
Superlinear Speedup in HPC Systems:
why and when?

Sasko Ristov, Radu Prodan
University of Innsbruck

Innsbruck, Austria

Email:{sashko, radu}@dps.uibk.ac.at

Marjan Gusev
University Ss Cyril and Methodius, FCSE

Skopje, Macedonia

Email:marjan.gushev@finki.ukim.mk

Karolj Skala
Rud̄er Bošković Institute

Zagreb, Croatia

Email:Karolj.Skala@irb.hr

Abstract—The speedup is usually limited by two main laws
in high-performance computing, that is, the Amdahl’s and
Gustafson’s laws. However, the speedup sometimes can reach far
beyond the limited linear speedup, known as superlinear speedup,
which means that the speedup is greater than the number of
processors that are used. Although the superlinear speedup is
not a new concept and many authors have already reported
its existence, most of them reported it as a side effect, without
explaining why and how it is happening.

In this paper, we analyze several different superlinear speedup
types and define a taxonomy for them. Additionally, we present
several explanations and cases of superlinearity existence for
different types of granular algorithms (tasks), which means that
they can be divided into many sub-tasks and scattered to the
processors for execution. Apart from frequent explanation that
having more cache memory in parallel execution is the main
reason, we summarize other different effects that cause the
superlinearity, including the superlinear speedup in cloud virtual
environment for both vertical and horizontal scaling.

Index Terms—Cache memory, load, parallel and distributed
processing, performance.

I. INTRODUCTION

T
HE goal of today’s world of parallel and distributed

systems is to achieve the greatest speedup, represented

either as the lowest time for execution of a single task (High

Performance Computing), or to execute as many tasks as

possible for a given time (High Throughput Computing),

when the task(s) are executed on scaled resources. Many

new algorithms and computing paradigms appeared in the

last decade, and new challenges have emerged to solve more

complex problems faster, or to achieve greater speedup, as

much as possible [1].

The speedup is usually defined as a ratio of the wall times

of sequential and parallel execution of an algorithm. The target

of the parallelization is to achieve the lowest execution time

in order to maximize the speedup against the best sequential

algorithm. Increasing the number of computing resources

will increase the intra-resource’s communication and requires

additional operations, such as reduction operations.

Most of the authors analyze the computer only as a process-

ing unit, focusing on the processing power, without analyzing

the details of the computer as a complex system with memory

and I/O devices as resources. Actually, these resources limit

the speedup, or can boost its performance.

According to the Gustafson’s Law [2], the speedup is limited

with the number of processors, when the linear speedup is

achieved. However, beyond the limits, the superlinear speedup

happens in reality for plenty of reasons and it allows an

increased utilization of parallel systems [3].

Many authors reported the existence of a superlinear

speedup, but most of them only mentioned it as a side effect

[4]. Besides reporting a superlinearity, other researchers briefly

presented that the reason for achieving a superlinear speedup

is because of the greater amount of cache memory in the

parallel execution compared to the sequential [5]. However,

these explanations are insufficient. For example, all currently

produced multiprocessors contain a multi-level cache, but a

superlinear speedup is not reported always. Also, it is not

reported for all algorithms. Sometimes it is limited to the

problem size or the number of used multiprocessors.

In this paper, we present a systematic overview of the

reasons why the superlinear speedup appears. The analysis

approach is to focus on granular algorithms, in both tradi-

tional and cloud virtual environments. Tthe superlinearity is

reported in both environment types, explaining the reasons

summarized in this paper. Data- or code-parallelism divides

a single task into threads or processes and sends them for

execution on different processors, thus aspiring to become a

high-performance computing system with a goal to finish the

task as fast as possible. On the other hand, today’s service

oriented architectures offer scalable web services to their

customers using elastic cloud resources. The latter approach

tends toward a high throughput computing system aiming at

serving as many possible customers for a certain time, without

reducing the service performance.

Due to its elasticity and the linear pay-as-you-go model,

the cloud is preferred platform both for high performance al-

gorithms, especially if they are low communication-intensive,

such as scientific applications [6], [7]. Many scientific ap-

plications are moving from computation-intensive to data-

intensive, that is, they require high throughput comput-

ing, rather than high-performance computing. This is a

huge challenge in the cloud because the data transfer be-

tween the cloud compute nodes and storage is a bot-

tleneck [8]. Despite the additional virtualization layer, a

superlinear speedup is also reported for granular algo-

rithms [9].

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 889–898

DOI: 10.15439/2016F498

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 889

The rest of the paper is organized as follows. The speedup

limits in parallel executions are described in Section II. Sec-

tion III elaborates when and how a superlinear speedup can

be achieved for a parallel implementation of some algorithm.

Examples of obtained superlinear speedup for high perfor-

mance algorithms are presented in Section IV. Despite the

virtualization layer, the cloud environment can also achieve a

superlinear speedup, as discussed in Section V. Section VI

discusses several paradoxes, as well as further challenges.

Finally, we conclude the paper and present the plans for future

work in Section VII.

II. SPEEDUP LIMITATIONS

This section briefly explains the two main laws in the

computer architecture about the limit of the maximal speedup

that can be achieved when an algorithm is executed parallel

with more computing resources, that is, Amdahl’s [10] and

Gustafson’s laws. The former targets the speedup for problems

with fixed problem size while the latter the algorithms that

require intensive parallel processing.

Speedup S(p) is defined as a ratio of the execution times of

the best sequential algorithm T (1) and the parallel implemen-

tation on p processors T (p), as presented in (1). However, this

definition holds only for fixed-time algorithms. When analyzed

more broadly, the speedup should be defined as a ratio of

speeds, and not of times, as defined in (2). Note, that for

fixed-time algorithms, the amount of work is constant, which

results in (1).

S(p) =
T (1)

T (p)
(1)

S(p) =
(ParallelWork
ParallelT ime

)

(SerialWork
SerialT ime

)
(2)

Fig. 1 presents the theoretical or ideal speedup for both laws,

depending on the number of processors used in the parallel

execution. The Amdahl’s Law limits the speedup to the value

1/s, as defined in (3), where s is the portion of the serial part

for the fixed size program. The conclusion is that the speedup

is limited regardless of the number of processors, when the

problem is fixed.

Smax
Amdahls(p) = 1/s (3)

The Gustafson’s Law, on the other side, shows that if the

problem is executed within a fixed time, the maximum value of

the speedup is linear limited by the number of processors, as

defined in (4), assuming that the problem size increases and the

serial portion becomes negligible. However, in real executions,

due to communication, synchronization, and resource sharing,

the speedup is sublinear, or S(p) < p.

Smax
Gustafson(p) = p (4)

Both the Amdahl’s and Gustafson’s laws calculate the

maximum speedup, that is, the speedup limit of a parallel

algorithm or program; they both consider that the serial part

S;
pͿ

GustafsoŶ's Law S;pͿ = p

Aŵdahl's Law S;pͿ = f/;1+1/pͿ

p

Fig. 1. Speedup for Amdahl’s and Gustafson’s laws

of the algorithm does not depend on the number of processors.

However, this is in the ideal condition, while in a real situation,

each processor does not start and finish in the same time, and

the communication overhead and synchronization can harm the

parallel execution when the number of processors increases.

Karp and Flatt [11] introduced the scaled serial fraction

fk of an algorithm as defined in (6), where p is the number

of processors, and sk is the speedup that calculates the

overhead (5) as a number of the executed additional arithmetic

operations for parallel execution. Parameter k represents the

scaling factor for the overhead in a parallel implementation

using p processors.

sk =
k · T (1, 1)

T (p, k)
(5)

fk =
1/sk − 1/p

1− 1/p
(6)

Let’s discuss the relation for the scaled serial fraction. If

sk = p, then fk = 0, which yields to the Gustafson’s Law.

The results of the parallelization will still be good even if the

parallel implementation achieves a small speedup, while fk
retains to a some constant value, because the algorithm has

limited parallelization.

Let’s rewrite (6) as (7) in order to determine the speedup

that calculates the overhead sk and yield special cases, that is,

the Amdahl’s and Gustafson’s law.

sk =
1

fk · (1− 1/p) + 1/p
(7)

If the scaled serial fraction fk = 0, then sk = p, which

yields toward Gustafson’s Law, while if p → ∞, then sk =
1/fk, as Amdahl’s Law states. For each scaled system with

fk > 0, the scaled speedup that calculates the overhead is

sublinear, i.e. sk < p.

III. BEYOND THE SPEEDUP LIMITS. WHY AND WHEN?

Although the limits are given by the Gustafson’s Law, the

speedup achieved by executing some algorithms on parallel

configurations goes beyond it, achieving a superlinear speedup.

This section presents several such cases, along with detailed

890 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Occupied by OS Occupied by OS

Matrix A Matrix B

Matrix Ai

Matrix B

a) sequential version b) parallel version

Fig. 2. Cache occupancy in sequential and parallel execution

explanation about the reason for various superlinear speedup

appearances.

Let’s analyze when a superlinear speedup can be achieved

while parallelizing a sequential problem. The CPU execution

times for sequential algorithm Ts and parallel algorithm Tp

are respectively defined in (8) and (9), where CC and MC
represent the clock cycles required by the processor for execu-

tion of operations and memory accesses, correspondingly, and

CT the time period of a single clock cycle. In a homogeneous

environment, CT will be the same for both implementations.

Ts = (CCs +MCs) · CT (8)

Tp = (CCp +MCp) · CT (9)

Shi [12] classified the parallel versions of algorithms to be

either structure persistent or non-persistent. The former means

that the number of total operations that the algorithm executes

is same both for the sequential and parallel implementation, for

the same input. The latter’s parallel implementation does not

execute all operations, that the compatriot sequential algorithm

would. A formal notation of (7) means that the scaled serial

fraction fk < 0, which yields toward a superlinear speedup

sk > p.

Gusev and Ristov [13] defined the condition when a super-

linear speedup can be obtained for a shared memory multipro-

cessor, which is presented in (10), where a positive number ǫ
exists, such that 0 ≤ ǫ ≤ p and CCs = CCp · (p − ǫ). The

parameter ǫ represents the effect of parallelization overhead

and synchronization and p the number of scaled computing

resources.

MCs > p ·MCp + ǫ · CCp (10)

The superlinearity was defined for cache-intensive algo-

rithms only (algorithms where the cache-intensive complexity

represented by the average reuse of an element c is greater

than 1 [14]). For example, the dense matrix-matrix multipli-

cation algorithm has cache-intensive complexity c = O(N)
because each element of matrices is accessed N times for

different computations. On the other hand, the cache-intensive

complexity of the scalar product is c = 1, which yields that a

superlinear speedup cannot be achieved. We must note that the

cache-intensive complexity defines the level of superlinearity,

that is, an algorithm with greater cache-intensive complexity

(c ≫ 1) will achieve a greater superlinear speedup.

A. Superlinear speedup for non-persistent algorithms

Typical examples of non-persistent algorithms are searching

algorithms, which finish when one of the processors finds

the solution, and together with all the other processors stop

the execution, without finishing all operations. In this case, a

superlinear speedup usually appears because CCp is smaller

than CCs, thus compensating the overhead of parallelization.

This case can be better presented if the total number of clocks

are presented through the number of instructions I and CPI
(clocks per instruction), as presented in (11) and (12) [15]. Ip
will be smaller than Is, which will cause a spurious superlinear

speedup.

CCs = Is · CPICC ; (11)

CCp = Ip · CPICC (12)

Many examples can be found in the literature for superlinear

speedup of the non-persistent algorithms. For example, parallel

shortest path planning [16].

B. Superlinear speedup for persistent algorithms

The total number of instructions of the sequential and

parallel implementations of structure persistent algorithms is

the same, that is, Ip = Is, which means that superlinear

speedup appears due of the memory clock cycles, that is, by

reducing the number of clocks per instruction for memory ac-

cess CPIMC in the parallel implementation. There are several

different cases when CPIMC in parallel implementation will

be smaller than its serial compatriot. Let us explain all these

cases.

1) More cache for parallel execution: The case when the

parallel execution of a structure persistent algorithm can obtain

a superlinear speedup due to utilizing more cache memory is

the mostly reported by the researchers [17].

Since more cache memory is used in parallel execution, for

some region of problem size, it can store the whole problem

SASKO RISTOV, RADU PRODAN, MARJAN GUSEV, KAROLJ SKALA: SUPERLINEAR SPEEDUP IN HPC SYSTEMS: WHY AND WHEN? 891

CPU0

C0

L1

L2

C1

L1

L2

C2

L1

L2

C3

L1

L2

L3

L4

Fig. 3. Utilized memory for sequential execution

CPU0

C0

L1

L2

C1

L1

L2

C2

L1

L2

C3

L1

L2

L3

L4

A)Fig. 4. Utilized multi tiered memory for loosely coupled processors for
parallel execution

size, while the sequential execution cannot, as presented for

storing matrices in Fig. 2 [13].

Fig. 3 [18] presents an example for utilized memory tiers

of a typical multiprocessor with four cores, each with private

L1 and L2 cache memory, shared L3 cache memory, and main

memory represented by L4.

Velkoski et al. [18] went beyond this analysis. They have

analyzed the impact of loosely and tightly coupled cores

for parallel implementation and concluded that the former is

superior for naive dense matrix-vector multiplication. The uti-

lization of memory tiers of a typical multiprocessor for loosely

and tightly coupled cores in parallel execution is presented in

figures 4 and 5 [18]. The tightly coupled case uses all four

cores on one chip, while the loosely coupled case uses one

CPU core of four chips on a shared memory multiprocessor.

The results show that a superlinear speedup region appears

for both loosely and tightly coupled processors, which starts

for the same matrix size, but the former’s region is wider, as

well as it achieves a greater superlinear speedup. These results

clearly present that the use of more L2 cache memories for

parallel execution yields a superlinear speedup in the tightly

coupled processors, while more L3 cache memory generates

even a greater superlinear speedup and region, despite the

increased overhead of the inter-chip communication, compared

to the intra-chip for tightly-coupled systems.

Another interesting example was reported by Djinevski et

al. [19] achieving a superlinear speedup region on GPU,

when they used one loosely coupled processing unit of all

streaming multiprocessors (SMs) for parallel execution, and

a single processing unit of one SM for sequential execution.

The superlinear speedup regions are achieved regardless of the

used number of SMs.

2) Shared cache for parallel execution: Although most of

the reported superlinear speedups are obtained because of the

increased cache memory in a parallel execution, a superlinear

speedup is achieved in those some algorithms addressing a

common shared cache. That is, a superlinear speedup can be

achieved even in the tightly coupled processors.

For example, this is the case for an algorithm where the

same variables (data) are used by several or all shared memory

multiprocessors. If these variables are defined as shared, then

fetching a variable by one processor will load it in the upper

memory tier (for example, from RAM to the shared L3 cache),

thus reducing the access time for the same variable by other

processors.

Next, let’s explain the difference when multiprocessors,

which use private per core cache or shared cache, access the

data from the memory. Without loosing generality, assume

that the multiprocessor has one cache level and the accessed

memory location is not present in the cache.

Fig. 6 presents how two multiprocessors, each with a private

cache, access the same memory location. Let’s assume that the

instruction Read(X) is executed by the processor A earlier. It

will generate a cache miss, and pay the penalty for that. After

fetching the variable X from the memory into its private cache,

the processor B will do a similar sequence. This means that

in this case, two cache misses and two memory accesses will

happen.

Accessing the data in the memory by two multiprocessors

that use a shared cache is presented in Fig. 7. In this environ-

ment, when the processor A accesses the variable X , a cache

miss will be generated and one memory access. Now, when

the processor B will require the same variable X in the near

future without replacing it from the cache, a cache hit will

be generated without a cache miss penalty and an additional

memory access.

We can conclude that a tightly coupled multiprocessor (that

uses a shared cache) can benefit when shared variables are

used by reducing the cache misses and memory accesses.

892 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

CPU0

C0

L1

L2

C1

L1

L2

C2

L1

L2

C3

L1

L2

L3

CPU1

C4

L1

L2

C5

L1

L2

C6

L1

L2

C7

L1

L2

L3

CPU2

C8

L1

L2

C9

L1

L2

C10

L1

L2

C11

L1

L2

L3

CPU3

C12

L1

L2

C13

L1

L2

C14

L1

L2

C15

L1

L2

L3

L4

B)
Fig. 5. Utilized multi tiered memory for loosely coupled processors for parallel execution

Processor A

ALU

Cache

MaiŶ ŵeŵory

Processor B

ALU

Cache

Х

Х Х

Miss Miss

Access Access

Fig. 6. Accessing the data from the memory by two multiprocessors that use
private cache. Two cache misses and two memory access will happen.

The precondition is that the time and space locality should

be utilized by all processors.

Anchev et al. [20] reported a superlinear speedup for dense

matrix-matrix multiplication. The reason for superlinearity is

the use of a shared L3 cache, or, as we explained earlier, the

implicit prefetch of the data (matrix elements).

However, we must note that the superlinear speedup was

reported only for AMD Opteron, while Intel’s i7 obtained a

sublinear speedup only. We believe that the reason for this is

due to the fact that the frequency gap between L3 and main

memory is much bigger for AMD Opteron, and thus reducing

the cache miss ratio and penalties, which compensates the

parallelization overhead, and generates a superlinear speedup.

3) Superlinear speedup in a heterogeneous environment:

Superlinear speedup is reported in a heterogeneous environ-

ment that consists of three Intel Xeon CPU + one GPU

NVIDIA FX Quadro, because the heterogeneous environment

schedules the tasks better than the homogenous environment

and thus reduces the impact of Amdahl’s Law with a limited

overhead in parallel execution [21].

IV. SUPERLINEAR SPEEDUP REGIONS

This section overviews several examples of granular al-

gorithms, where the existence of a superlinear speedup is

reported. We define two different region types of a superlinear

speedup: 1) for some range of the number of processors, usual

Chip

Processor A

ALU

Cache

MaiŶ ŵeŵory

Processor B

ALU

Х

Х
Miss Hit

Access

Fig. 7. Accessing the data from the memory by two multiprocessors that
use shared cache. Only one cache miss, one cache hit and only one memory
access will happen.

S;
pͿ

LinearLinear

S;pͿ

p

S;pͿ

Fig. 8. Example of superlinear speedup for a particular range of number of
processors (fixed problem size)

for fixed problem size, and 2) for a particular range of problem

size, but fixed number of processors.

Fig. 8 presents a superlinear speedup for some range of

the number of processors, usual for fixed problem size. The

superlinearity usually starts even when two processors are

used. However, it is lost as the scaling factor increases [22]

due to the communication and synchronization overhead.

Another situation is to fix the number of processors, but

SASKO RISTOV, RADU PRODAN, MARJAN GUSEV, KAROLJ SKALA: SUPERLINEAR SPEEDUP IN HPC SYSTEMS: WHY AND WHEN? 893

p

S;
pͿ

Linear

S;pͿ

N

Fig. 9. Example of superlinear speedup for a particular range of problem
size, but fixed number of processors

change the problem size, which can also impact the speedup,

as presented in Fig. 9. We observe that there is a superlinear

region for a specific range of problem size N where the

speedup S(p) > p, while in other regions, it is sublinear.

We must note that sometimes, the speedup could be S(p) <
1, (sublinear speedup), which means that it is not speedup,

but a slowdown. This could happen for several reasons. For

example, for small problem size, which is negligible for good

performance comparison, sequential execution will be faster

than the time for forking threads. Another example is the case

when the number of threads or processes is greater than the

number of existing processors. Or more generally, a slowdown

may happen due to the communication and synchronization

time, or the overload of instruction in parallel execution.

Further on, using the cache line for time and space locality in

sequential execution can overcome the problem of the limited

number of processors. Let’s define it more formal, that is, the

condition MCs < p ·MCp will compensate CCp ≤ p · CCs,

which will lead to a slowdown. In this case, the speedup could

be achieved if problem size is divided into huge data chunks

that will be scattered to the processing resources that will

execute them sequentially.

Without losing generality, many authors use the Efficiency

indicator calculated by E(p) = S(p)
p

, which maps the limited

speedup into the range [0, 1]. This parameter helps a lot

to compare parallel executions with a different number of

processors among each other. However, the value of E(p) for

superlinear speedup is E(p) > 1.

Gustafson [23] presented two cases of non-spurious su-

perlinear speedup. Superlinear speedup can be obtained in

distributed memory ensembles because of various memory

speed. He also reported a superlinear speedup in cases when

algorithms and tasks are with different speed.

Sometimes, parallel execution achieves a superlinear

speedup because it partitions and reduces the data chunks,

which can be placed in the cache memory, thus reducing the

cache misses [24], [25], [26], [27], [28].

Many authors reported a superlinear speedup for parallel

execution of some algorithms. However, most of them pre-

sented a likely explanation only for the superlinear speedup

appearance. For example, one explanation is that the reason

for achieving a superlinear speedup is because of having

more cache in parallel execution. Still, in most cases the

superlinear speedup is achieved for some range of the used

number of processors, or for a specific problem size, or in a

combination of both cases. For example, Monagan and Pearce

[29] achieved a superlinear speedup for the parallel sparse

polynomial division. However, they did not explain why a

superlinear speedup has not appeared for extremely sparse

problems, although a parallel execution uses the same amount

of cache. Also, the same experiments have not reported a

superlinear speedup on the Core 2 processor, although the level

3 cache has more cache than the sequential one.

Phillips et al. [30] reported a superlinear speedup, even

when comparing parallel executions up to 26 processors with

the one that uses two processors for continuous iterative

guided spectral class rejection (CIGSCR). Peschlow et al.

[31] achieved a superlinear speedup while simulating wireless

networks, but only in a single range of a number of processors

and for a specific number of nodes.

V. ANALYSIS OF A SUPERLINEAR SPEEDUP IN CLOUD

ENVIRONMENT

This section presents several cases where a superlinear

speedup is achieved in cloud virtual environment for various

types of scaling the resources.

Nowadays, cloud computing is being increasingly used for

high-performance and high throughput applications. Its elastic

on demand resources allow the customers to rent, for example,

1000 processors and execute a certain task, instead of building

their own underutilized data center. Since the cloud’s pricing

strategy is linear, and expected speedup is also linear, it seems

that customers will be charged fairly. In reality, the reported

performance for communication-intensive high-performance

algorithms shows that customers might feel that they are

cheated. However, there are several cases where the superlinear

speedup is achieved, despite the virtualization layer.

Customers can scale their rented resources horizontally,

vertically or diagonally in the cloud. If the original config-

uration maps one process to a virtual machine (VM) instance

hosted on a processor with one CPU core, as presented in

Fig. 10 a), then Fig. 10 b), c) and d) present the three possible

cloud scalings. The horizontal scaling presented in Fig. 10 d)

increases the number of same VM instances and maps separate

process (with a single thread) to a different VM instance. The

vertical scaling presented in Fig. 10 b) increases the number of

CPU cores per VM (resized VM) and maps separate threads of

a single process to a different core on the same VM instance. A

combination of the both scaling types yields a diagonal scaling

presented in Fig. 10 c). To realize the vertical and diagonal

scaling, the customer should use some API for parallelization,

such as OpenMP, which will create parallel threads.

There are published papers that present a superlinear

speedup in both the horizontal and vertical scaling. A super-

linear speedup is reported and elaborated for cache-intensive

algorithms [9] in the case of vertical scaling. Although se-

quential execution utilizes cache more, the superlinear speedup

894 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

VM1
P1

T1 T2 T3 T4 T2.1 T2.2

VM2
P1

VM1
P1

T1.1 T1.2

VM4
P1

C4

VM3
P1

C3

VM2
P1

C2

VM1
P1

C1

a) b) c) d)

VM1
P1

C1 C1 C2 C3 C4 C1.1 C1.2 C2.1 C2.2

Fig. 10. Example of b) Vertical, c) Diagonal, and d) Horizontal scaling of nominal resources a)

is achieved also for horizontal scaling in the cloud, as well

[14]. The authors have determined that the cloud environment

handles the cases when the problem size can be fitted in the

last level cache memory better, which is the reason why a

superlinear speedup is achieved [32].

VI. DISCUSSION

The superlinear speedup is achieved by many researchers,

usually as a side effect without elaborating the theoretical

background and explaining the details. In this paper, we

have analyzed several aspects how to achieve a superlinear

speedup, explaining why and when it can happen when various

algorithms are executed on different platforms.

A. Superlinearity versus algorithm type

Mainly, the multi-tiered memory organization is the main

reason to obtain a superlinear speedup for granular algorithms.

We have classified two paradoxical cases; in the first case, the

superlinearity appears because of the increased capacity of L2

and L3 cache memory, while in the second case, it is achieved

because of the shared last level cache memory. A superlinear

speedup is achieved in the first case, when the algorithm is

executed on a loosely coupled system, while in the other case,

the algorithm executed on a tightly coupled system.

The main reason is the difference of the algorithms. The

loosely coupled parallel execution outperforms the tightly

coupled for dense matrix-vector multiplication, in which, the

matrix AN ·N is divided horizontally among processors for

row-major memory, and implicit fetching is not used, while it

is used only for the vector BN cdot1, as presented in Fig. 11 a).

However, its dimension is O(N), while the matrix dimension

is O(N2/p) → O(N2) is dominant, because the number of

processors p << N .

On the other side, Fig. 11 b) presents the data that

is accessed by the processor Pi for parallel execution

of dense matrix-matrix algorithm, which shows that each

processor uses the whole matrix B and therefore, im-

plicit fetching yields a superlinear speedup. In this case,

the size of shared data among all processors is bigger

than the private chunks of matrix A, as well as com-

pared to the vector’s size in dense matrix-vector multiplica-

tion.

Another issue is the way of storing the matrices. Without

loosing generality, we will assume that a row-major storing is

used. Accessing the data of the matrix A is linearly, which

utilizes the cache lines and thus reduces the cache misses

regardless of the cache size. For example, when accessing the

element ai,j , the elements ai+1,j , ai+2,j , . . . ai+k,j are also

fetched in the cache. The size of k depends on the cache

line and matrix element sizes. Therefore, cache misses are

generated for the element ai,j only. Accessing the elements of

the matrix B does not utilize the cache line, because a column

of the matrix B is accessed linearly. In this case, the cache

size is very important in order to store as much as possible a

part of the matrix B.

We must note that although very naive examples of dense

matrix-matrix and matrix-vector multiplications were pre-

sented, the generality is not lost. Our goal is not to prefer

this algorithm for parallel execution, but just to show how and

when a superlinear speedup can be obtained, paradoxically, for

various algorithm - totally different reasons.

Using a multi-tiered memory is not the sine qua non for

superlinearity. As we presented an example in Section III-B2,

Intel i7 processor has not obtained a superlinear speedup

for the same algorithm, as AMD Opteron. For example, a

superlinear speedup is obtained on Cray XMT [33]. Intel

Xeon achieved a superlinear speedup for two processors using

the data-parallelism benchmarking (Black-Scholes), but only

a sublinear speedup with dense matrix-vector multiplication

[34]. Therefore, having cache memory is only one of the

conditions for the existence of a superlinear speedup. An

important observation is to return to the speedup definition,

SASKO RISTOV, RADU PRODAN, MARJAN GUSEV, KAROLJ SKALA: SUPERLINEAR SPEEDUP IN HPC SYSTEMS: WHY AND WHEN? 895

✲
Pi = ·

Vector C Matrix A Vector B

Ci Ai B

a)

✲
Pi = ·

Matrix C Matrix A Matrix B

Ci Ai B

b)

Fig. 11. Example of parallel implementations of matrix-vector and matrix-
matrix multiplication.
a) Processor Pi uses chunk block Ai of matrix AN·N and the whole shared
vector BN·1

b) Processor Pi uses chunk block Ai of matrix AN·N and the whole shared
matrix BN·N

i.e. to the benefits of parallelization that should compensate

its overhead.

Also, another condition is to use cache-intensive algorithms,

or to reuse of data; otherwise, having cache memory could be

useless since, in both executions, each access will generate a

cache miss. Even more, the superlinearity appears for some

range of the number of processors, or for some problem size,

or for both.

B. A new challenge: How to scale?

Cache-intensive granular algorithms, whose data reuse com-

plexity is proportional to the problem size, will benefit from

bigger cache. Many Intel’s multiprocessors use a marketing

trick with a huge L3 smart cache. However, one can easily

check that it is not shared among all cores, but only among

part of them. For example, 6MB of total 12MB cache is shared

between each group of two cores. In this case, vertical scaling

will utilize more the last level cache. AMD multiprocessors

usually have smaller L3 cache, but it is shared among all cores

of the multiprocessor. Therefore, depending on the algorithm,

appropriate processor and scaling type should be chosen in

order to achieve the best speedup, potentially superlinear.

On the other hand, today’s cloud elastic resources can

also be scaled in different ways: horizontally, vertically or

diagonally, each of which can offer various performance and

possibility for achieving superlinear speedup [35]. Vertical

scaling provides a better speedup, but horizontal offers more

flexible scaling of resources, which can minimize the cost.

C. Is the superlinear speedup always our target?

Achieving superlinear speedup does not necessarily mean

that customers will obtain the maximum achievement. For

example, the cache associativity in CPUs and GPUs [36] can

provide a huge performance drawbacks for a specific memory

pattern reading, and achieving the superlinear speedup for

those inputs is not enough, but other techniques, such as

padding, should be used. In the workflow executions in parallel

and distributed systems, customers usually use bi-objective

optimizations to minimize the makespan and cost. These

two parameters are opposite one to another. Minimizing the

makespan produces greater cost and vice verse.

Cloud computing customers can set a deadline for the exe-

cution requiring minimal cost, rather than minimal makespan

[37]. In these cases, budget constraints and reducing the race

for the speedup can yield the reduced cost for the execution.

For example, although superlinear speedup is achieved in

Windows Azure cloud for matrix multiplication when virtual

machine instances with Windows operating system are used,

Linux virtual machine instances achieved better performance

cost trade-off because they are cheaper.

On the other side, there is a risk of cloud resources

performance variation and instance failure during the time.

Increasing the budget by duplicating the tasks on more than

one instance could mitigate those risks, in order to meet the

deadline [38]. Sometimes, using a bigger instance executes

the task faster, rather than waiting several minutes for the

deployment time to start another smaller, but an appropriate

instance, which reduces the turnaround time of an activity [39].

VII. CONCLUSION AND FUTURE WORK

Since the race in processor’s frequency (Gigahertz) was

abandoned a decade ago, which in the meantime has been

migrated into the TOP500 race [40] for hunting ExaFLOPS,

this overview of superlinearity could have an impact in the

supercomputers’ architecture and design, since the goal of each

parallelization is to achieve the maximal speedup, which is

superlinear.

The defined taxonomy for various scalings and definitions of

superlinearity can open new ways for parallel and distributed

systems. Defining how much to scale the resources is insuffi-

cient. One needs to define how to scale. Algorithms that can

benefit from greater cache memory should scale vertically,

while those that need to finish more work in a given time,

should scale horizontally.

This paper overviews many reasons and presents practical

cases to achieve a superlinear speedup when an algorithm

is executed using various scaling. The analysis can help

to maximize the utilization of the parallel and distributed

hardware [41].

This work summarizes and discusses several cases for the

appearance of superlinearity. Superlinear speedup in non-

persistent algorithms appears due to a smaller number of exe-

cuted operations. Mainly the superlinear speedup performance

in persistent algorithms occurs due to the increased cache re-

sources in the parallel computer architectures, the prefetching

of shared variables in shared memory organization, or better

scheduling in heterogeneous environments. The effects of the

shared memory architectures also impact the performance

behavior of the granular and scalable algorithms. All these

analyses will guide the developers of parallel implementation

896 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

not only how to parallelize a given problem, but to choose

the most appropriate environment and scaling type in order to

achieve the maximal speedup.

Additionally, this analysis opens many challenges, such as

finding a correlation among parallel hardware’s architecture

and organization, a certain form of a parallelized algorithm,

a parallelization technique, the server load and input problem

size, and other possible factors that impact the existence of a

superlinear speedup.

Further focus will be towards modeling the speedup by con-

sidering all these factors, as well as to determine an analytical

relation of a complex computer system that will enable the

conditions for superlinearity. Additionally, our challenge is

to model the multidimensional space of superlinearity, which

will determine the value of superlinearity by considering the

problem size region and the region of the number of proces-

sors. Since this paper focuses on granular high performance

algorithms, we would analyze and define the taxonomy for

scalable algorithms, in which many tasks that are coming, are

scattered among parallel processing units.

ACKNOWLEDGMENT

This work is supported by the European Union’s Horizon

2020 research and innovation programme under the grant

agreement 644179 ENTICE: dEcentralized repositories for

traNsparent and efficienT vIrtual maChine opErations.

The authors would like to acknowledge networking support

by the COST programme Action IC1305, Network for Sus-

tainable Ultrascale Computing (NESUS).

REFERENCES

[1] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics:
recent advances and new trends,” International Transactions in Oper-

ational Research, vol. 20, no. 1, pp. 1–48, 2013. doi: 10.1111/j.1475-
3995.2012.00862.x

[2] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communication of ACM,
vol. 31, no. 5, pp. 532–533, May 1988. doi: 10.1145/42411.42415.
[Online]. Available: http://doi.acm.org/10.1145/42411.42415

[3] X. Ye, W. Dong, P. Li, and S. Nassif, “Hierarchical multialgorithm par-
allel circuit simulation,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 30, no. 1, pp. 45–58, Jan 2011.
doi: 10.1109/TCAD.2010.2067870

[4] J. Rufino, A. I. Pereira, and J. Pidanic, “copssa - constrained paral-
lel stretched simulated annealing,” in Radioelektronika (RADIOELEK-

TRONIKA), 2015 25th International Conference, April 2015. doi:
10.1109/RADIOELEK.2015.7129044 pp. 435–439.

[5] T. Ciamulski and M. Sypniewski, “Linear and superlinear
speedup in parallel fdtd processing,” in 2007 IEEE Antennas and

Propagation Society International Symposium, June 2007. doi:
10.1109/APS.2007.4396642. ISSN 1522-3965 pp. 4897–4900.

[6] A. Gupta and D. Milojicic, “Evaluation of hpc applications on
cloud,” in Open Cirrus Summit (OCS), 2011 Sixth, Oct 2011. doi:
10.1109/OCS.2011.10 pp. 22–26.

[7] S. A. Tsaftaris, “A scientist’s guide to cloud computing,” Computing

in Science Engineering, vol. 16, no. 1, pp. 70–76, Jan 2014. doi:
10.1109/MCSE.2014.12

[8] L. Liu, M. Zhang, Y. Lin, and L. Qin, “A survey on workflow manage-
ment and scheduling in cloud computing,” in Cluster, Cloud and Grid

Computing (CCGrid), 2014 14th IEEE/ACM International Symposium

on, May 2014. doi: 10.1109/CCGrid.2014.83 pp. 837–846.
[9] M. Gusev and S. Ristov, “Superlinear speedup in Windows Azure cloud,”

in Cloud Networking (IEEE CLOUDNET), 2012 IEEE 1st International

Conference on, Paris, France, 2012, pp. 173–175.

[10] G. M. Amdahl, “Validity of the single-processor approach to achieving
large scale computing capabilities,” in AFIPS Conference Proceedings,
vol. 30. AFIPS Press, Reston. Va., Atlantic City, N.J., Apr. 18-20
1967. doi: 10.1145/1465482.1465560 pp. 483–485. [Online]. Available:
http://doi.acm.org/10.1145/1465482.1465560

[11] A. H. Karp and H. P. Flatt, “Measuring parallel processor
performance,” Commun. ACM, vol. 33, no. 5, pp. 539–543,
May 1990. doi: 10.1145/78607.78614. [Online]. Available: http:
//doi.acm.org/10.1145/78607.78614

[12] Y. Shi, “Reevaluating amdahl’s law and gustafson’s law,” Computer
Sciences Department, Temple University, Tech. Rep. MS:38-24, Oct.
1996.

[13] M. Gusev and S. Ristov, “A superlinear speedup region for
matrix multiplication,” Concurrency and Computation: Practice

and Experience, vol. 26, no. 11, pp. 1847–1868, 2013. doi:
10.1002/cpe.3102. [Online]. Available: http://dx.doi.org/10.1002/cpe.
3102

[14] ——, “Resource scaling performance for cache intensive algorithms
in Windows Azure,” in Intelligent Distributed Computing VII, ser.
SCI, F. Zavoral, J. J. Jung, and C. Badica, Eds. Springer
International Publishing, 2014, vol. 511, pp. 77–86. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-01571-2_10

[15] J. L. Hennessy and D. A. Patterson, “Computer Architecture, Fifth
Edition: A Quantitative Approach,” MA, USA, 2012.

[16] M. Otte and N. Correll, “C-forest: Parallel shortest path planning with
superlinear speedup,” IEEE Transactions on Robotics, vol. 29, no. 3, pp.
798–806, June 2013. doi: 10.1109/TRO.2013.2240176

[17] A. F. P. Camargos, R. M. S. Batalha, C. A. P. S. Martins, E. J. Silva, and
G. L. Soares, “Superlinear speedup in a 3-d parallel conjugate gradient
solver,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1602–1605,
March 2009. doi: 10.1109/TMAG.2009.2012753

[18] G. Velkoski, S. Ristov, and M. Gusev, “Loosely or tightly coupled
affinity for matrix - vector multiplication,” in Information Communi-

cation Technology Electronics Microelectronics (MIPRO), 2013 36th

International Convention on. Opatija, Croatia: IEEE, May 2013. ISBN
978-953-233-076-2 pp. 228–233.

[19] L. Djinevski, S. Ristov, and M. Gusev, “Superlinear speedup for
matrix multiplication in GPU devices,” in ICT Innovations 2012,
ser. Advances in Intelligent Systems and Computing, S. Markovski
and M. Gusev, Eds. Springer Berlin Heidelberg, 2013, vol.
207, pp. 285–294. ISBN 978-3-642-37168-4. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37169-1_28

[20] N. Anchev, M. Gusev, S. Ristov, and B. Atanasovski, “Intel vs AMD:
Matrix multiplication performance,” in Information Communication

Technology Electronics Microelectronics (MIPRO), 2013 36th Interna-

tional Convention on. Opatija, Croatia: IEEE, May 2013. ISBN 978-
953-233-076-2 pp. 182–187.

[21] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Concurr. Comput. : Pract. Exper., vol. 23, no. 2,
pp. 187–198, Feb. 2011. doi: 10.1002/cpe.1631. [Online]. Available:
http://dx.doi.org/10.1002/cpe.1631

[22] G. Kosec and M. Depolli, “Superlinear speedup in OpenMP paralleliza-
tion of a local PDE solver,” in MIPRO, 2012 Proceedings of the 35th

International Convention, 2012, pp. 389–394.
[23] J. L. Gustafson, “Fixed time, tiered memory, and superlinear speedup,”

in Distributed Memory Computing Conference, 1990., Proceedings of

the Fifth, vol. 2, Apr 1990. doi: 10.1109/DMCC.1990.556383 pp. 1255–
1260.

[24] I. A.-S. Ibrahim, H.-W. Loidl, and P. Trinder, “High-performance
cloud computing for symbolic computation domain,” Journal of

Computations & Modelling, vol. 6, no. 1, pp. 107–133, 2016. [Online].
Available: http://www.scienpress.com/journal_focus.asp?main_id=58&
Sub_id=IV&Issue=1771

[25] N. Theera-Ampornpunt, S. G. Kim, A. Ghoshal, S. Bagchi, A. Grama,
and S. Chaterji, “Fast training on large genomics data using distributed
support vector machines,” in 2016 8th International Conference on

Communication Systems and Networks (COMSNETS), Jan 2016. doi:
10.1109/COMSNETS.2016.7439943 pp. 1–8.

[26] P. E. McKenney, “Retrofitted parallelism considered grossly sub-
optimal,” in Proceedings of the 4th USENIX Conference on

Hot Topics in Parallelism, ser. HotPar’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 13–13. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2342788.2342801

SASKO RISTOV, RADU PRODAN, MARJAN GUSEV, KAROLJ SKALA: SUPERLINEAR SPEEDUP IN HPC SYSTEMS: WHY AND WHEN? 897

[27] J. Ichnowski and R. Alterovitz, “Scalable multicore motion planning
using lock-free concurrency,” IEEE Transactions on Robotics, vol. 30,
no. 5, pp. 1123–1136, Oct 2014. doi: 10.1109/TRO.2014.2331091

[28] S. Priyadarshi, C. S. Saunders, N. M. Kriplani, H. Demircioglu, W. R.
Davis, P. D. Franzon, and M. B. Steer, “Parallel transient simulation of
multiphysics circuits using delay-based partitioning,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 10, pp. 1522–1535, Oct 2012. doi: 10.1109/TCAD.2012.2201156

[29] M. Monagan and R. Pearce, “Parallel sparse polynomial division using
heaps,” in Proceedings of the 4th International Workshop on Parallel

and Symbolic Computation, ser. PASCO ’10. New York, NY, USA:
ACM, 2010. doi: 10.1145/1837210.1837227. ISBN 978-1-4503-0067-4
pp. 105–111.

[30] R. D. Phillips, L. T. Watson, and R. H. Wynne, “An smp soft
classification algorithm for remote sensing,” in Proceedings of the

19th High Performance Computing Symposia, ser. HPC ’11. San
Diego, CA, USA: Society for Computer Simulation International,
2011, pp. 104–110. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2048577.2048591

[31] P. Peschlow, A. Voss, and P. Martini, “Good news for parallel wireless
network simulations,” in Proceedings of the 12th ACM International

Conference on Modeling, Analysis and Simulation of Wireless and

Mobile Systems, ser. MSWiM ’09. New York, NY, USA: ACM, 2009.
doi: 10.1145/1641804.1641828. ISBN 978-1-60558-616-8 pp. 134–142.
[Online]. Available: http://doi.acm.org/10.1145/1641804.1641828

[32] M. Gusev and S. Ristov, “The optimal resource allocation among virtual
machines in cloud computing,” in Proceedings of The 3rd International

Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD

COMPUTING 2012), Nice, France, 2012, pp. 36–42.
[33] S. S. Bokhari, “Parallel solution of the subset-sum problem: An em-

pirical study,” Concurr. Comput.: Pract. Exper., vol. 24, no. 18, pp.
2241–2254, Dec. 2012. doi: 10.1002/cpe.2800

[34] J. Maqbool, S. Oh, and G. C. Fox, “Evaluating arm hpc clusters
for scientific workloads,” Concurrency and Computation: Practice

and Experience, vol. 27, no. 17, pp. 5390–5410, 2015. doi:
10.1002/cpe.3602 CPE-14-0161.R2. [Online]. Available: http://dx.doi.
org/10.1002/cpe.3602

[35] S. Ristov, K. Cvetkov, and M. Gusev, “Implementation of a scalable l3b
balancer,” Scalable Computing: Practice and Experience, vol. 17, no. 2,
pp. 79–90, 2016. doi: 10.1109/TE.2014.2327007

[36] S. Ristov, M. Gusev, L. Djinevski, and S. Arsenovski, “Performance
impact of reconfigurable L1 cache on GPU devices,” in Computer

Science and Information Systems (FedCSIS 2013), Federated Conference

on, Krakow, Poland, Sep. 2013, pp. 507 – 510.
[37] M. A. Rodriguez and R. Buyya, “Deadline based resource provi-

sioningand scheduling algorithm for scientific workflows on clouds,”
IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 222–235,
April 2014. doi: 10.1109/TCC.2014.2314655

[38] R. N. Calheiros and R. Buyya, “Meeting deadlines of scientific work-
flows in public clouds with tasks replication,” IEEE Transactions on

Parallel and Distributed Systems, vol. 25, no. 7, pp. 1787–1796, July
2014. doi: 10.1109/TPDS.2013.238

[39] M. Mao and M. Humphrey, “Scaling and scheduling to maximize ap-
plication performance within budget constraints in cloud workflows,” in
Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International

Symposium on, May 2013. doi: 10.1109/IPDPS.2013.61. ISSN 1530-
2075 pp. 67–78.

[40] Supercomputers, “Top500,” [retrieved: April, 2015]. [Online]. Available:
http://www.top500.org/

[41] X. Ye, W. Dong, P. Li, and S. Nassif, “Maps: Multi-algorithm parallel
circuit simulation,” in Proceedings of the 2008 IEEE/ACM International

Conference on Computer-Aided Design, ser. ICCAD ’08, 2008. doi:
10.1109/ICCAD.2008.4681554. ISBN 978-1-4244-2820-5 pp. 73–78.

898 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

