′′ :=

[
0

C⊤
p ΠΛy

]
,

(33)

where R′ =: R̄R̄⊤ using Cholesky decomposition of R′.
Note that (28)-(32) coming from the change of coordinates

in (26) are linear in ν. We have now F⊤(−J−αK−βL−
λM − ρN

)
F ⪰ −J ′ −αK ′ − βL′ − λM ′ − ρN ′ with N ′ a

linear in ν upper bound on F⊤NF , i.e., (17) is satisfied if

−J ′ − αK ′ − βL′ − λM ′ − ρN ′ ⪰ 0. (34)

Because (34) is linear in ν, we will replace (17) with the
sufficient condition (34) in the synthesis problem.

Safety: Using the partition of Q in (24), the change of
coordinates in (26), and the projection lemma in [17, Ap-
pendix A.3, Lemma 10], we can verify that Ez(X−1) :=
{z|z⊤X−1z ≤ 1}, with X from (24). Recall that, for
safety we require Ez(X−1) ⊆ Es(Ψ, ψ̄). By writting these
ellipsoids as quadratic inequalities, it follows from the S-
procedure that Ez(X−1) ⊆ Es(Ψ, ψ̄) if and only if there
exists δ ∈ R≥0 satisfying J1 − δW1 ⪯ 0 with

J1 :=

[
Ψ −ΨΨ̄
∗ Ψ̄⊤ΨΨ̄− 1

]
,W1 :=

[
X−1 0
∗ −1

]
.

Because W1 is written in terms of X−1, W1 is nonlinear in ν.
To tackle this, we can perform a congruence transformation
F1 := diag[X, 1]. Recall that X is positive definite from
the invariance constraint, so F1 is invertible. It follows that
F⊤

1 (J1−δW1)F1 ⪯ 0 is a congruence transformation of the
safety inequality J1 − δW1. Then, using properties of Schur
complements, we can conclude that F⊤

1 (J1 − δW1)F1 ⪯ 0
if and only if the following matrix inequality is satisfiedδX XΨΨ̄ −X

∗ −Ψ̄⊤ΨΨ̄ + 1− δ 0
∗ ∗ Ψ−1

 ⪰ 0. (35)

Because (35) is affine in ν, we will use it as a safety
constraint in the synthesis problem.

Distortion: Consider (23) and F = diag[Π1, I, I], with F
invertible as Q(ν) ≻ 0 (see above). Then, (23) is satisfied if
and only if L′

H∞
:= F⊤LH∞F ⪯ 0, which is linear in ν :

L′
H∞

=

A(ν)⊤ +A(ν) 0 Cw(ν)⊤
∗ −(γ − ϵ)Im 0
∗ ∗ −γIm

 ⪯ 0.

(36)

with (A(ν),B(ν)) as defined in (33), and Cw(ν) given by:

Cw(ν) := CwΠ1 =
[
Γf Ĉ

⊤
f + ΓcCX − CX ΓcC + Γf D̂fC − C

]
.
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Hence, (23) is replaced by the constraint (36) in the synthesis
program. We can now state the main result of this article.

Theorem 1 Consider the closed-loop system (14) with ma-
trices in (13), the stealthy set Er(Π, r̄) in (8), and the safe set
Es(Ψ, ψ̄) in (19). For given filtering selection matrices Γc,
Γf satisfying (11), if there exist X ∈ Rn×n, Y ∈ Rn×n,
n = nz + nf , Âf ∈ Rnz×nz , B̂f ∈ Rnz×m, Ĉf ∈
Rm×nz , D̂f ∈ Rm×m, and α, β, λ, ρ, δ, γ, ϵ ∈ R≥0

satisfying (27), (34), (35), and (36); then, for all t ≥ t0,
δu(t) ∈ Eu(U , ū), δy(t) ∈ Ey(Y, ȳ), and r(t) ∈ Er(Π, r̄),
we have: (a) ζ(0)⊤Qζ(0) ⩽ 1 ⇒ ζ(t)⊤Qζ(t) ⩽ 1; (b)
z(t) ∈ Ez(X−1) ⊆ Es(Ψ, ψ̄); and (c) ||Tũ→w(s)||H∞ ≤ γ.

Proof: Theorem 1 follows from Lemma 1 and the discus-
sion in Section IV.

Remark 1 (Non-Stealthy Case) To consider the case of
non-stealthy attacks, we just need to remove ρN ′ from (34)
in Theorem 1 (see text below Lemma 1).

Theorem 1 provides sufficient conditions to synthesize a
safety-preserving filter (Âf , B̂f , Ĉf , D̂f ) that guarantees
the system state trajectories z(t), including the plant state
trajectories xp(t), to remain inside the safe set Es, and
the distortion metric is below a predefined level γ. Here,
we aim to design filters that lead to the smallest invariant
ellipsoidal set of system states Ez . As mentioned before,
Ez can be written as Ez(X−1) := {z|z⊤X−1z ≤ 1}, with
X from (24). As a criterion for the ellipsoid size, we use
the trace of the shape matrix P for an ellipsoid E(P ) (see
[16] for details). Hence to reduce the size of Ez(X−1)
we minimize the trace of X in the synthesis program.

Filter Synthesis

OP1:


min
ν

trace(X), (minimum volume Ez(X−1))

s.t. (27), (34); (invariance)

(35); (safety)

(36). (distortion)

Due to products of α with Q(ν), ρ with G, H, and δ with
X , some matrix inequalities in Theorem 1 are quasi-convex,
i.e., for fixed α, ρ, δ the constraint is a LMI. To relax it,
we solve OP1 repeatedly for different values of α, ρ, δ ≥ 0
until the smallest cost is attained. By solving OP1, optimal
X , Y , and (Âf , B̂f , Ĉf , D̂f ) are obtained. These matrices
are then used to extract the filter matrices κ := (Af , Bf , Cf ,
Df ) following the procedure in [18]. Firstly, we compute M
and N satisfying MN⊤ = In−XY . Secondly, we compute
Π1 and Π2 in (25) and extract Q = Π2Π

−1
1 . Lastly, we

extract filter matrices κ := (Af , Bf , Cf , Df ) by sequentially
solving (26) for Df , Cf , Bf and Af in this order.

V. SIMULATION EXAMPLE

Consider a system as in (12) with a plant Σp as in (1) with
system matrices in (37) defined for xp = [xp1, xp2, xp3]

⊤

(np = 3), up = [up1, up2]
⊤ (m = 2), and yp =

[yp1, yp2, yp3]
⊤ (l = 3) where Cp = Il; a controller Σc as in

(2) defined as uc(t) = Dcỹ(t) (nc = 0); a fault detector Σd

that raises an alarm for Π = diag(10, 10, 10), r̄ = 0.

Ap =

−10 10 10
0 −150 0
0 0 −150

 , Bp =

 0 0
100 1
0 100

 ,

Dc =

[
0 1.41 0.01
0 0.01 1.41

]
, L =

70 10 10
0 −50 0
0 0 −50

 . (37)

For the safe set Es(Ψ, ψ̄), we use ψ̄ = 0 and shape matrix
Ψ = diag(0.05, 0.05, 0.05, 1 × 10−4, 1 × 10−4, 1 × 10−4).
Consider actuator and sensor attacks (δu, δy) satisfying (4),
and (5) with U = diag(10, 10), ū = 0, Y = diag(10, 10, 10),
ȳ = 0.

First, we analyze the effect of the attacks on the closed-
loop system (when no filter is placed), i.e., up(t) = ũ(t)
(see Figure 1). We use Lemma 1 and find the optimal Q that
minimizes the size of the ellipsoidal set Eζ(Q) with α = 4,
ρ = 1, ϵ = 10−8. The result is drawn in Figure 2 where the
projection of the ellipsoidal sets Eζ onto the z-hyperplane
(Ez) and onto the r-hyperplane (Er) are the ellipsoids in
dotted curves. The safe set Es and the stealthy set Er are
respectively the blue filled ellipsoid and the ellipsoid with
red cross markers. It is easy to observe that the ellipsoid Ez
is not a subset of the safe set Es. This means stealthy attacks
can drive the system trajectories outside the safe set.

To force that the plant trajectories are within the safe
set in the presence of attacks, we now synthesize a safety
preserving filter acting on the control signals ũ as in (9)
before they reach the plant. The filter we seek to synthesize
acts on the complete ũ(t), i.e., Γc = 0, Γf = Im. We
solve the optimization problem OP1 with α = 2, ρ = 1,
δ = 0.5, ϵ = 10−8, γ = 5.5 × 10−6. The results are shown
in Figure 2, where the projection of the ellipsoidal set Eζ
onto the z-hyperplane (Ez) and the r-hyperplane (Er) are
the ellipsoids filled in green and cyan, respectively. Note
that the filter manages to push the reachable set within the
safe, i.e., Ez ⊆ Es. Hence, the effect of stealthy actuator and
sensor attacks is mitigated by placing the computed filter in
the loop. In Figure 3, the Bode diagram of the computed
filter is shown. We can see that at low frequency, the filter
attenuates slightly the control inputs, while the attenuation
is amplified in higher frequency.

VI. CONCLUSION

We have derived a set-theoretic method to synthesize
optimal LTI filters that constrain control inputs to avoid
reachability of unsafe/critical states induced by resource-
limited (stealthy) actuator/sensor attacks. The filter synthesis
is posed as the solution of a convex optimization problem
where we constrain how much we are willing to sacrifice
in term of control performance to enforce safety. The use of
these filters allows constraining control inputs dynamically as
we can impose amplification limits in the frequency domain.
While the method is presented for control input filtering
only, it can also be applied to design filters for sensor
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Fig. 2: On the left: projection of the invariant ellipsoidal set Eζ(Q) onto the z-hyperplane (without the filter: dotted line ;
with the filter: green fill), safe set Es(Ψ, ψ̄) (blue fill). On the right: projection of the invariant ellipsoidal set Eζ(Q) onto
the r-hyperplane (without the filter: dotted line ; with the filter: cyan fill), stealthy set Er(Π, r̄) (red cross marker).
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Fig. 3: Bode diagram of the safety-preserving filter Σf

measurements. However, the co-design of both filters is yet
not feasible due to the high order of the resulting filters. This
will be explored in future work.
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