Comparisons of measured and requantized classical molecular dynamics calculated line shape of air-broadened isolated transitions of molecular oxygen

Julien LAMOUROUX, Jean-Michel HARTMANN,

Laboratoire Interuniversitaire des Systèmes Atmosphériques, Universités Paris Est Créteil et Paris Diderot, Créteil, FRANCE

Vincent SIRONNEAU, Joseph T. HODGES

National Institute of Standards and Technology, Chemical Sciences Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA

13th International HITRAN Conference, Cambridge, 23-25 June 2014

Why molecular oxygen ?

 \Box O₂ absorption bands (A, B, γ) are used for a number of remote sensing applications as:

- wind measurements,

- determination of surface pressure, clouds and aerosols proprieties, vertical profiles of pressure and temperature,í

□ But the Voigt profile, widely used for the analysis, is **inaccurate** as it neglectes:

- The speed-dependences of the collisionnal widths $\gamma(v)$ and shifts $\delta(v)$

-The velocity changes induced by collisions (Dicke narrowing effect)

Line shape model beyond the Voigt profile

□ Recently, a new simplified line shape model (Hartmann-Tran model) has been developed in order to account for the effects neglected by the Voigt profile. This model has been proposed as a standard for the future updates of the spectroscopic databases.

(Tennyson et al., Pure and Applied Chemistry, in press (2014))

□ The parameters involved in this model can be obtained from theoretical spectra obtained from Classical Molecular Dynamics Simulations (CMDS).

□ These simulations provide (among other quantities) the autocorrelation function of the dipole, yielding to the spectra through a Laplace-Fourier Transform.

□ They have been successfully applied for line shape predictions for pure CO₂, H₂O, and for one transition (P11P11) of pure O₂.

• Can we developed a HT model for O₂-air ?

Classical Molecular Dynamics Simulations

$\Box N_M$ (>10⁶) molecules (20% O₂, 80% N₂) treated simultaneously

- Placed in a cubic box (size determined from N_M and molecular density n)
- Periodic boundary (treated box surrounded by 4096 identical other boxes)
- When a molecule gets out of the box, it comes back-in from the opposite box

□ The state of each molecule *m* (linear, rigid rotor) is parameterized by its:

- Center of mass (CoM) position and velocity
- Molecule orientation
- Molecule rotational speed

The site-site intermolecular potentials for O_2 - O_2 , O_2 - N_2 et N_2 - N_2 have been taken from the literature (as 6-12 Lennard-Jones)

The O₂ electronic spin has been neglected in the calculations

- O_2 transitions are under the form $\Delta N(N'') \Delta J(J'')$
- Hence õPPö and õPQö transitions types are equivalent in the calculations

Classical Molecular Dynamics Simulations

□ Initialization (time t=0)

- Random CoM positions and axis orientations
- CoM velocity and rotation: random orientations, modules from Maxwell-Boltzmann

Time evolution for all molecules treated sequentially (with small enough time step *dt*)

- At each time *t* compute force and torque on each molecule from sum of potential gradient of over surrounding neighbors (cut-off sphere of 20 Å)

- Then compute acceleration of CoM and of orientation
- Then compute molecule parameters at t+dt from those at t

□ For each molecule *m*, a requantification procedure is applied based on the correspondence principle: Associates the rotational quantum number N_m to the rotational speed ω_m by

$$\frac{1}{2}I\omega_m^2 \approx \frac{\hbar^2}{2I}N_m(N_m+1)$$

Spectral line shape

The spectrum $F(\omega)$ is given by the Laplace-Fourier transform of the autocorrelation function (ACF) $\Phi(\omega,t)$

$$F(\omega) = \operatorname{Re}\left\{\frac{1}{\pi}\int_{0}^{+\infty}\Phi(\omega,t)e^{-i\omega t}dt\right\}$$

Analysis

□ The effects beyond the Voigt profile can be studied by analyzing the $\tilde{O}W\ddot{O}$ type signatures in the residuals of the fits. ^{1.0} O₂-air. P9P9 P=150 Torr. T=295 K

□ All the studied spectra were adjusted with a Voigt profile:

- The Doppler width Γ_D has been **fixed** to its theoretical value,

- The intensity *S*, the Lorentz width Γ_L have been **adjusted**.

□ In order to validate the calculations, experimental spectra were recorded at NIST for the R1Q2, P9P9, P11P11, P13P13, and P15Q14 transitions of the $a {}^{1}\Delta_{g} \leftarrow X {}^{3}\Sigma_{g}^{-}(0,0)$ band, using a frequency-stabilized cavity ringdown spectrometer (FS-CRDS)

Results: Lorentz widths Γ_L

Results: Lorentz widths Γ_L

Results: study of the residuals

Residuals of the fit of theoretical and measured spectra of the P9P9 transition

Results:

-Typical õWö-shaped residuals

-Both amplitudes and widths of the õWö are in good agreement between the calculations and the measurements

- As seen for other systems (H₂O, CO₂): For $\Gamma_L / \Gamma_D = 1$, the amplitude is maximum For $\Gamma_L / \Gamma_D \rightarrow 0$, the amplitude goes to 0 For $\Gamma_L / \Gamma_D \rightarrow +\infty$, the amplitude goes to an asymptotique value

Results: study of the residuals

Conclusion and future work

□ The comparison of theoretical and experimental spectra trhough their fits by a Voigt profile demonstrates that the CMDS can be used as a prediction of the (small) deviations to the Voigt profile.

□ The results presented here validate the first step of this work that aims at understanding the physical processes that affect the isolated line shapes of molecular oxygen.

□ The next step will aim to determinate the parameters describing the velocity changes induced by collisions from the CMDS spectra described here.

JL is pleased to acknowledge support of this research by the French National Research Agency (ANR) through the project ASGGRS (ANR-12-PDOC-0012-01).