
Real-time Data Processing Prototype

December 14, 2017

1 A Big Data Pipeline for High Volume Scientific Data Streams - Sup-
porting Python Source

Author: Rob Lyon
Web: www.scienceguyrob.com
Affiliation: University of Manchester, SKA Research Group.
Address: Alan Turing Building, Room 3.137, University of Manchester, Oxford Road, Manchester,

M13 9PL.

Notebook Version 1.0

1.1 Citing this work

This notebook supports the contents of the paper:

Lyon, Stappers, Levin, Mickaliger, & Scaife, “A Big Data Pipeline for High Volume Scientific Data
Streams”.

If using this work, please cite both this iPython notebook, and the paper.

1.2 License

Code made available under the GPLv3 (GNU General Public License), that allows you to copy,
modify and redistribute the code as you see fit:

http://www.gnu.org/copyleft/gpl.html
Though a mention to the original author using the citation above in derivative works, would

be very much appreciated.

1.3 Contents

This notebook contains three separate collections of source code.

1. Known source matching code: matches candidate pulsars to known sources in the ATNF
pulsar catalogue.

1

https://www.scienceguyrob.com

2. Feature extraction code: extracts numerical features from pulsar candidate data, useful for
candidate selection.

3. On-line sifting code: sifts candidate pulsar sources, identifying duplicate detections with
high accuracy.

Each section contains a description of the problem to be solved, implementation code, and
testing code. Some of the testing code must be run outside of this iPython notebook. This code
can be found in the Appendices. All code has been fully tested, and requires Python 2.7, numpy,
scipy, astropy, and pyephem.

Please be aware that not all functionality mentioned in the paper, has been implemented in
this notebook. Only the main algorithmic approaches have been fully implemented here. This
is because the feature complete procedures will/should be fully described in their own separate
papers.

1.3.1 Known source matching

When searching for pulsars, many pulsar-like sources are detected. Some of these may actually
be known pulsar sources, and shouldn’t be flagged as possible new discoveries. Known source
matching compares newly detected candidates to known sources, and attempts to find out if
they’re duplicates.

Matching requires a set K of known pulsar sources. These are usually obtained from the
ATNF pulsar catalogue (CSIRO, 2012). We define each source in K as ki = {k1i , . . . , kmi }. Here
each source is a tuple, uniquely identifiable via the index i. For all kji ∈ R. Matching also requires
a newly detected candidate ci ∈ C. Here ci = {c1i , . . . , cmi }. For all ci ∈ C, it holds that |ci| > 0 and
all cji ∈ R. The meaning of each kji is the same as cji (or at least mappable).

A brute force approach compares each ci to every ki ∈ K. This corresponds to a runtime
complexity of O(n · |K|). As new sources are found over time, |K| is increasing. The brute force
approach is thus computationally expensive. It’s memory complexity is O(|K|), as each known
source is typically stored in memory for comparison.

On-line source matching We have developed a new algorithm based upon the divide
and conquer approach. It recursively divides the matching space, reducing the number of
comparisons to be undertaken on each iteration. It relies on an ordering applied over the set K. It
requires a total ordering of elements in K according to some variable kji , under ≤. For all kji , kji+1,
and kjm, where m > i+ 1,

if kji ≤ k
j
i+1 and kji+1 ≤ k

j
i then kji = kji+1,

if kji ≤ k
j
i+1 and kji+1 ≤ k

j
m then kji ≤ k

j
m,

2

kji ≤ k
j
i ,

kji ≤ k
j
i+1.

Equations 6-9 define the antisymmetry (6), transitivity (7), reflexive (8) and totality properties
(9) respectively. To apply an ordering we require a numerical value per source, that satisfies these
properties. This can be obtained by measuring the angular separation θ, between each known
source, and a single reference coordinate (00h 00m 00s and 00◦ 00′ 00′′). This allows sources to be
strictly ordered according to their separation from the reference point.

For each candidate source, the same reference separation is computed. Intuitively known
sources near to the candidate ci would appear to be similarly separated from the reference point.
The reality is more nuanced. It is possible for sources to be similarly separated from the reference
point, yet be very far apart (see the accompanying paper Lyon & Stappers, 2017). Fortunately this
does not affect matching accuracy when using the new approach. The sorting of known sources is
only used to reduce the search space. It allows us to find a position from where to start searching
in K. We call this position the search ‘index’. From there, we need only compare ci to sources
in K around the search index, with separations ≤ 2θ with respect to the reference point. These
sources must be adjacent to the search index given the properties of the ordering.

The full algorithm is presented below (Matcher.py). It is accompanied by several utility
classes, some of which are presented first. Note that the provided code is written for Python 2.7.
The original SDP prototype code was written in Java. However we ported it to Python, as most
software used in the radio astronomy community is python based. Unit testing code is supplied
at the end of this notebook, in the Appendix.

PSRCATEntry.py The following python class defines a known source object (ki). The objects
reads and stores entries from a valid pulsar catalog file.

In [1]: """

PSRCATEntry.py

Description:

Represents an individual entry in the ATNF Pulsar catalog.

Requires the pyephem and astropy modules.

3

http://www.atnf.csiro.au/people/pulsar/psrcat/

Author: Rob Lyon
Email : robert.lyon@manchester.ac.uk
web : www.scienceguyrob.com

License:

Code made available under the GPLv3 (GNU General Public
License), that allows you to copy, modify and redistribute
the code as you see fit:

http://www.gnu.org/copyleft/gpl.html

Though a mention to the original author using the citation
above in derivative works, would be very much appreciated.

**
"""
For coordinate transformations.
import ephem
from astropy.coordinates import SkyCoord

#
CLASS DEFINITION
#

class PSRCATEntry(object):
"""
Represents a known radio source in the ANTF catalog
file. The class is initialized using a unique name
for a known source, i.e.,

__init__(self,name) ,

where name is a string such as "J0048+3412" or
"B0052+51".

"""

#
INIT FUNCTION
#

def __init__(self, name="Unknown"):

4

"""
Initialises the class with a unique name. Those
pulsars named before 1993 have a 'B' name, and
are typically known by this name. Pulsars
discovered after 1993 usually have a 'J' name.

Parameters

:param name: the name of the catalog entry,

usually the pulsar 'J' name or 'B'
name, i.e. "J0048+3412" or
"B0052+51".

Returns

N/A

Examples

>>> entry = PSRCATEntry('J0006+1834')
>>> print entry.sourceName
J0006+1834
"""

Store source details. The 'sourceParameters'
dictionary in particular, stores information
collected from the ATNF file, as key-value
pairs. The keys are specified below.
self.sourceParameters = {}
self.sourceName = name
self.JName = name
self.BName = name
self.refsep = 0.0
self.coord = None

Initialise flags, used to process data.
These flags correspond to the keywords used
in the ATNF pulsar catalog file. They can be
used to access data in the 'sourceParameters'
dictionary.
self.KEY_PSRJ = 'PSRJ'
self.KEY_PSRB = 'PSRB'
self.KEY_RAJ = 'RAJ'
self.KEY_DECJ = 'DECJ'
self.KEY_ELAT = 'ELAT'
self.KEY_ELONG = 'ELONG'
self.KEY_P0 = 'P0'
self.KEY_DM = 'DM'

5

self.KEY_F0 = 'F0'

Do some source initialisation. This is required
as some known sources in the ATNF catalog, are
missing parameters.
self.sourceParameters[self.KEY_RAJ] = '00:00:00'
self.sourceParameters[self.KEY_DECJ] = '00:00:00'
self.sourceParameters[self.KEY_ELONG] = '0'
self.sourceParameters[self.KEY_ELAT] = '0'

#
FUNCTIONS.
#

def process_atnf_formatted_line(self, line_from_file):
"""
Processes a line of text from an ATNF catalog file.
The catalog stores known source details in space
delimited lines of text. The text lines appear in
the following format:

<KEY> <Value 1> <value 2> <value n>

For example the following is a valid ATNF string:

DM 13.9 1 snt97

Each string read from the ATNF catalog file, is
stored in the 'sourceParameters' dictionary. The
parameter key can be used to access the value. In
the example above, we use 'DM' as a key, and store
the three accompanying values as parameters in a
simple list object.

Parameters

:param line_from_file: the line of text from the

pulsar catalog file.

Returns

True if parameters were correctly read from the ATNF
file, else False.

Examples

6

>>> entry = PSRCATEntry('J0006+1834')
>>> print entry.sourceName
J0006+1834
>>> line_from_file = 'DM 12.0 6 cn95'
>>> entry.process_atnf_formatted_line(line_from_file)
>>> print entry.get_parameter('DM')
12.0
"""

First some basic error checking.
if line_from_file is None:

return False
elif not line_from_file: # Empty strings are False.

return False

Split line of text on whitespace. This produces a
list of string literals.
sub_strings = line_from_file.split()

The key should be first item in the split
text list.
key = sub_strings[0]

The values should form the remainder of the string
list, minus the key.
value = sub_strings[1:]

Now check the key value, and do some pre-processing
according to the key. This is required as the ATNF
database file does not always contain complete
information, i.e. shortened RA and DEC values, and
even missing period, DM, and frequency variables.

Try to grab the name of the source.
if key == self.KEY_PSRJ:

self.sourceName = value[0]
self.JName = value[0]

elif key == self.KEY_PSRB:

self.sourceName = value[0]
self.BName = value[0]

If the text contains the right ascension (RA).
if key == self.KEY_RAJ:

Get the RAJ. It should be in the format:

7

00:00:00.00
Here right ascension should be
in hh:mm:ss.s format.
raj = str(value[0])

Split on the colon symbol to break it
into parts.
raj_parts = raj.split(":")

Count the parts - there should be three if we
have an RA of the form 00:00:00. Else if the
RA is 00:00 or 00, then there will be less
than three parts. These must be corrected,
since we carry out known source matching based
on sky location.
length = len(raj_parts)

If length is less than three, add zeroes to
make it complete. This will add some inaccuracy,
but as the values are not in the pulsar catalog
anyway, it is the best we can do.
if length < 3:

if length == 1:

raj += ":00:00" # Add mm:ss parts.
value[0] = raj
self.sourceParameters[key] = value

elif length == 2:

raj += ":00" # Add ss parts.
value[0] = raj
self.sourceParameters[key] = value

else:
self.sourceParameters[key] = value

If the text contains declination (DEC).
elif key == self.KEY_DECJ:

Get the DEC. It should be in the format:
+00:00:00.00 or -00:00:00.00
Here we have the declination described
in dd:mm:ss.s format.
decj = str(value[0])

Split on the colon symbol to break it
into parts.

8

decj_parts = decj.split(":")

Count the parts - there should be three if we
have a DEC of the form 00:00:00. Else if the
DEC is 00:00 or 00, then there will be less
than three. These must be corrected since we
carry out known source matching based on sky
location.
length = len(decj_parts)

If length is less than three, add zeroes to
make it complete. This will add some inaccuracy,
but of the values are not in the pulsar catalog
anyway, then this is the best we can do.
if length < 3:

if length == 1:

decj += ":00:00" # Add mm:ss parts.
value[0] = decj
self.sourceParameters[key] = value

elif length == 2:

decj += ":00" # Add ss parts.
value[0] = decj
self.sourceParameters[key] = value

else:
self.sourceParameters[key] = value

P0 is the period in seconds.
elif key == self.KEY_P0:

Here frequency is automatically computed from
the period.
try:

self.sourceParameters[key] = value
self.sourceParameters[self.KEY_F0] = \

[str(float(1.0) / float(value[0]))]

except ZeroDivisionError:

This error will only occur if period is
zero - which it shouldn't be.
self.sourceParameters[key] = ['1.0']
self.sourceParameters[self.KEY_F0] = ['1.0']

elif key == self.KEY_F0: # F0 is the frequency in Hz.

9

Here period is automatically computed from
the frequency.
try:

self.sourceParameters[key] = value
self.sourceParameters[self.KEY_P0] = \

[str(float(1.0) / float(value[0]))]

except ZeroDivisionError:

This error will only occur if frequency
is zero - which it shouldn't be.
self.sourceParameters[key] = ['1.0']
self.sourceParameters[self.KEY_F0] = ['1.0']

elif key == self.KEY_ELONG: # Ecliptic longitude
self.sourceParameters[key] = value

elif key == self.KEY_ELAT: # Ecliptic latitude
self.sourceParameters[key] = value

else:
No matter what, we add any other parameter
we find to the parameters dictionary
self.sourceParameters[key] = value

Check the coordinates stored are correct, and
update them as appropriate.
ra = self.get_parameter(self.KEY_RAJ)
dec = self.get_parameter(self.KEY_DECJ)
elong = self.get_parameter(self.KEY_ELONG)
elat = self.get_parameter(self.KEY_ELAT)

If no RA or DEC are supplied, then elong and
elat must have been provided instead. This is
due to the nature of the ATNF catalog file (this
is empirically observed to be the case).
if ra is None and dec is None and elong is not None\

and elat is not None:
corrected_coords = self.checkCoords(

'00:00:00','00:00:00', elong, elat)

corrected_coords = [ra, dec, elong, elat]
self.sourceParameters[self.KEY_RAJ] =\

[corrected_coords[0]]
self.sourceParameters[self.KEY_DECJ] =\

[corrected_coords[1]]

10

Return true, assuming there have been no errors.
It would be better to check that values have been
correctly set in the parameters dictionary, but I
don't currently have the time to implement such
detailed checks.
return True

**

def checkCoords(self, RA, DEC, EL, EB):
"""
Checks that RA, DEC, GL and GB coordinates are
non-empty. Some ATNF entries have no RAJ or DECJ
listed, only Equatorial longitude and latitude.
Likewise some candidates have RAJ and DECJ listed,
but no galactic coordinates.

This function computes the RAJ and DECJ using ELong
and ELat, if the RAJ or DECJ are missing. Likewise
it computes the galactic longitude and latitude
using the RAJ and DECJ, if longitude or latitude are
missing.

Parameters

self : object
The object pointer.

RA : string
The right ascension as a string.

DEC : string
The declination as a string.

EL : string
The equatorial longitude as a string.

EB : string
The equatorial latitude as a string.

Returns

list of strings

A list containing RA, DEC, EL and EB in
that order.

Examples

>>> EL = "108.172"
>>> EB = "-42.985"

11

>>> [RA,DEC,EL,EB] = checkCoords("0","0",EL,EB)
>>> print RA
00:06:04.8
>>> print DEC
+18:34:59
>>> print EL
108.172
>>> RA = "12:40:17.61"
>>> DEC = "-41:24:51.7"
>>> [RA,DEC,EL,EB] = checkCoords(RA,DEC,"0","0")
>>> print EL
300.688
>>> print EB
21.4088

"""

if "00:00:00" in RA and "00:00:00" in DEC:

No RA and DEC provided. Try to create from
EL and EB
if EL == "0" and EB == "0":

Here just return the inputs, since we
can't convert...
return [RA, DEC, EL, EB]

else:

Use pyephem to convert from ecliptic
to Equatorial coordinates...
ec = ephem.Ecliptic(EL, EB, epoch='2000')
RA = str(ec.to_radec()[0])
DEC = str(ec.to_radec()[1])

Since we can't just convert from RA and
DEC, to GL and GB in pyephem, we instead
use astropy to do the job. This requires
that we first do some daft parsing of the
string into pieces, then reform it in to
the format required by astropy...
RA_COMPS = RA.split(":")
DEC_COMPS = DEC.split(":")

Now reform the text into astropy format...
coordinateString = RA_COMPS[0] + "h" +\

RA_COMPS[1] + "m" +\
RA_COMPS[2] + "s " +\

12

DEC_COMPS[0] + "d" +\
DEC_COMPS[1] + "m" + \
DEC_COMPS[2] + "s"

Now get galactic coordinates.
GL, GB = str(SkyCoord(coordinateString)

.galactic.to_string()).split()

return [RA, DEC, GL, GB]

if EL == "0" and EB == "0":

No EL and EB provided.
if "00:00:00" in RA and "00:00:00" in DEC:

Here just return the inputs, since we
can't convert...
return [RA, DEC, EL, EB]

else:
Since we can't just convert from RA and
DEC to GL and GB in pyephem, we instead
use astropy to do the job. This requires
that we first do some daft parsing of the
string into pieces, then reform it in to
the format required by astropy...
RA_COMPS = \

self.checkFormatEquatorialCoordinate(
RA).split(":")

DEC_COMPS = \
self.checkFormatEquatorialCoordinate(

DEC).split(":")

Now reform the text into astropy format...
coordinateString = RA_COMPS[0] + "h" + \

RA_COMPS[1] + "m" + \
RA_COMPS[2] + "s " + \
DEC_COMPS[0] + "d" + \
DEC_COMPS[1] + "m" + \
DEC_COMPS[2] + "s"

Now get galactic coordinates.
GL, GB = str(SkyCoord(coordinateString)

.galactic.to_string()).split()

return [RA, DEC, GL, GB]

return [RA, DEC, EL, EB]

13

def get_parameter(self, key):
"""
Attempts to retrieve a parameter from the
sourceParameters dictionary. If the parameter is
in the dictionary it is returned, else the value
None is returned instead.

Detail

The data items which belong to a PSRCATEntry
object, are stored in the sourceParameters
dictionary. Each entry in the dictionary describes
the data stored in a single line of an ANTF pulsar
catalog file. For example, if the file contains the
following lines:

PSRJ J0006+1834 cnt96
RAJ 00:06:04.8 2 cn95
DECJ +18:34:59 4 cn95
P0 0.69374767 14 cn95
DM 12.0 6 cn95

then the dictionary will contain the following entries:

| Key | Value |

'PSRJ'	['J0006+1834' , 'cnt96']
'RAJ'	['00:06:04.8' , '2' , 'cn95']
'DECJ'	['+18:34:59' , '4' , 'cn95']
'P0'	['0.69374767' , '14' , 'cn95']
'DM'	['12.0' , '6' , 'cn95']

Thus each key is a string, and each value a list of
strings. It is possible therefore to obtain a specific
value in the string list.

Parameters

:param key: the key used to retrieve values from

the sourceParameters dictionary.

Returns

14

A string literal corresponding to the desired
parameter if the key is valid, else None.

Examples

>>> entry = PSRCATEntry('J0006+1834')
>>> print entry.sourceName
J0006+1834
>>> line_from_file = 'DM 12.0 6 cn95'
>>> entry.process_atnf_formatted_line(line_from_file)
>>> print entry.get_parameter('DM')
12.0

"""

try:
value = self.sourceParameters[key]

if value[0] is not None:
return value[0]

else:
return None

except KeyError:
return None

**

def getRefSep(self):
"""
Computes the angular separation between this
PSRCATEntry object, and a reference point at
(RA=00:00:00,DEC=00:00:00). Returns the separation
as a floating point value.

Parameters

N/A

Returns

A floating point value.

Examples

>>> entry = PSRCATEntry('J0002+0002')
>>> print entry.sourceName

15

J0002+0002
>>> RA_line = 'RAJ 00:10:00 2'
>>> DEC_line = 'DECJ +00:00:00 8'
>>> entry.process_atnf_formatted_line(RA_line)
>>> entry.process_atnf_formatted_line(DEC_line)
>>> print entry.getRefSep()
2.5
"""
Equatorial parameters
ra = self.get_parameter(self.KEY_RAJ)
dec = self.get_parameter(self.KEY_DECJ)

if (ra != None and dec != None):
RAJ_Components = ra.split(":")
RAJ = RAJ_Components[0] + \

'h' + RAJ_Components[1] + \
'm' + RAJ_Components[2] + 's'

DEC_Components = dec.split(":")
DEC = DEC_Components[0] + \

'd' + DEC_Components[1] + \
'm' + DEC_Components[2] + 's'

self.coord = SkyCoord(RAJ, DEC, frame='fk5')
ref = SkyCoord('0h0m0s', '0d0m0s', frame='fk5')

Convert to degrees by dividing by 3,600
self.refsep = \

self.coord.separation(ref).arcsecond / 3600

return self.refsep

**

def calcsep(self, coord):
"""
Computes the angular separation between this
PSRCATEntry object, and a reference point described
by the coord object (from Astropy).

Parameters

:param coord: the coordinate to compute the
distance to.

Returns

16

A floating point value describing the angular
separation.

Examples

>>> entry = PSRCATEntry('J0002+0002')
>>> print entry.sourceName
J0002+0002
>>> RA_line = 'RAJ 00:10:00 2'
>>> DEC_line = 'DECJ +00:00:00 8'
>>> entry.process_atnf_formatted_line(RA_line)
>>> entry.process_atnf_formatted_line(DEC_line)
>>> print entry.calcsep(coord)
2.5
"""

if (coord != None):

if self.coord != None:
sep = self.coord.separation(

coord).arcsecond / 3600

return sep
else:

Return a large separation if it
cannot be computed.
return 100000

else:
Return a large separation if it cannot
be computed.
return 100000

**

def __str__(self):
"""
Overridden method that provides a neater string
representation of this class. This is useful when
writing these objects to a file or the terminal.

Parameters

N/A

Returns

17

:return: a string representation of this class
in comma separated value (CSV) format.

Examples

>>> e = PSRCATEntry('J0006+1834')
>>> print entry.sourceName
J0006+1834
>>> e.process_atnf_formatted_line('RAJ 00:06:04.8 2')
>>> e.process_atnf_formatted_line('DECJ +18:34:59 4')
>>> e.process_atnf_formatted_line('P0 0.6937476 14 ')
>>> e.process_atnf_formatted_line('DM 12.0 6')
>>> print str(e)
J0006+1834,00:06:04.8,+18:34:59,0.6937476,12.0
"""

Extract the key parameters.
raj = self.get_parameter("RAJ")
decj = self.get_parameter("DECJ")
p0 = self.get_parameter("P0")
dm = self.get_parameter("DM")

return self.sourceName + "," + str(raj) + "," +\
str(decj) + "," + str(p0) + "," + str(dm) +\
',' + str(self.refsep)

PSRCATParser.py Parses the ATNF pulsar catalog file. It then generates valid known source
objects for matching.

In [2]: """

**

PSRCATParser.py

**
Description:

Parses an ANTF pulsar catalog file.

**
Author: Rob Lyon
Email : robert.lyon@manchester.ac.uk
web : www.scienceguyrob.com

**
License:

18

Code made available under the GPLv3 (GNU General Public
License), that allows you to copy, modify and redistribute
the code as you see fit:

http://www.gnu.org/copyleft/gpl.html

Though a mention to the original author using the citation
above in derivative works, would be very much appreciated.

**
"""
import copy
import os

#
CLASS DEFINITION
#

class PSRCATParser(object):
"""
Parses an ATNF pulsar catalog database file.
"""

#
Methods
#

@staticmethod
def parse_as_list(path):

"""
Parses an ATNF pulsar catalog file. It returns the
contents as a list of PSRCATEntry objects.

Parameters

:param path: the full path to the catalog file to
parse.

Returns

:return: a list of PSRCATEntry objects if the file
can be parsed, else None.

Examples

19

>>> e = PSRCATParser.parse_as_list('/data/cat.db')
>>> print len(e)
2524
"""

if not PSRCATParser.file_exists(path):
return None

Stores the objects correctly parsed.
atnf_srcs = []

if PSRCATParser.is_catalogue_file(path):

psr_cat = open(path, 'r') # Read only access

A temporary object that is used create new
PSRCATEntry instances.
atnf_src = PSRCATEntry()

The ATNF catalog file contains entries
delimited by the following lines:
#
CATALOGUE 1.54
#
DO NOT EDIT THIS FILE!
#
@---
#
For example:
#
PSRJ J0001+0001 cnt96
RAJ 00:00:00.0 2 cn95
DECJ +00:00:00 4 cn95
P0 0.69374767047 14 cn95
P1 2.097E-15 12 cn95
PEPOCH 49079.5 cn95
DM 12.0 6 cn95
S400 0.2 cn95
W50 82 cn95
W10 195 cn95
@---
PSRJ J0002+0002 aaa+09c
RAJ 00:10:00 2 awd+12
DECJ +00:00:00 8 awd+12
DM 10.0 2 AWD+12
F0 3.165827392 3 awd+12
F1 -3.6120E-12 5 awd+12
F2 4.1E-23 7 awd+12

20

F3 5.4E-30 9 awd+12
@---
PSRJ J0003+0003 dth78
RAJ 10:00:00 4 hlk+04
#
....
#
Thus here we should ignore lines beginning
with '#', and should build a new source after
seeing lines beginning with:
#
@----

for line in psr_cat.readlines():

if line[0] == '#':
Ignore these lines.
pass

elif line[0] == '@':

This signals the end of the current
source. Add the current PSRCATEntry
object to the known source dictionary
and clean up.
atnf_srcs.append(copy.deepcopy(atnf_src))

Simply resets the temporary object.
Does not initialise a new object,
thus saving CPU overhead (although
minuscule, it all adds up).
atnf_src.sourceParameters.clear()
atnf_src.sourceName = "Unknown"

elif len(line) > 2:

If the line doesn't begin with '#'
or '@' and isn't an empty line, then
process it.
atnf_src.process_atnf_formatted_line(line)

else:
pass # else ignore

psr_cat.close()

return atnf_srcs

**

21

@staticmethod
def is_catalogue_file(path):

"""
Checks if the file at the supplied path is a catalog
file. Returns true if the file is a catalog file,
else false. This is a rather dumb check procedure,
but for now it would be overkill to check the
complete structure of the file. If you want, you can
improve this!

Parameters

:param path: the full path to the potential

catalog file.

Returns

True if the specified file is a catalog file,

else false.

Examples

>>> e = PSRCATParser.is_catalogue_file('psrcat.db')
True

"""

try:
try:

tmp = open(path, 'r') # Read only access

for line in tmp.readlines():

if line.startswith('#CATALOGUE'):

tmp.close()
return True

else:

tmp.close()
return False

except TypeError:
return False

except IOError:

22

return False

**

@staticmethod
def file_exists(path):

"""
Checks a file exists, returns true if it does,
else false.

Parameters

:param path: the path to the file.

Returns

:return: True if the file exists, else false.

"""
try:

if os.path.isfile(path):
return True

else:
return False

except IOError:
return False

**

Matcher.py The matching algorithm. It has two key components: i) the divide and conquer
method that reduces the search space, and ii) the procedure that does the matching.

In [3]: """

Matcher.py

Description:

Compares pulsar candidates to known sources from the ANTF pulsar catalog.

Author: Rob Lyon
Email : robert.lyon@manchester.ac.uk
web : www.scienceguyrob.com

License:

23

Code made available under the GPLv3 (GNU General Public License), that
allows you to copy, modify and redistribute the code as you see fit
(http://www.gnu.org/copyleft/gpl.html). Though a mention to the
original author using the citation above in derivative works, would be
very much appreciated.

"""
import math

#
CLASS DEFINITION
#

class Matcher:
"""
Matches candidate sources to entries from the ATNF pulsar catalog.

"""

#
INIT FUNCTION
#

def __init__(self, output):

"""
Initialises the class, and passes the path to the ANTF catalog file.

Parameters

:param output: path to an output file where matches will be written.

Returns

:return: N/A

Examples

>>> matcher = Matcher('/data/output.txt')
"""
These are the period harmonics to check for. The number of hamronics
checked affets the runtime, so be careful not to search over too many.
self.harmonics = [1, 0.5, 0.3, 0.25, 0.2, 0.16, 0.125, 0.0625, 0.03125]

24

Period matching accuracy in percent.
self.accuracy = 0.5

DM matching accuracy in percent.
self.DM_percentAccuracy = 0.5

Output path where matches are written to.
self.outputFile = output

Counts the matches made.
self.possibleMatches = 0

Count the detailed comparisons made
self.totalComparisons = 0

#
Matching Procedures
#

def findSearchIndex(self, candidate, knownsources):
"""
Looks for a search index to begin known source matching.
The search index helps reduce the search space.

Parameters

:param candidate: the candidate being matched to known sources.
:param knownsources: the list of known sources.

Returns

:return: an integer describing the index to begin searching

the known source list.

Examples

>>> psrcat_pth = '/data/psrcat.db'
>>> knownsources = PSRCATParser.parse_as_list(psrcat_pth) # load sources
>>> print "Entries:" ,len(knownsources)
2536
>>> knownsources.sort(key=lambda x: x.getRefSep(), reverse=False) # sort
>>> matcher = Matcher('/data/output.txt')
>>> cand = PSRCATEntry('Candidate') # create candidate to match
>>> cand.add_parameter('RAJ 00:06:04.8 2 cn95')
>>> cand.add_parameter('DECJ +18:34:59 4 cn95')
>>> cand.add_parameter('P0 0.69374767 1 cn95')

25

>>> cand.add_parameter('DM 12.0 6 cn95')
>>> cand.getRefSep()
>>> index = m.findSearchIndex(cand, knownsources)
23
"""

Run Divide and Conquer search:
indexToBeginSearch = self.divideAndConquerSearch(0, len(knownsources), candidate, knownsources)

return indexToBeginSearch

def divideAndConquerSearch(self, start, end, candidate, knownsources):
"""
Searches through a data structure containing PSRCATEntry objects using a
divide and conquer approach. Instead of looping through all the known
sources in a data structure, this recursive procedure searches by
dividing the data structure up, based on the outcome of an attribute test.
Hence the search space is divided in half with each recursive call. This method
then returns an index for us to search from.

Attribute test:
In the the KnownSource class I have created a angular separation attribute that
can be used to strictly order KnownSource objects. This attribute measures the
distance from each known source to a single reference point.

We can use this to compare candidates extremely quickly. Example of how this
algorithm works:

We have a candidate with a separation == 1. We want to know which known
sources are most similar to it.

We have 100 known sources against which to compare, which are ordered
according to their separation attribute. The first known source
has an attribute = 1 and the last an attribute = 100.

So the known source at position 1 has an attribute = 1.
..
The known source at position 50 has an attribute = 50.
..
The known source at position 100 has an attribute = 100.

SEARCH PROCEDURE:

Start Midpoint End
| | |
V V V

26

| | | | | | | | | | | | | | | | | | | |

0 n-1

If the candidate attribute is less than the midpoint attribute then search:

Start Midpoint
| |
V V

| | | | | | | | | | |

0 (n-1)/2

else search:

Midpoint End
| |
V V

| | | | | | | | | |

(n-1)/2 n-1

If the attribute is less than the midpoint, we search:

Start Midpoint End
| | |
V V V

| | | | | | | | | | |

0 (n-1)/4 (n-1)/2

We then repeat this procedure, splitting each time
until we have found a single index. Using the values above the
search would proceed as follows,

1. Search 1 - 100:
Split point is index 51 which has an attribute = 51
As 1 < 51, search 1 - 51
|
V
2. Search 1 - 51:

Split point is index 26 (rounded up from 25.5) which has an attribute = 26
As 1 < 26, search 1 - 26
|

27

V
3. Search 1 - 26:

Split point is index 14 (13.5 rounded up) which has an attribute = 14
As 1 < 14, search 1 - 14
|
V

4. Search 1 - 14:
Split point is index 8 (7.5 rounded up) which has an attribute = 8
As 1 < 8, search 1 - 8
|
V

5. Search 1 - 8:
Split point is index 5 (4.5 rounded up) which has an attribute = 5
As 1 < 5, search 1 - 5
|
V

6. Search 1 - 5:
Split point is index 3 which has an attribute = 3
As 1 < 3, search 1 - 3
|
V

7. Search 1-3:
return index 2.

Note that even though the procedure above returned index 2 and not one,
thats OK. we are only looking for a place to start searching from. From this
index we then search left and right using compareRight(candidateSource,index,padding)
and compareLeft(self,candidateSource,index,padding).

Parameters

:param start: the position to start searching from in the known sources list.
:param end: the position to search upto, in the known sources list.
:param candidate: the candidate being matched to known sources.
:param knownsources: the list of known sources.

Returns

:return: an integer describing the index to begin searching

the known source list.

Examples

>>> psrcat_pth = '/data/psrcat.db'

28

>>> knownsources = PSRCATParser.parse_as_list(psrcat_pth) # load sources
>>> print "Entries:" ,len(knownsources)
2536
>>> knownsources.sort(key=lambda x: x.getRefSep(), reverse=False) # sort
>>> matcher = Matcher('/data/output.txt')
>>> cand = PSRCATEntry('Candidate') # create candidate to match
>>> cand.add_parameter('RAJ 00:06:04.8 2 cn95')
>>> cand.add_parameter('DECJ +18:34:59 4 cn95')
>>> cand.add_parameter('P0 0.69374767 1 cn95')
>>> cand.add_parameter('DM 12.0 6 cn95')
>>> cand.getRefSep()
>>> index = m.findSearchIndex(cand, knownsources)
23

"""

If there is only one gap between start and end,
then return that position. This prevents the algorithm
from looping recursively forever.
if (end - start == 2):

return start + 1

elif (end - start == 1):
return start

midpoint = int(math.ceil((float(end) + float(start)) / float(2)))

sourceAtMidpoint = knownsources[midpoint]
knownSourceSortAttribute = sourceAtMidpoint.refsep

if (candidate.refsep < knownSourceSortAttribute):
return self.divideAndConquerSearch(start, midpoint, candidate, knownsources)

elif (candidate.refsep > knownSourceSortAttribute):
return self.divideAndConquerSearch(midpoint, end, candidate, knownsources)

else:
return midpoint

def compare(self, candidate, knownsources, index, max_sep):
"""
Compares a candidate to known sources in the known sources list,
starting at the previously found search index.

Parameters

:param candidate: the candidate being matched to known sources.
:param knownsources: the list of known sources.

29

:param index: the search index to begin comparing at.
:param max_sep: the maximum angular separation to allow for comparisons.

Returns

:return: N/A

Examples

>>> psrcat_pth = '/data/psrcat.db'
>>> knownsources = PSRCATParser.parse_as_list(psrcat_pth) # load sources
>>> print "Entries:" ,len(knownsources)
2536
>>> knownsources.sort(key=lambda x: x.getRefSep(), reverse=False) # sort
>>> matcher = Matcher('/data/output.txt')
>>> cand = PSRCATEntry('Candidate') # create candidate to match
>>> cand.add_parameter('RAJ 00:06:04.8 2 cn95')
>>> cand.add_parameter('DECJ +18:34:59 4 cn95')
>>> cand.add_parameter('P0 0.69374767 1 cn95')
>>> cand.add_parameter('DM 12.0 6 cn95')
>>> cand.getRefSep()
>>> index = m.findSearchIndex(cand, knownsources)
>>> matcher.compare(cand, knownsources,index,0.0001)
"""

Get the known source at the specified index.
knownSource = knownsources[index]

Now compute distance between known source and candidate:
source_sep = float(candidate.calcsep(knownSource.coord))

Check if the sort attribute is within the bounds.
if source_sep <= float(2 * max_sep):

self.compareToKnownSource(candidate, knownSource, source_sep)

Now recursively compare to the left and the right of this index.
We use a user specified padding (defaults to 3600) to catch those
sources that are nearby.
self.compareRight(candidate, knownsources, index, float(max_sep))
self.compareLeft(candidate, knownsources, index, float(max_sep))

def compareRight(self, candidate, knownsources, index, max_sep):
"""
Compares a candidate to those known sources which occur
to the right of a specified index, in the known source list.

30

Parameters

:param candidate: the candidate being matched to known sources.
:param knownsources: the list of known sources.
:param index: the search index to begin comparing at.
:param max_sep: the maximum angular separation to allow for comparisons.

Returns

:return: N/A
"""

if (index + 1 < len(knownsources) and index + 1 > -1):

Compare with the known source at the specified index.
knownSource = knownsources[index + 1]

Now compute distance between known source and candidate:
source_sep = float(candidate.calcsep(knownSource.coord))

Check if the sort attribute is within the bounds.
if source_sep <= float(2 * max_sep):

self.compareToKnownSource(candidate, knownSource, source_sep)

Now recursively compare to the left and the right of this index.
self.compareRight(candidate, knownsources, index + 1, float(max_sep))

def compareLeft(self, candidate, knownsources, index, max_sep):
"""
Compares a candidate to those known sources which occur
to the left of a specified index, in the known source list.

Parameters

:param candidate: the candidate being matched to known sources.
:param knownsources: the list of known sources.
:param index: the search index to begin comparing at.
:param max_sep: the maximum angular separation to allow for comparisons.

Returns

:return: N/A
"""

if (index - 1 < len(knownsources) and index - 1 > -1):

31

Compare with the known source at the specified index.
knownSource = knownsources[index - 1]

Now compute distance between known source and candidate:
source_sep = float(candidate.calcsep(knownSource.coord))

Check if the sort attribute is within the bounds.
if source_sep <= float(2 * max_sep):

self.compareToKnownSource(candidate, knownSource, source_sep)

Now recursively compare to the left and the right of this index.
self.compareLeft(candidate, knownsources, index + 1, float(max_sep))

def compareToKnownSource(self, candidate, knownSource, max_sep):
"""
Performs the candidate to known sourcecomparison. This works by evaluating
a number of search conditions w.r.t candidate period, DM, and its position.
The following conditions must hold before a candidate is matched to a known
source:

1. The candidate period must fall within a user specified range of the known
source period. Here this range is a percentage, i.e. the candidate period
must be no greater than, and no less than say m % of the known source
period. For example given m = 5, if a known source period is one, then a
candidate will only match it if its period is in the range 1.05 - 0.95.
The default accuracy level is 0.5%.

2. The candidate DM must fall within a range as above. The default DM
accuracy is 5%.

3. The angular separation in degrees between the known source and candidate,
must be less than a user specified radius (theta).

Parameters

:param candidate: the candidate being matched to known sources.
:param knownsources: the list of known sources.
:param index: the search index to begin comparing at.
:param max_sep: the maximum angular separation to allow for comparisons.

Returns

:return: N/A
"""
For debugging purposes
self.totalComparisons += 1

32

We now try to extract the parameters we need for our comparison.
ks_P0 = knownSource.get_parameter("P0")
ks_RA = knownSource.get_parameter("RAJ")
ks_DEC = knownSource.get_parameter("DECJ")
ks_DM = knownSource.get_parameter("DM")
ks_name = knownSource.sourceName

In the ATNF catalog file, the DM is not always present.
if (ks_DM is None):

ks_DM = "*"

cand_P0 = candidate.get_parameter("P0")
cand_RA = candidate.get_parameter("RAJ")
cand_DEC = candidate.get_parameter("DECJ")
cand_DM = candidate.get_parameter("DM")
cand_name = candidate.sourceName

Extra check added to stop errors when a candidate is
loaded from outside the main application, i.e. via validation
methods.
if cand_P0 is None:

cand_P0 = 0
elif "*" in cand_P0:

cand_P0 = 0

if (cand_DM is None):
cand_DM = "*"

if ks_P0 is not None and cand_P0 is not None:

acc = (float(self.accuracy) / 100) * float(cand_P0)

Check for possible harmonic detections.
for i in range(0, len(self.harmonics)):

Some candidates have no P0 or F0, i.e. J0923-31
if ks_P0 is not "*":

search_cond = float(cand_P0) > (float(ks_P0) * float(self.harmonics[i])) - float(acc) and \
(float(cand_P0) < (float(ks_P0) * float(self.harmonics[i])) + float(acc))

if (cand_DM is not "unknown" and cand_DM is not "*" and ks_DM != "unknown" and ks_DM != "*"):

dm_acc = (float(self.DM_percentAccuracy) / 100.0) * float(cand_DM)

search_cond = search_cond and ((float(ks_DM) > float(cand_DM) - float(dm_acc)) and \
(float(ks_DM) < float(cand_DM) + float(dm_acc)))

33

if search_cond:
self.recordPossibleMatch(cand_name, cand_RA, cand_DEC, cand_P0, cand_DM, \

ks_name, ks_RA, ks_DEC, ks_P0, ks_DM, \
self.harmonics[i], max_sep)

def recordPossibleMatch(self, cand_name, cand_RA, cand_DEC, cand_P0, cand_DM, \
ks_name, ks_RA, ks_DEC, ks_P0, ks_DM, \
harmonic_n, theta_sep):

"""
Writes a possible known source match to the output file.

Parameters

:param cand_name: the name of the candidate being matched to known sources.
:param cand_RA: the right ascension of the candidate source.
:param cand_DEC: the declination of the candidate source.
:param cand_P0: the period of the candidate source.
:param cand_DM: the DM of the candidate source.
:param ks_name: the name of the known source (pulsar 'J' or 'B' name).
:param ks_RA: the right ascension of the known source.
:param ks_DEC: the declination of the known source source.
:param ks_P0: the period of the known source.
:param ks_DM: the DM of the known source.
:param harmonic_n: the harmonic number for the period match.
:param theta_sep: the angular separation between the candidate and the match.

Returns

:return: N/A
"""
self.possibleMatches += 1

harmonicNumber = str(1 / harmonic_n)
harmonicPeriod = str(float(ks_P0) * float(harmonic_n))
harmonicPeriod_div_candidatePeriod = str(float(float(ks_P0) * float(harmonic_n)) / float(cand_P0))

First produce human friendly output
outputFile = open(self.outputFile, "a")

outputFile.write("POSSIBLE MATCH FOR: \n" + cand_name + "\n")

Describe candidate.
outputFile.write("Candidate -> RAJ: " + str(cand_RA) + " DECJ:" + str(cand_DEC) + \

" P0:" + str(cand_P0) + " DM:" + str(cand_DM) + "\n")

34

Describe possible known source match.
outputFile.write("PSR: " + ks_name + " -> RAJ: " + str(ks_RA) + " DECJ:" + str(ks_DEC) + \

" P0:" + str(ks_P0) + " DM:" + str(ks_DM) + "\n")

outputFile.write("Harmonic Number = " + harmonicNumber + "\n")
outputFile.write("Harmonic Period = " + harmonicPeriod + "\n")
outputFile.write("Harmonic Period/Candidate Period = " + harmonicPeriod_div_candidatePeriod + "\n")
outputFile.write("Angular separation of psr and cand (deg): " + str(theta_sep) + "\n")
outputFile.write("@---" + "\n")
outputFile.close()

KnownSourceMatcherApp.py Runs the matching code, shows how it works.

In [4]: """

KnownSourceMatherApp.py

Description:

Runs the known source matcher tests.

Author: Rob Lyon
Email : robert.lyon@manchester.ac.uk
web : www.scienceguyrob.com

License:

Code made available under the GPLv3 (GNU General Public License), that
allows you to copy, modify and redistribute the code as you see fit
(http://www.gnu.org/copyleft/gpl.html). Though a mention to the
original author using the citation above in derivative works, would be
very much appreciated.

"""

import os
import tarfile
import urllib
import shutil

The code below simply launches the application.

if __name__ == '__main__':

35

Clean workspace (removes previously downloaded catalogs).
try:

shutil.rmtree('psrcat_pkg.tar')
except:

print 'No catalog clean-up to do.'

Path to pulsar catalog file...
url = 'http://www.atnf.csiro.au/people/pulsar/psrcat/downloads/psrcat_pkg.tar.gz'

Download and extract data
file_tmp = urllib.urlretrieve(url, filename=None)[0]
base_name = os.path.basename(url)
file_name, file_extension = os.path.splitext(base_name)
tar = tarfile.open(file_tmp)
tar.extractall(file_name)

Now build path to the catalog file stored locally.
full_path = os.path.abspath(file_name)
database_file = full_path + '/psrcat_tar/' + 'psrcat.db'
print 'Database file at: ' + database_file

Build path to the output file...
output_pth = 'OutputMatch.txt'

Clear output file
open(output_pth, 'w').close()

Load known sources as list
print 'Loading ATNF catalog...'
atnf_sources = PSRCATParser.parse_as_list(database_file)

print "ATNF Entries:" , len(atnf_sources)

Now sort the list in place according to separation
from the reference point...
atnf_sources.sort(key=lambda x: x.getRefSep(), reverse=False)

Create fake candidate
name = 'Candidate'
candidate = PSRCATEntry('J0006+1834 Duplicate')

Here are some fake lines that will be fed to the entry. These
lines are taken from the pulsar catalog.
RAJ 00:06:04.8 2 cn95
DECJ +18:34:59 4 cn95
P0 0.69374767047 14 cn95
P1 2.097E-15 12 cn95

36

PEPOCH 49079.5 cn95
DM 11.41 6 cn95
candidate.process_atnf_formatted_line('RAJ 00:06:04.8 2 cn95')
candidate.process_atnf_formatted_line('DECJ +18:34:59 4 cn95')
candidate.process_atnf_formatted_line('P0 0.69374767047 14 cn95')
candidate.process_atnf_formatted_line('DM 11.41 6 cn95')
candidate.getRefSep()

Just debug new candidate:
print '\nNow attempting to match single candidate...'
print 'Test candidate details...'
print candidate.__str__()

#
Now test the matching....
#

m = Matcher(output_pth)

First try and match only the candidate created above.
index = m.findSearchIndex(candidate, atnf_sources)
m.compare(candidate, atnf_sources,index,0.0001)
print 'Possible matches for J0006+1834 Duplicate:', m.possibleMatches
print 'Total detailed comparisons:', m.totalComparisons
print 'Check output file for details of match. Should be one match (J0006+1834).\n\n'
Now check output file - the match should be there.

Next we match all atnf sources, to all atnf sources.
First reset match count:
m.possibleMatches = 0
m.totalComparisons = 0
test_separation = 1.0

print 'Now matching the ATNF catalog against itself...'
print 'This may take some time (5 minutes or so on an intel i7 machine).'
print 'Matching using angular separation = ', test_separation , ' .'

Now iterate over all known sources. This loop can
run on-line, very easily.
for ks in atnf_sources:

Find the search index
index = m.findSearchIndex(ks, atnf_sources)

Then do the matching
m.compare(ks, atnf_sources,index,test_separation)

37

There should be at least as many matches as there are sources.
This is because each source should match to itself. In reality
there will also be a couple of extra matches, as some sources
are similar enough to be considered genuine matches. These extra
matches are not errors, this is the algorithm doing exactly as
it should in practice. There should not be too many additional
matches however.
print 'Possible matches:', m.possibleMatches
print 'Total detailed comparisons:', m.totalComparisons
print 'If using brute force ' , str(len(atnf_sources) * len(atnf_sources)) , ' comparisons would be undertaken.'

if m.possibleMatches > len(atnf_sources):
print 'Extra matches:', str(m.possibleMatches - len(atnf_sources))

else:
print 'Fewer matches than sources - something is not working correctly.'

Database file at: /Volumes/data/Dropbox/Projects/Jupyter/SDP_Prototype/psrcat_pkg.tar/psrcat_tar/psrcat.db
Loading ATNF catalog...
ATNF Entries: 2613

Now attempting to match single candidate...
Test candidate details...
J0006+1834 Duplicate,00:06:04.8,+18:34:59,0.69374767047,11.41,18.6429279657
Possible matches for J0006+1834 Duplicate: 1
Total detailed comparisons: 1
Check output file for details of match. Should be one match (J0006+1834).

Now matching the ATNF catalog against itself...
This may take some time (5 minutes or so on an intel i7 machine).
Matching using angular separation = 1.0 .
Possible matches: 2951
Total detailed comparisons: 6429
If using brute force 6827769 comparisons would be undertaken.
Extra matches: 338

Study of Matching Accuracy To determine how accurate the matching proceudre is, we under-
take a simple test. Using a single known source to compare against, we generate candidate sources
with the same position on the sky, but vary their period and DM. The algorithm should only match
only those candidate sources which have the same period and DM to within some error margin.
In many ways, this represents the worst case scenario for the mathcing algorithm, where there are
many sources with the same on sky location to be compared.

38

In [121]: print 'Building a known source list with 1 item'

Create fake candidate
name = 'Candidate'
ks1 = PSRCATEntry('J0006+1834 Duplicate')
ks1.process_atnf_formatted_line('RAJ 23:46:50.45 2 cn95')
ks1.process_atnf_formatted_line('DECJ -6:09:59.5 4 cn95')
ks1.process_atnf_formatted_line('P0 1.18146338297 14 cn95')
ks1.process_atnf_formatted_line('DM 22.504 6 cn95')
ks1.getRefSep()

print 'Single known source Entries:' , len(single_known_source)
print '\nThe source in the list:\n'

ks1_name = ks1.sourceName
ks1_ra = ks1.get_parameter('RAJ')
ks1_dec = ks1.get_parameter('DECJ')
ks1_p0s = ks1.get_parameter('P0')
ks1_p0ms = str(float(ks1.get_parameter('P0'))*1000)
ks1_f0hz = ks1.get_parameter('F0')
ks1_dm = ks1.get_parameter('DM')
ks1_ref_sep = ks1.refsep

print '\tSource name : ' , ks1_name
print '\tSource RA : ' , ks1_ra
print '\tSource DEC : ' , ks1_dec
print '\tSource P0 (s) : ' , ks1_p0s
print '\tSource P0 (ms): ' , ks1_p0ms
print '\tSource F0 (Hz): ' , ks1_f0hz
print '\tSource DM : ' , ks1_dm
print '\tSource ref sep: ' , ks1_ref_sep

Building a known source list with 1 item
Single known source Entries: 1

The source in the list:

Source name : J0006+1834 Duplicate
Source RA : 23:46:50.45
Source DEC : -6:09:59.5
Source P0 (s) : 1.18146338297
Source P0 (ms): 1181.46338297
Source F0 (Hz): 0.846407950017
Source DM : 22.504
Source ref sep: 6.98619814813

Now we create some duplicates fake period and DM permutations for our test candidates.

39

In [119]: # So the known source period is 1.18146338297 seconds
Which is 1181.46338297 milliseconds. So lets check
periods from 1.06 to 1.3 (~240 millisecond range,
+/- 10%). We space this out over 1 millisecond bins.
test_min_period = 1.06
test_max_period = 1.3
period_permutations = np.linspace(test_min_period, test_max_period, num=241)
print 'Total period permuations:' , len(period_permutations)

The known source DM is 22.504. Lets check DMs +/- 20% from
the true value (12 to 33). We space this out over 0.1 DM bins.
test_min_dm = 18.0
test_max_dm = 27.0
dm_permutations = np.linspace(test_min_dm, test_max_dm, num=91)

print 'Total DM permuations:' , len(dm_permutations)

Total period permuations: 241
Total DM permuations: 91

Next create the candidates at the Same RA and DEC for matching.

In [73]: test_cand_list = []

count = 0
for p0 in period_permutations:

for dm in dm_permutations:

nme = str(ks1_name) + '_' + str(p0) + '_' + str(dm)
c = PSRCATEntry(nme)

temp_ra = ks1_ra
temp_dec = ks1_dec

c.process_atnf_formatted_line('RAJ ' + temp_ra + ' 2 cn95')
c.process_atnf_formatted_line('DECJ ' + temp_dec + ' 4 cn95')
c.process_atnf_formatted_line('P0 ' + str(p0) + ' 14 cn95')
c.process_atnf_formatted_line('DM ' + str(dm) + ' 6 cn95')
c.refsep = float(ks1_ref_sep)
#c.getRefSep()

test_cand_list.append(c)

print 'Test candidate list entries:' , len(test_cand_list)

Test candidate list entries: 21931

40

Now check the generated candidates.

In [120]: print test_cand_list[0]
print test_cand_list[1]
print test_cand_list[2]
print test_cand_list[len(test_cand_list)-1]

J2346-0609_1.062_19.7_1.06_18.0,23:46:50.45,-6:09:59.5,1.06,18.0,6.98619814813
J2346-0609_1.062_19.7_1.06_18.1,23:46:50.45,-6:09:59.5,1.06,18.1,6.98619814813
J2346-0609_1.062_19.7_1.06_18.2,23:46:50.45,-6:09:59.5,1.06,18.2,6.98619814813
J2346-0609_1.062_19.7_1.3_27.0,23:46:50.45,-6:09:59.5,1.3,27.0,6.98619814813

Now do some matching, using 1.0% matching accuracy over DM and period.

In [123]: tm = None
total_matches = 0

for c in test_cand_list:

#
Now test the matching....
#

tm = Matcher(output_pth)

Set 1% matching accuracy error margins.
tm.accuracy = 1.0
tm.DM_percentAccuracy = 1.0

tm.compareToKnownSource(c, ks1, 1.0)

total_matches +=tm.possibleMatches

print 'Total matches:' , total_matches
print 'Candidates filtered:' , 100 -(float(total_matches) / len(test_cand_list)), '%'

Total matches: 120
Candidates filtered: 99.9945282933 %

As can be seen, only 120 out of over 21,000 candidates are returned as matches. If you check
these, you’ll see they are all within the 1.0% matching error requested.

41

1.3.2 Feature Extraction

This code extracts four features from an input data set. This are the mean, standard deviation,
skewness, and excess kurtosis. These feature were first used in Lyon et. al. 2016.
Feature extraction function

In [5]: """

extract_features

Description:

Extracts statistical features from a data set (python list).

Author: Rob Lyon
Email : robert.lyon@manchester.ac.uk
web : www.scienceguyrob.com

License:

Code made available under the GPLv3 (GNU General Public License), that
allows you to copy, modify and redistribute the code as you see fit
(http://www.gnu.org/copyleft/gpl.html). Though a mention to the
original author using the citation above in derivative works, would be
very much appreciated.

"""

import sys

def extract_features(data):
"""
Extracts statistics from the values stored in the supplied data array.

Parameters

:param data: a python list containing numerical entries. This list

contains the mean, standard deviation, skew and kurtosis.

Returns

:return: a list if the statistics were computed successfully, else None.
"""

if data is not None: # Check data is not empty

42

if len(data) > 0:

min_value = sys.float_info.max
max_value = sys.float_info.min

First ensure the data is sorted from smallest to largest value.
data.sort()

Sums computed during calculation.
mean_sum = 0.0
mean_subtracted_sum_power_2 = 0.0
mean_subtracted_sum_power_3 = 0.0
mean_subtracted_sum_power_4 = 0.0

The number of data points in the array.
n = len(data)

Necessary first loop to calculate the sum, min and max
for d in data:

mean_sum += d

if d < min_value:
min_value = d

if d > max_value:
max_value = d

Compute median, q1, q3, and IQR.
if n % 2 == 0: # Length of data is even

OK, an even length means there is no middle element. So first
we compute the median.... e.g. suppose we have this data
#
middle
|
V
0 1 2 3 4 5 6 7 8 9 <- Index, 10 elements.
data = [1 , 2 , 3 , 4 , 5 , 5 , 4 , 3 , 2 , 1]
middle = (n / 2) # Midpoint
median = (data[middle - 1] + data[middle]) / 2
q1 = data[int(middle / 2)]
q3 = data[int(middle / 2) + int(middle)]

else: # Length of data is odd
OK, an odd length means there is a middle element. So first
we compute the median.... e.g. suppose we have this data
#
middle
|
V

43

0 1 2 3 4 5 6 7 8 <- Index, 9 elements.
data = [1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1]
middle = int(n / 2) # Midpoint
median = data[middle]
The bottom half, and top half of the data will be even, so Q1 and Q3
have to be computed from two elements.
q1 = (data[int(middle / 2) - 1] + data[int(middle / 2)]) / 2
q3 = (data[middle + (int(middle / 2))] + data[middle + (int(middle / 2) + 1)]) / 2

Compute IQR
iqr = q3 - q1

Update the range
range_value = max_value - min_value

if mean_sum > 0: # If the mean is greater than zero (should be)

Update the mean value.
mean_ = float(mean_sum) / float(n)

Now try to compute the standard deviation, using
the mean computed above... we also compute values in
this loop required to compute the excess Kurtosis and
standard deviation.

for d in data:

mean_subtracted_sum_power_2 += power((float(d) - mean_), 2)

Used to compute skew
mean_subtracted_sum_power_3 += power((float(d) - mean_), 3)

Used to compute Kurtosis
mean_subtracted_sum_power_4 += power((float(d) - mean_), 4)

Update the standard deviation value.
stdev_ = sqrt(float(mean_subtracted_sum_power_2) / (float(n)))
var_ = stdev_ * stdev_
Next try to calculate the excess Kurtosis and skew using the
information gathered above.

one_over_n = 1.0 / n # Used multiple times...

kurt_ = ((one_over_n * mean_subtracted_sum_power_4) / power((one_over_n * mean_subtracted_sum_power_2), 2)) - 3

skew_ = (one_over_n * mean_subtracted_sum_power_3) / power(sqrt(one_over_n * mean_subtracted_sum_power_2), 3)

return [mean_,stdev_,skew_,kurt_]

44

else: # Data sums to zero, i.e. no data!
return None

else: # Data empty for some reason...
return False

Feature extraction test First generate some test data.

In [6]: %pylab inline
import matplotlib.pyplot as plt
import numpy as np

First generate some random input data, representing individual candidates.
data = np.random.randint(low=1,high=11,size=1000)

Just plot the data to see what it looks like.
bin_centres = np.arange(0.5,10.5, 1)
uniq, counts = np.unique(data, return_counts=True)
plt.bar(bin_centres,counts)
plt.ylabel('Frequency')
plt.xlabel('Bin')
plt.title('Distribution of random data')
plt.show()

In principle there are only 10 unique matches.
No we can shuffle the data, e.g.
np.random.shuffle(data)
But we would rather sort it here, to simulate the ordering variable.
data = np.sort(data)

Populating the interactive namespace from numpy and matplotlib

/Users/rob/anaconda/lib/python2.7/site-packages/IPython/core/magics/pylab.py:161: UserWarning: pylab import has clobbered these variables: ['copy']
`%matplotlib` prevents importing * from pylab and numpy

"\n`%matplotlib` prevents importing * from pylab and numpy"

45

Now we pass the data through the code. . .

In [7]: # First figure out true stats of data:
from scipy.stats import skew
from scipy.stats import kurtosis

print 'Input data properties:'
print 'Data mean: ' , np.mean(data)
print 'Data STDEV: ' , np.std(data)
print 'Data Skew: ' , skew(data)
print 'Data Kurtosis: ', kurtosis(data), '\n'

extracted_features = extract_features(data)

print 'Extracted features:'
print 'Data mean: ' , extracted_features[0]
print 'Data STDEV: ' , extracted_features[1]
print 'Data Skew: ' , extracted_features[2]
print 'Data Kurtosis: ', extracted_features[3], '\n'

Input data properties:
Data mean: 5.528
Data STDEV: 2.76572160566
Data Skew: -0.00139708130543

46

Data Kurtosis: -1.13568816432

Extracted features:
Data mean: 5.528
Data STDEV: 2.76572160566
Data Skew: -0.00139708130542
Data Kurtosis: -1.13568816432

As can be seen above, the code extracts the correct values. An on-line version of the feature
extraction code, is provided in the next section describing distributed sift (in the update_stats()
function).

1.3.3 Sifting

Standard Off-line Sift Standard sift is an off-line matching problem. Given a fixed size set of
tuples C, of length n, the goal is to remove duplicates contained in C. This produces a filtered set
C ′. To achieve the filtering some function f is used. It is the case that f will never return a set C ′,
such that |C ′| > |C|. Rather it is always the case the |C ′| ≤ |C|, though in reality |C ′| � |C|.
To perform the filtering, the function f performs a matching operation over each tuple in C. An
individual tuple is defined as ci = {c1i , . . . , cmi }. A tuple is uniquely identifiable in C via the index
i, and for all ci ∈ C, |ci| > 0 (in others words m > 0). We note that the set C is not a multi-set, thus
it does not contain any identical duplicate items. There are however non-exact duplicates. These
must be removed with high accuracy, so that the size of the set C ′ is minimised.
Sifting determines whether or not two arbitrary tuples are equivalent via a similarity measure s.
The similarity measure is usually associated with some decision threshold value t, applied over
one or more variables that make up a tuple. If the similarity value for two distinct tuples is above
some threshold, these are considered a match. Otherwise tuples are considered disjoint.
Using some basic probability theory, we can describe the goal for the function f more clearly.
Suppose P (ci) is the prior probability of the tuple ci having a match in C. Now suppose
P (match|ci), is the probability of a match, conditioned on ci (what is the chance of a match, given
I’ve observed ci). An optimal matching algorithm will do the following:

f(ci) = argmax
label∈{match,¬match}

P (label|ci),

which says f(ci) chooses the label that maximises the probability P (label|ci) (picks the most likely
label). A function that does this well, will achieve a very high accuracy level. However matching is
not usually done in an explicitly probabilistic way for practical reasons. Generally heuristics over
key variables (e.g. DM, period, acceleration etc) are used to constrain the matching via thresh-
olds. Nonetheless, any threshold choice is effectively a probabilistic proxy, chosen to maximise
P (label|ci).
For example, suppose we use a simple similarity measure s1. Imagine that it considers ci and ck
duplicates, if their DM values are within t/2 of one another (assuming T could be used in this

47

way!). For this test, there are underlying probability distributions. There is a distribution describ-
ing the probability of an arbitrary DM being considered the same as the DM of ci, and the same
goes for ck. This is shown below (below the code).

In [8]: x = np.linspace(96,108, 100)
plt.plot(x,mlab.normpdf(x, 100, 2.0),label='Probability distribution over c_{i}')
plt.plot(x,mlab.normpdf(x, 102, 2.2),label='Probability distribution over c_{k}')

Make the shaded regions
section = np.arange(98, 102, 1/20.)
plt.fill_between(section,mlab.normpdf(section, 100, 2.0),facecolor='blue',alpha=0.3, interpolate=True)

section = np.arange(99.8, 104.2, 1/20.)
plt.fill_between(section,mlab.normpdf(section, 102, 2.2),facecolor='green',alpha=0.3, interpolate=True)

plt.xlabel('DM Value')
plt.ylabel('Probability')
plt.title('Distributions with their 68% Confidence Intervals')
plt.legend(loc='lower left')
plt.show()
plt.savefig("test.pdf",bbox_inches='tight')

<matplotlib.figure.Figure at 0x10e4b1210>

48

These distributions can be used in principle, to estimate the probability of a value randomly
falling in a predefined range. You can compute the joint probability P (DM in 68% interval for ci)×
P (DM in 68% interval for ck), and use that to estimate the similarity. You then choose the most
likely outcome based on the probability.

‘Best’ sift The current ‘best’ approach does a brute force comparison of each ci, to every ck
according to s. This has a memory complexity of O(n) given that all n candidates must be stored
in memory. Run time is typically O(n2), quadratic complexity. We note that minor adjustments
to the brute force approach can yield better runtime performance, e.g. simply by realising that
a decreasing number of comparisons only need be done (i.e. there are only so many unique
comparison permutations). The total number of possible permutations for a set of length n, where
k items are compared at a time, is given by:

n!

(n− k)! · k!

Thus for the example above we have,

Permuations =
3!

(3− 2)! · 2!

=
6

(1)! · 2

=
6

1 · 2

=
6

2

= 3

Technically speaking this approach is dominated by O(n!) runtime complexity for all k. In prac-
tice, for k = 2, it is dominated by O(12(n − 1)n) (rearranged original formula assuming k = 2).
These two orders of complexity are compared below.

In [9]: def brute_force(n): return n*n
def improved(n): return 0.5*(n-1)*n

x = np.linspace(0,500, 500)
plt.plot(x,brute_force(x),label='Brute force n^{2}')
plt.plot(x,improved(x),label='Improved $1/2 (n-1)n$')
plt.ylabel('Runtime Complexity')
plt.xlabel('n')
plt.title('Runtime Complexities of Approaches n=0,...,500')

49

plt.legend(loc='top left')
plt.show()

/Users/rob/anaconda/lib/python2.7/site-packages/matplotlib/legend.py:325: UserWarning: Unrecognized location "top left". Falling back on "best"; valid locations are
right
center left
upper right
lower right
best
center
lower left
center right
upper left
upper center
lower center

six.iterkeys(self.codes))))

Streaming Sift Challenge The goal of streaming sift (on-line sift) is to match each ci, when the
the size of C is unbounded (unknown n). Ideally streaming sift should i) return only those can-
didates which cannot be matched, and ii) limits the number of candidates returned for practical
reasons to approximately nmatches = 1000. This is difficult to do. The brute force approach be-
comes invalid, as the memory required to undertake streaming sift is unbounded. How then to

50

compare each ci ∈ C, when given only C ′′ ⊂ C to match against at any one time. The problem
needs redefining slightly.
We suppose there is a computational system outputting elements from C incrementally, according
to some interval tint. This interval may vary in size. However it will always be the case that can-
didates will arrive in a temporally ordered fashion, one at a time (discreet time model). We extend
the notation used previously. Now ci is now the candidate arriving at time step i, and c1 always
arrives before c2. The set of candidates C can now be easily viewed as a stream containing c1 to
cn.
We assume candidates output by the computational system will be ordered according to c0i (the
ordering variable). This ordering must be strict, so that ∀ci ∈ C, c0i ≤ c0i+1. This definition specifies
an ascending order, though it would make no difference if there were descending.
The stream we are dealing with also exhibits bursty behaviour. The system producing candidates
will stop doing so for an intermittent period, before starting again at a later time. Only candidates
arriving in the same burst should be considered for matching (analogous to an observation). To
capture this, we modify our streaming model slightly (this modification is fairly unique).
The modified goal for streaming sift is to remove duplicates occurring within the same burst b,
such that for each burst, no more than nmatches = 1000 are returned. We modify the notation ci, so
that cib now identifies the burst a candidate belongs to, and to which its ordering applies (with cjib
updated accordingly). To be clear, as the ordering is reset after each burst, ∀c0ib ∈ C, it cannot be
assumed that c0ib ≤ c0i+1b+1 (the batches are not necessarily output in ascending order). Nor can it
be assumed that c0ib ≥ c0i+1b+1 (no descending order either). The number of candidates in a burst
is indeterminate, and will fluctuate over time.
To complicate matters, there may be more unique candidates in a burst than nmatches. Only the
most promising candidates should be retained. Here ‘promise’ is indicated by some metric or
characteristic (e.g. S/N) represented by c1ib for convenience. As the most promising candidates
can appear anywhere in a burst, and as there can be more than nmatches such candidates, it is pos-
sible to miss out on these if they occur at the end of a burst.
This is simply a consequence of choosing candidates too eagerly early on, leaving no room for
other promising candidates. This trade-off is difficult to overcome. Especially as it is desirable for
streaming sift to immediately flag highly promising candidates for further processing. Next we
look at two sifting variants that can be used to overcome these challenges.

Distributed On-line Sift Distributed sift operates on one candidate at a time, as opposed to
candidate batches. It’s assumes an ordering over candidate pulse periods. Using this ordering,
candidates can be partitioned by their pulse periods. This ensures that candidates with similar
periods (i.e. more likely to be duplicates), can be grouped and processed together. A frequency
counting approach can be used to check for duplicates. The logic underpinning this approach is
simple. If a period has been observed many times, it is a possible duplicate. When duplicates
are compared via other variables (e.g. DM), frequency counting can be used to accurately find
duplicates.
The general approach is is presented in the code below. It assumes a stream partitioning that
ensures candidates with similar periods (measured in µs) arrive at the same nodes.

In [10]: """

Node.py

51

Description:

A node object capable of undertaking disributed sift.

Author: Rob Lyon
Email : robert.lyon@manchester.ac.uk
web : www.scienceguyrob.com

License:

Code made available under the GPLv3 (GNU General Public License), that
allows you to copy, modify and redistribute the code as you see fit
(http://www.gnu.org/copyleft/gpl.html). Though a mention to the
original author using the citation above in derivative works, would be
very much appreciated.

"""

class Node(object):
"""
Creates a computational node object. A node is used to process
a portion of a candidate data stream, partitioned according to
candidate pulse periods.

A node maintains counts of the periods it has observed. It uses
this information to determine if a new candidate is a possible
match.
"""

def __init__(self,min_period,max_period,bins=1000001):
"""
Initialises the node.

Parameters

:param min_period: the minimum period observed at the node.
:param max_period: the maximum period observed at the node.
:param bins: the number of frequency counting bins, by default there are 1,000,001

bins which gives microsecond counting resolution.

Returns

:return: N/A
"""
self.bins = bins
self.min_period = min_period

52

self.max_period = max_period

Now create the window as a first in, first out (FIFO) queue.
self.periods = []

if self.bins is not None:
if self.bins > 0:

for x in range(0, bins):
self.periods.append(0)

else:
print 'Bins must be > 0!'

else:
print 'Bins must not be None!'

Variables used to compute stats over the long term.
self.observed = 0 # Total examples observed...
self.overall_sum = 0
self.overall_mean = 0
self.overall_var = 0
self.overall_m2 = 0 # Used to compute variance online.

def isDuplicate(self,x):
"""
Observes a new example x, and updates the period counts.
Returns true if the value x is a duplicate, else false.

Parameters

param x: the input candidate.

Returns

:return: True if x is a duplicate, else False.
"""

Increment counter
self.observed +=1

Update stream stats
self.update_stats(x)

if self.bins is not None:
if self.bins > 0:

if x < self.min_period:
print 'Cannot sift, value outside period range!'

53

elif x > self.max_period:
print 'Cannot sift, value outside period range!'

else:
try to sift

period_microseconds = int(round(x * 1000,0))

if(self.min_period < 0 or self.max_period > 1.0):
index = self.scale(period_microseconds, self.min_period, self.max_period, 0.0, 1000000)

else:
index = int(period_microseconds)

If this period has been seen before
if(self.periods[int(period_microseconds)] > 0):

self.periods[int(period_microseconds)] = self.periods[int(period_microseconds)]+1
return True

else:
self.periods[int(period_microseconds)]= self.periods[int(period_microseconds)]+1
return False;

def scale(self,x, data_min, data_max, floor, ceil):
"""
Scales a numerical value to the desired range.

Parameters

:param x : the value to scale
:param data_min: min the minimum value of the data range for v.
:param data_max: max the maximum value of the data range for v.
:param floor: floor the minimum value of the new limit.
:param ceil: ceil the maximum value of the new limit.

Returns

:return: A new array with the data scaled to within the range [new_min,new_max].
"""

return ((ceil - floor) * (x - data_min) / (data_max - data_min)) + floor

def update_stats(self,x):
"""
Updates the window statistics, uses a flag to
indicate if the statisitics should be updated

54

as a result of an item being removed from the
window, or added to the window.

Parameters

param x: the input candidate observed.

Returns

:return: N/A
"""

There are two possibilities. Either,
1. Update given a new observation.
2. update after an example has left the window.
The following if statement captures this.

If enough examples have been observed to compute the statistics.
if self.observed > 2:

Now for the OVERALL statistics...
We compute these using the on-line algorithm for variance below.
For more info on the algorithm (and papers) see:
#
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
#
and look for the 'Online algorithm'.
self.overall_sum += x
delta = float(x) - float(self.overall_mean)
self.overall_mean += float(delta) / float(self.observed)
self.overall_m2 += delta * (x - self.overall_mean)
self.overall_var = float(self.overall_m2) / float((self.observed - 1))

else:
Too few examples seen to compute all stats, we just update
those we can.
self.overall_sum += x

def reset(self):
"""
Resets the window for the next batch of data.

Parameters

N/A

55

Returns

:return: N/A
"""
self.periods = []

if self.bins is not None:
if self.bins > 0:

for x in range(0, self.bins):
self.periods.append(0)

else:
print 'Bins must be > 0!'

else:
print 'Bins must not be None!'

Variables used to compute stats over the long term.
self.observed = 0
self.overall_sum = 0
self.overall_mean = 0
self.overall_var = 0
self.overall_m2 = 0

def debug(self):
"""
Prints the contents of the window to standard out,
along with window and stream statistics.

Parameters

N/A

Returns

:return: N/A
"""
print "Observed:" , self.observed
print "Overall Sum: " , self.overall_sum
print "Overall Mean: ", self.overall_mean
print "Overall Var:" , self.overall_var

def __iter__(self):
"""
Returns an interable list containing the node period count.

56

Parameters

N/A

Returns

:return: The period count.
"""
return self.periods

Test of Distributed Sift Here we simply test the approach by generating artificial period
data.

In [11]: print 'Testing the on-line distributed sift method...\n'
Create nodes that will process the data.
n_1 = Node(0,1)
n_2 = Node(1,2)
n_3 = Node(2,3)

Basic tests of individual nodes. Here we generate some period
contrived period data, and pass it through the nodes.

Create variables to count duplicates at each node.
n_1_duplicates = 0
n_2_duplicates = 0
n_3_duplicates = 0

Now generate the contrived data
dist_data_1 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] # No matches
dist_data_2 = [1.1,1.1,1.1,1.1,1.1,1.1,1.1,1.1,1.1] # All matches
dist_data_3 = [2.1,2.2,2.3,2.4,2.4,2.5,2.6,2.7,2.8] # One match

print 'Now testing the sift algorithm on a small sample of examples\n'
Here below we asume a stream partioning, so nodes process data
for different periods explicitly.

Periods for node one...
for x in dist_data_1:

duplicate = n_1.isDuplicate(x)

if duplicate:
n_1_duplicates +=1

Periods for node two...
for x in dist_data_2:

57

duplicate = n_2.isDuplicate(x)

if duplicate:
n_2_duplicates +=1

Periods for node three
for x in dist_data_3:

duplicate = n_3.isDuplicate(x)

if duplicate:
n_3_duplicates +=1

print 'Node 1 Duplicates: ', n_1_duplicates , '(should be 0 duplicates).'
print 'Node 2 Duplicates: ', n_2_duplicates , '(should be 8 duplicates)'
print 'Node 3 Duplicates: ', n_3_duplicates , '(should be 1 duplicate)'

Reset the nodes/counters since we'll now process new data.
n_1.reset()
n_2.reset()
n_3.reset()
n_1_duplicates = 0
n_2_duplicates = 0
n_3_duplicates = 0

print 'Now moving on to larger scale test'
Generate some data for more realistic test
random_samples = 100000
print '\n\nCreating some randomly sampled period data...'
dist_data = np.random.uniform(low=0.0,high=3.0,size=random_samples)

Just plot the data to see what it looks like.
plt.hist(dist_data, bins='auto')
plt.ylabel('Frequency')
plt.xlabel('Bin')
plt.title('Distribution of random data')
plt.show()

Sort the data to simulate the ordering variable.
dist_data = np.sort(dist_data)

Now process the new random (uniformly sampled) data.
print '\nNow sifting ', random_samples, ' randomly sampled periods.'

Below we asume a stream partioning, acheived via the use
of simple if statements.
for x in dist_data:

58

if x < 1.0:
duplicate = n_1.isDuplicate(x)

if duplicate:
n_1_duplicates +=1

elif x < 2.0:
duplicate = n_2.isDuplicate(x)

if duplicate:
n_2_duplicates +=1

elif x < 3.0:

duplicate = n_3.isDuplicate(x)

if duplicate:
n_3_duplicates +=1

print 'Node 1 Duplicates: ', n_1_duplicates
print 'Node 2 Duplicates: ', n_2_duplicates
print 'Node 3 Duplicates: ', n_3_duplicates

print 'Total duplicates:' , str(n_1_duplicates + n_2_duplicates + n_3_duplicates)
print 'Unique periods:' , str(random_samples - (n_1_duplicates + n_2_duplicates + n_3_duplicates))

Testing the on-line distributed sift method...

Now testing the sift algorithm on a small sample of examples

Node 1 Duplicates: 0 (should be 0 duplicates).
Node 2 Duplicates: 8 (should be 8 duplicates)
Node 3 Duplicates: 1 (should be 1 duplicate)
Now moving on to larger scale test

Creating some randomly sampled period data...

59

Now sifting 100000 randomly sampled periods.
Node 1 Duplicates: 32260
Node 2 Duplicates: 32289
Node 3 Duplicates: 32448
Total duplicates: 96997
Unique periods: 3003

The results here are as expected. The approach can be modified to consider DM and other
variables easily. However we do not include such code here. It is left for future work.

Windowed Sift We have an outline design for a on-line ‘windowed’ sift algorithm. This algo-
rithm begins the sifting process, by initialising some key variables:
1. A pool used to store promising candidates from a burst, which has a maximum size of nmatches.

2. A sliding window over the stream. This starts at the beginning of the burst. It ends at a
location consistent where there is little or no chance of the example of at the start of the
window, being related to the example at the end. This notion of likelihood will be captured
by some statistical test. Over time the window will move according to the current ci being
processed.

3. A number of statistics:

60

3.1. a count of the examples observed in the burst so far.

3.2. a count of the examples in the pool.

3.3. a count of the examples in the pool passed on for further processing.

3.4. the current length of the sliding window.

3.5. a count of the probable duplicates found in the burst so far.
Following variable initialisation, there are two possible scenarios. In the first, the algorithm
begins buffering a small number of candidates to construct the sliding window. The number
of examples buffered depends on the metric used to determine the likelihood of similarity
(between the example at the start of the window, and that at the end). This approach can
waste time populating the buffer, but may lead to better results in the long run. It is also more
complicated to implement. For example, once the first 50 examples have been buffered, you
then have to go back to c1, undertake comparisons, then do the same for c2, . . . , c50.
The alternative approach is to not wait. Here we simply construct the window on the first
example seen. The algorithm then attempts to match the first candidate to those stored in the
window. As no other candidates will have been seen at this point, c1 will be automatically
assigned to the pool as a promising candidate, in absence of additional information.
With no buffering, time is saved. However it is possible for this approach to lead to sub-
optimal candidates being sent too early for further processing, as so few comparisons have
taken place. To prevent this becoming a significant problem, a simple constraint can be
applied. Simply ensure that at least nmin candidates had been seen, before any are sent on-
wards.
This constraint achieves the same effect as buffering (a wait), though it is easier to imple-
ment. It should also be noted that in the stream mining domain more generally, a statistical
test would be used to determine the appropriate number of candidates to observe, before al-
lowing candidates to be forwarded on. This is typically controlled by a desired level of user
confidence δ ∈ [0, 1]. A δ = 0.95 implies the user wants to be 95% confident, that enough
examples have been observed.
However the initialisation of the window is done, each subsequent candidate that arrives,
will be compared to those in the current sliding window. If there is a match between ci and
ci+1 in the window, and ci+1 has the best c1ib, it will be compared to those in the pool. If
there is a match in the pool, then the best match will be retained in the pool, and the other
discarded. If the candidate is deemed very promising according to some heuristic h, then it
will be immediately sent for further processing, and the appropriate counts updated. The
pool will also be decreased in length by 1, with the sent candidate retained for further burst
comparisons. If the pool is full when this occurs, the least promising candidate in the pool
has to be discarded to enable the pool to shrink.
In principle this approach would appear to be sound. Provided the window is large enough,
you could always compare similar candidates to one another. This should enable the fast
identification of matches. There are obviously lots of implementation specific details not
considered here. Those are not a concern right now, as we think about this as a proof of
concept.

Stream Windowing Algorithms There are two possible ways to construct a window. Either
incrementally, or in a single go based on a buffer of observed examples. There are actually three
general models for this (Wu & Chen, 2006):
1. A landmark data model - this considers the data in the stream from the start until ‘now’.

61

2. A sliding window model - this considers the data from ‘now’, up to a certain point/range in
the past.

3. A damped window model - this associates weights with the stream data, and gives higher
weights to more recent data.
Our window is considered to be a time-based landmark window (see Pramod & Vyas, 2012).
There are other general methods. One of the more popular is ADWIN (Bifet & Gavaldà,
2007). ADWIN maintains a single sliding window W over a data stream. The window is
actually made up of sub-windowsW1 andW2 (though more windows can be used!). As data
moves throughW , the respective means and variances of the sub-windows are computed. A
statistical equality test is then done on these values, and a probabilistic estimate of similarity
obtained. If the respective means and variances of the sub-windows are different, then this
is interpreted to mean there has been a significant distributional shift in W . Thus the older
portion of the window is dropped.
Based upon this approach, I’ve devised a potentially useful strategy. The code below de-
scribes this method. It is based on a basic queue, assuming the first in, first out principle
(FIFO). It maintains both window and stream statistics, and accepts user parameters.

Prototype ‘Windowed’ Algorithm

In [12]: """

Window.py

Description:

A sifting algorithm that utilises a sliding window.

Author: Rob Lyon
Email : robert.lyon@manchester.ac.uk
web : www.scienceguyrob.com

License:

Code made available under the GPLv3 (GNU General Public License), that
allows you to copy, modify and redistribute the code as you see fit
(http://www.gnu.org/copyleft/gpl.html). Though a mention to the
original author using the citation above in derivative works, would be
very much appreciated.

"""
from collections import deque

class Window(object):
"""

62

Creates the object responsible for managing a sliding window.

The window maintains statistics over its contents. For simplicity
this window assumes its contents to be simply natural numbers.
"""

def __init__(self,max_size,conf,adapt=False):
"""
Initialises the window.

Parameters

:param max_size: the maximum allowable size of the window.
:param conf: the desired level of user confidence for change detection or matching.
:param adapt: boolean flag, when true causes the window to change size adaptively.

Returns

:return: N/A
"""
self.default_W_max = max_size
self.W_max = max_size
self.delta = conf
self.length = 0 # Length of the window.

A flag that when true, will allow the window to adapt, by
altering W_max dynamically.
self.adaptive = adapt

Now create the window as a first in, first out (FIFO) queue.
self.contents = deque()

Variables used to compute stats over the window.
self.window_sum = 0
self.window_mean = 0
self.window_var = 0

Variables used to compute stats over the long term.
self.observed = 0 # Total examples observed...
self.overall_sum = 0
self.overall_mean = 0
self.overall_var = 0
self.overall_m2 = 0 # Used to compute variance online.

def observe(self,x):
"""

63

Observes a new example x, and slides the window accordingly.

Parameters

:param x: the input value observed.

Returns

:return: N/A
"""

Increment counter
self.observed +=1

If the window is able to grow, then let it.
if self.canGrow():

This will append x to the left hand side of the window.
For example, if the window contains:
#
Tail Head
| |
v v
[c , b , a]
#
then self.window.appendleft(d)
#
would give,
#
[d , c , b , a]
self.contents.appendleft(x)
self.length +=1

Now make the window recompute monitoring stats.
self.update_stats(x,remove=False)

else:
The window size has reached it's hard limit.
Remove the tail from the window to make room.
self.removeOldest()

Add the new item to the window
self.contents.appendleft(x)

The call to removeOldest() above decreases
the length, so we must increase it here.
self.length +=1

64

Simply make the window recompute monitoring stats.
self.update_stats(x,remove=False)

If the window can adapt by choosing its own W_max value,
then let it, based on the updated statistics computed after
x was observed.
if self.adaptive:

self.adapt()

def removeOldest(self):
"""
Removes the oldest item in the window, updates
window statisitics accordingly.

Parameters

N/A

Returns

:return: N/A
"""

if(self.length > 0):
Pop the right most window item, this call removes it.
oldest = self.contents.pop()
self.length +=-1 # Decrement fudge...

Update the window statistics.
self.update_stats(oldest,remove=True)

def update_stats(self,x,remove=False):
"""
Updates the window statistics, uses a flag to
indicate if the statisitics should be updated
as a result of an item being removed from the
window, or added to the window.

Parameters

:param x: the input value observed.
:param remove: flag that when true, updates window stats

following an observation leaving the window.

65

Returns

:return: N/A
"""

There are two possibilities. Either,
1. Update given a new observation.
2. update after an example has left the window.
The following if statement captures this.

If enough examples have been observed to compute the statistics.
if self.observed > 2:

if remove:

Then the example x is being removed from the window,
and we must recompute our window statisitics to reflect
that.
self.window_sum += -x # Decrease sum.
self.window_mean = float(self.window_sum) / float(self.length) # recompute sample mean

Calculate variance - this call may be computationally expensive
in the long run, but we can cross that bridge later...
self.window_var = np.var(map(float, self.contents))

No need to do overall stats computation, this is done
only when adding a new example for the first time.

else:
Then x is being added to the window. This means it is being
observed for the first time, so overall stats must also be updated.
self.window_sum += x
self.window_mean = float(self.window_sum) / float(self.length) # sample mean

Calculate variance - this call may be computationally expensive
in the long run, but we can cross that bridge later...
self.window_var = np.var(map(float, self.contents)) # Convert float for Numpy call.

Now for the OVERALL statistics...
We compute these using the on-line algorithm for variance below.
For more info on the algorithm (and papers) see:
#
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
#
and look for the 'Online algorithm'.
self.overall_sum += x
delta = float(x) - float(self.overall_mean)
self.overall_mean += float(delta) / float(self.observed)

66

self.overall_m2 += delta * (x - self.overall_mean)
self.overall_var = float(self.overall_m2) / float((self.observed - 1))

else:
Too few examples seen to compute all stats, we just update
those we can.
self.window_sum += x
self.overall_sum += x

def canGrow(self):
"""
Tests if the window is able to grow.

Parameters

N/A

Returns

:return: True if able to grow, else false.
"""
if(self.length < self.W_max):

return True
else:

return False

def adapt(self):
"""
Causes the window to modify W_max based on the data it has observed.

Parameters

N/A

Returns

:return: N/A
"""
if self.hasChanged():

Do some adaptation.

Not important now, implement later.
print 'There has been a change.'

67

def hasChanged(self):
"""
Tests if there has been a statistically significant shift in the window.

Parameters

N/A

Returns

:return: True if a change has occured, else false.
"""
Not important now, implement later.
#
Here is ane example, which uses the Hoeffding bound:
error_epsilon = np.sqrt(np.log(1/self.delta)/(2*self.window))
#
#
return False

def reset(self):
"""
Resets the window for the next batch of data.

Parameters

N/A

Returns

:return: N/A
"""
self.W_max = self.default_W_max
self.length = 0

Now create the window as a first in, first out (FIFO) queue.
self.contents = deque()

Variables used to compute stats over the window.
self.window_sum = 0
self.window_mean = 0
self.window_var = 0

68

Variables used to compute stats over the long term.
self.observed = 0
self.overall_sum = 0
self.overall_mean = 0
self.overall_var = 0
self.overall_m2 = 0

def debug(self):
"""
Prints the contents of the window to standard out,
along with window and stream statistics.

Parameters

N/A

Returns

:return: N/A
"""

print "Window Sum: ", self.window_sum
print "Window Mean: ", self.window_mean
print "Window Var:" , self.window_var
print "Overall Sum: ", self.overall_sum
print "Overall Mean: ", self.overall_mean
print "Overall Var:" , self.overall_var
print "Window Contents:\n\t",self.contents

def printWindow(self):
"""
Prints the contents of the window to standard out.

Parameters

N/A

Returns

:return: N/A
"""

print self.contents

69

def __iter__(self):
"""
Returns an interable list containing items in the window.

Parameters

N/A

Returns

:return: The items in the window.
"""
return self.contents

Now we have are algorithm to test. Next we generate some input data to see what it does.

Test Data Generation for Windowed Approach

In [13]: # First generate some random input data, representing individual candidates.
data = np.random.randint(low=1,high=11,size=1000)

Just plot the data to see what it looks like.
bin_centres = np.arange(0.5,10.5, 1)
uniq, counts = np.unique(data, return_counts=True)
plt.bar(bin_centres,counts)
plt.ylabel('Frequency')
plt.xlabel('Bin')
plt.title('Distribution of random data')
plt.show()

In principle there are only 10 unique matches.
No we can shuffle the data, e.g.
np.random.shuffle(data)
But we would rather sort it here, to simulate the ordering variable.
data = np.sort(data)

70

Now we pass the data through the window.

Testing of ‘Windowed’ Approach

In [14]: print 'Testing Windowed Sift...'
Now we try to simulate a window over the data.
max_window_size = 10 # The maximum allowable window length.
user_conf = 0.8 # The desired level of user confidence.

win = Window(max_window_size,user_conf)

First figure out true stats of data:
print 'Input data properties:'
print 'Data sum: ', sum(data)
print 'Data mean: ', np.mean(data)
print 'Data var: ', np.var(data) ,'\n'

for d in data:
win.observe(d)

print 'As observed by window class:'
win.debug()

Testing Windowed Sift...
Input data properties:

71

Data sum: 5542
Data mean: 5.542
Data var: 7.550236

As observed by window class:
Window Sum: 100
Window Mean: 10.0
Window Var: 0.0
Overall Sum: 5542
Overall Mean: 5.54
Overall Var: 7.57797797798
Window Contents:

deque([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])

As you can see above, the window has done fairly well at estimating the overall mean & vari-
ance (using the on-line non-exact algorithm). it has also computed statistics for the current (and
last) window specifically. We now try to check the algorithm works as expected more carefully.
Below I visualise the movement of examples through the window.

In [15]: win.reset() # Resets the window's variables.

samples = 20
min_value = 1
max_value = 10
Now we create a data generator.
for i in range(samples):

Create a random number
win.observe(np.random.randint(low=min_value,high=max_value,size=1)[0])
win.printWindow()

print "\nSummary Stats:"
win.debug()

deque([7])
deque([3, 7])
deque([8, 3, 7])
deque([8, 8, 3, 7])
deque([6, 8, 8, 3, 7])
deque([1, 6, 8, 8, 3, 7])
deque([4, 1, 6, 8, 8, 3, 7])
deque([4, 4, 1, 6, 8, 8, 3, 7])
deque([3, 4, 4, 1, 6, 8, 8, 3, 7])
deque([3, 3, 4, 4, 1, 6, 8, 8, 3, 7])
deque([3, 3, 3, 4, 4, 1, 6, 8, 8, 3])
deque([5, 3, 3, 3, 4, 4, 1, 6, 8, 8])
deque([6, 5, 3, 3, 3, 4, 4, 1, 6, 8])
deque([3, 6, 5, 3, 3, 3, 4, 4, 1, 6])

72

deque([4, 3, 6, 5, 3, 3, 3, 4, 4, 1])
deque([5, 4, 3, 6, 5, 3, 3, 3, 4, 4])
deque([9, 5, 4, 3, 6, 5, 3, 3, 3, 4])
deque([6, 9, 5, 4, 3, 6, 5, 3, 3, 3])
deque([1, 6, 9, 5, 4, 3, 6, 5, 3, 3])
deque([7, 1, 6, 9, 5, 4, 3, 6, 5, 3])

Summary Stats:
Window Sum: 49
Window Mean: 4.9
Window Var: 4.69
Overall Sum: 96
Overall Mean: 4.3
Overall Var: 6.95789473684
Window Contents:

deque([7, 1, 6, 9, 5, 4, 3, 6, 5, 3])

Based on the above, it would appear that examples are moving correctly through the window.
Using this basic approach, we can start to do simple matching, by comparing against the window.

In [16]: win.reset() # Resets the window's variables.

Just pass in 10 samples for simplicity.
samples = 10
min_value = 1
max_value = 10

matches = []
match_count = 0

Again we create a data generator as before.
for i in range(samples):

Create and observe a random number
next_int = np.random.randint(low=min_value,high=max_value,size=1)[0]
win.observe(next_int)

Here we basically say that if the new value is equal
to any of the other values in the window, then its a match,
and it should be ignored (well I add it to a match list
for clarity!).
occurances = 0

Iterate over examples in window. There are more efficient
ways to do this then pure iteration, e.g. tree search or hashing
data structures.
for d in win.contents:

73

if d == next_int:

occurances+=1

If a value occurs more than once in the window,
it must be a match.
if occurances > 1:

matches.append(next_int)
match_count+=1

print "\nSummary Stats:"
win.debug()

print "\nMatch count: ", match_count
print matches

Summary Stats:
Window Sum: 62
Window Mean: 6.2
Window Var: 6.16
Overall Sum: 62
Overall Mean: 4.5
Overall Var: 10.9444444444
Window Contents:

deque([8, 4, 9, 4, 3, 3, 5, 9, 9, 8])

Match count: 5
[9, 3, 9, 4, 8]

You can see above its found the matches in the window of the first 10 examples, which is great.

Combined Approach It would be fairly trivial to combine the distributed and windowed
approaches. We leave this to future work.

2 References

CSIRO, “ANTF Pulsar Catalogue”, 2012, on-line, http://www.atnf.csiro.au/people/
pulsar/psrcat/, accessed 28/04/2016

Bifet & Gavaldà, “Learning from Time-Changing Data with Adaptive Windowing”, Proceedings of the
SIAM International Conference on Data Mining, 2007 (paper link).

74

http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/
http://dx.doi.org/10.1137/1.9781611972771.42

Lyon, Stappers, Cooper, Brooke, Knowles “Fifty Years of Pulsar Candidate Selection: From simple filters
to a new principled real-time classification approach”, MNRAS, 459 (1):1104-1123, 2016 (paper link).

Lyon & Stappers, “Prototype Pulsar Search Pipeline for High Volume Data Streams”, Arxiv, 2017
(paper link).

Pramod & Vyas, “Data Stream Mining: A Review on Windowing Approach”, Global Journal of Com-
puter Science and Technology Software & Data Engineering, vol. 1, issue 2, 2012 (paper link).

Wu & Chen, “Maintaining Moving Sums over Data Streams”, Advanced Data Mining Application,
vol. 4093 of LNCS, pp.1077-1084, 2006 (paper link).

3 Appendix

3.1 Unit Tests

These unit tests should be executed outside of Jupyter notebooks. The supporting files also used
during unit testing are also inlcuded below.

3.1.1 TestPSRCATEntry

“‘”" ** TestPSRCA-
TEntry.py ** De-
scription: Tests the class that represents individual ATNF catalog entries.
** Author: Rob Lyon
Email : robert.lyon@postgrad.manchester.ac.uk web : www.scienceguyrob.com
** Required Command Line Ar-
guments: N/A ** Optional Com-
mand Line Arguments: N/A **
License: Code made available under the GPLv3 (GNU General Public License), that allows you to
copy, modify and redistribute the code as you see fit (http://www.gnu.org/copyleft/gpl.html).
Though a mention to the original author using the citation above in derivative works, would be
very much appreciated. ** “”"

import os import unittest

4 For common operations.

from main.src.data.psrcat.PSRCATEntry import PSRCATEntry

5 ******************************

6 CLASS DEFINITION

7 ******************************

class TestPSRCATEntry(unittest.TestCase): “”" Tests the class that represents individual ATNF
catalog entries. “”"

Points to the resource directory containing test files.
data_root = os.path.abspath('../..') + '/resources/TEST'

75

https://dx.doi.org/10.1093/mnras/stw656
http://dx.doi.org/
http://computerresearch.org/index.php/computer/article/view/553
https://dx.doi.org/10.1007/11811305_117

#
TESTS
#

def test_entry(self):
"""Tests the creation of a PSRCAT entry object, and the methods used to modify it."""

name = 'FAKE_PULSAR'
entry = PSRCATEntry(name)

Here are some fake lines that will be fed to the entry...
RAJ 00:06:04.8 2 cn95
DECJ +18:34:59 4 cn95
P0 0.69374767047 14 cn95
P1 2.097E-15 12 cn95
PEPOCH 49079.5 cn95
DM 12.0 6 cn95
entry.process_atnf_formatted_line('RAJ 00:06:04.8 2 cn95')
self.assertEqual(entry.get_parameter(entry.KEY_RAJ), '00:06:04.8')
entry.process_atnf_formatted_line('DECJ +18:34:59 4 cn95')
self.assertEqual(entry.get_parameter(entry.KEY_DECJ), '+18:34:59')
entry.process_atnf_formatted_line('P0 0.69374767047 14 cn95')
self.assertEqual(float(entry.get_parameter(entry.KEY_P0)), 0.69374767047)
entry.process_atnf_formatted_line('DM 12.0 6 cn95')
self.assertEqual(float(entry.get_parameter(entry.KEY_DM)), 12.0)

Now check error correction when only part of RA or DEC provided.
entry.process_atnf_formatted_line('RAJ 00:00 2 cn95')
self.assertEqual(entry.get_parameter(entry.KEY_RAJ), '00:00:00')
entry.process_atnf_formatted_line('DECJ +18:00 4 cn95')
self.assertEqual(entry.get_parameter(entry.KEY_DECJ), '+18:00:00')
entry.process_atnf_formatted_line('RAJ 00 2 cn95')
self.assertEqual(entry.get_parameter(entry.KEY_RAJ), '00:00:00')
entry.process_atnf_formatted_line('DECJ +18 4 cn95')
self.assertEqual(entry.get_parameter(entry.KEY_DECJ), '+18:00:00')

Now check period and frequency conversions
entry.process_atnf_formatted_line('P0 0.69374767047 14 cn95')
self.assertAlmostEqual(float(entry.get_parameter(entry.KEY_F0)), float(1.4414462816), places=9)

Now clear frequency...
entry.process_atnf_formatted_line('P0 0.0 14 cn95')
entry.process_atnf_formatted_line('F0 1.4414462816 14 cn95')
self.assertAlmostEqual(float(entry.get_parameter(entry.KEY_P0)), 0.69374767047,places=9)

76

**

#
Test Setup & Teardown
#

preparing to test
def setUp(self):

""" Setting up for the test """

**

ending the test
def tearDown(self):

"""Cleaning up after the test"""

**

if __name__ == "__main__":
unittest.main()`

7.0.1 TestPSRCATParser

“‘”" **
TestPSRCATParser.py

Description:
Tests the code that parses an ATNF pulsar catalog database file.

Author: Rob Lyon Email : robert.lyon@manchester.ac.uk web : www.scienceguyrob.com

Required Command Line Arguments:
N/A

Optional Command Line Arguments:
N/A

77

License:
Code made available under the GPLv3 (GNU General Public License), that allows you to copy,

modify and redistribute the code as you see fit (http://www.gnu.org/copyleft/gpl.html). Though
a mention to the original author using the citation above in derivative works, would be very much
appreciated.

“”"
import os import unittest

8 For common operations.

from main.src.data.psrcat.PSRCATParser import PSRCATParser

9 ******************************

10

11 CLASS DEFINITION

12

13 ******************************

class TestPSRCATParser(unittest.TestCase): “”" Tests the code that parses an ATNF pulsar catalog
database file. “”"

Points to the resource directory containing test files.
data_root = os.path.abspath('../..') + '/resources/TEST'

#
TESTS
#

def test_parse_as_list(self):
"""
Tests the parsing of an ATNF pulsar catalog database file.
:return:
"""

test_catalog_path = self.data_root + '/TEST_PSRCAT/psrcat_10_real_entries.db'

entries = PSRCATParser.parse_as_list(test_catalog_path)

78

Check some entries are returned, and not just null.
self.assertIsNotNone(entries)

Check the correct number of entries are returned.
self.assertEquals(len(entries), 10)

Check first entry is as expected.
self.assertEquals(entries[0].get_parameter('RAJ'), '00:06:04.8')
self.assertEquals(entries[0].get_parameter('DECJ'), '+18:34:59')
self.assertEquals(entries[0].get_parameter('P0'), '0.69374767047')
Special case test for inferred value
self.assertAlmostEqual(float(entries[0].get_parameter('F0')), float(1.4414462816), places=9)
self.assertEquals(entries[0].get_parameter('DM'), '12.0')

Check last entry is as expected.
self.assertEquals(entries[9].get_parameter('RAJ'), '00:24:06.7014')
self.assertEquals(entries[9].get_parameter('DECJ'), '-72:04:06.795')
self.assertEquals(entries[9].get_parameter('F0'), '311.49341784442')
Special case test for inferred value
self.assertAlmostEqual(float(entries[9].get_parameter('P0')), float(0.0032103407093484), places=9)
self.assertEquals(entries[9].get_parameter('DM'), '24.36')

**

def test_sort_var(self):
"""
Tests the angular separation sorting variable.
:return:
"""

test_catalog_path = self.data_root + '/TEST_PSRCAT/psrcat_sort_test.db'

entries = PSRCATParser.parse_as_list(test_catalog_path)

Check some entries are returned, and not just null.
self.assertIsNotNone(entries)

Check the correct number of entries are returned.
self.assertEquals(len(entries), 3)

Check first entry is as expected.
self.assertAlmostEqual(entries[0].getRefSep(), 0.0, places=1)
self.assertAlmostEqual(entries[1].getRefSep(), 2.5, places=1)
self.assertAlmostEqual(entries[2].getRefSep(), 148.52505, places=5)

**

79

#
Test Setup & Teardown
#

preparing to test
def setUp(self):

""" Setting up for the test """

**

ending the test
def tearDown(self):

"""Cleaning up after the test"""

**

if __name__ == "__main__":
unittest.main()`

13.0.1 TestSuiteRunner

“‘”" **
TestSuite.py

Description:
Suite that executes all tests for the CandidateStreamer application.

Author: Rob Lyon
Email : robert.lyon@manchester.ac.uk
web : www.scienceguyrob.com

Required Command Line Arguments:
N/A

Optional Command Line Arguments:
N/A

80

License:
Code made available under the GPLv3 (GNU General Public License), that allows you to copy,

modify and redistribute the code as you see fit (http://www.gnu.org/copyleft/gpl.html). Though
a mention to the
original author using the citation above in derivative works, would be very much appreciated.

“”"

14 Used for logging purposes, please don’t delete.

import logging import sys

15 Unit testing modules

from unittest import TestLoader, TextTestRunner, TestSuite

16 ******************************

17

18 CLASS DEFINITION

19

20 ******************************

class TestSuiteRunner(TestSuite): “”"
Executes unit tests on all scripts in the project. “”"

def __init__(self):
"""
Default constructor for the base class.

Parameters

Returns

Examples

>>>

:return: N/A

81

"""

Create a logger object.
super(TestSuiteRunner, self).__init__()
self.logger = logging.getLogger('CandStreamer')

create a file handler
handler = logging.FileHandler('StreamerTest.log')

Set the logging level.
self.logger.setLevel(logging.INFO)
handler.setLevel(logging.INFO)

Create the logging format
formatter = logging.Formatter('%(levelname)s,%(asctime)s,%(message)s', datefmt='%H:%M:%S')

Configure the logging handler with the desired output format
handler.setFormatter(formatter)

Setup the log file writer
ch = logging.StreamHandler(sys.stdout)
ch.setFormatter(formatter)

Add the handlers to the logger
self.logger.addHandler(handler)
self.logger.addHandler(ch)

#
MAIN METHOD AND ENTRY POINT.
#

def main(self):
"""
Main entry point for the Application.

Parameters

Returns

Examples

>>>
"""

82

self.run_tests()

**

def run_tests(self):
"""
Runs the tests in the test suite.

Parameters

Returns

Examples

>>>

:return: N/A
"""

self.logger.info('Running Unit Tests')

loader = TestLoader()
suite = TestSuite((

loader.loadTestsFromTestCase(TestPSRCATEntry),
loader.loadTestsFromTestCase(TestPSRCATParser)

))

runner = TextTestRunner(verbosity=3)
runner.run(suite)

**

if name == ‘main’: TestSuiteRunner().main()‘

20.0.1 Supporting files

psrcat_10_real_entries.db This file contains 10 real PSRCAT (version 1.54) entries, with some
minor details removed. These were removed so iPython could parse the content as NBConvert
strings (i.e. I had to remove underscore symbols).

PSRJ J0006+1834 cnt96 RAJ
00:06:04.8 2 cn95 DECJ +18:34:59
4 cn95 P0 0.69374767047 14 cn95
P1 2.097E-15 12 cn95 PEPOCH 49079.5
cn95 DM 12.0 6 cn95
SURVEY ar4 @--
PSRJ J0007+7303 aaa+09c RAJ

83

00:07:01.7 2 awd+12 DECJ +73:03:07.4
8 awd+12 F0 3.165827392 3 awd+12
F1 -3.6120E-12 5 awd+12 F2 4.1E-23
7 awd+12 F3 5.4E-30 9 awd+12
PEPOCH 54952 awd+12 NGLT 1
TYPE NRAD SURVEY FermiBlind
@-- PSRB B0011+47
dth78 PSRJ J0014+4746 RAJ
00:14:17.75 4 hlk+04 DECJ 47:46:33.4
3 hlk+04 F0 0.805997239145 7
hlk+04 PEPOCH 49664.00 hlk+04
DM 30.85 7 hlk+04 SURVEY
gb1,gb2,gb3 @-- PSRJ
J0023+0923 hrm+11 RAJ 00:23:16.87910
3 mnf+15 DECJ +09:23:23.871 1 mnf+15
PX 0.4 3 mnf+15 P0 0.00305
hrm+11 DM 14.3 hrm+11
SURVEY FermiAssoc @--
PSRB B0021-72C mld+90 PSRJ
J0024-7204C RAJ 00:23:50.35311
9 fck+03 DECJ -72:04:31.4926 4 fck+03
F0 173.708218966053 5 fck+03 F1 1.5042E-15
2 fck+03 DM 24.599 2 fkl+01
SURVEY pksgc @--
PSRB B0021-72D mlr+91 PSRJ
J0024-7204D RAJ 00:24:13.87934
7 fck+03 DECJ -72:04:43.8405 3 fck+03
F0 186.651669856838 6 fck+03 F1 1.195E-16
2 fck+03 DM 24.729 2 fkl+01
SURVEY pksgc @-- PSRB
B0021-72E mlr+91 PSRJ J0024-7204E
RAJ 00:24:11.1036 1 fck+03 DECJ
-72:05:20.1377 4 fck+03 F0 282.77910703517
1 fck+03 F1 -7.8772E-15 5 fck+03
DM 24.230 2 fkl+01 SURVEY
pksgc @-- PSRB
B0021-72F mlr+91 PSRJ J0024-7204F
RAJ 00:24:03.8539 1 fck+03 DECJ
-72:04:42.8065 5 fck+03 F0 381.15866365655
2 fck+03 F1 -9.3707E-15 5 fck+03
DM 24.379 5 fkl+01 SURVEY pksgc
@-- PSRB B0021-72G
rlm+95 PSRJ J0024-7204G RAJ
00:24:07.9587 3 fck+03 DECJ -72:04:39.6911
7 fck+03 F0 247.50152509652 2
fck+03 F1 2.582E-15 1 fck+03
DM 24.441 5 fkl+01 SURVEY pksgc
@-- PSRB B0021-72H

84

mlr+91 PSRJ J0024-7204H RAJ
00:24:06.7014 3 fck+03 DECJ -72:04:06.795
1 fck+03 F0 311.49341784442 4 fck+03
DM 24.36 3 fkl+01 SURVEY pksgc
@--

20.0.2 psrcat_sort_test.db

This file contains 3 fake PSRCAT entries.
PSRJ J0001+0001 cnt96 RAJ 00:00:00.0

2 cn95 DECJ +00:00:00 4 cn95 P0
0.69374767047 14 cn95 DM 12.0 6
cn95 @--- PSRJ
J0002+0002 aaa+09c RAJ 00:10:00 2
awd+12 DECJ +00:00:00 8 awd+12 DM 10.0
2 AWD+12 F0 3.165827392 3 awd+12
@--- PSRJ J0003+0003
dth78 RAJ 10:00:00 4 hlk+04 DECJ 10:00:00
3 hlk+04 F0 0.805997239145 7 hlk+04 DM 30.85
7 hlk+04 @---

85

	A Big Data Pipeline for High Volume Scientific Data Streams - Supporting Python Source
	Citing this work
	License
	Contents
	Known source matching
	Feature Extraction
	Sifting

	References
	Appendix
	Unit Tests
	TestPSRCATEntry

	For common operations.

	CLASS DEFINITION

	TestPSRCATParser

	For common operations.

	CLASS DEFINITION

	TestSuiteRunner

	Used for logging purposes, please don't delete.
	Unit testing modules

	CLASS DEFINITION

	Supporting files
	psrcat_sort_test.db

