

New analysis of the CRDS spectrum of the six ¹⁶O/¹⁸O isopotologues of ozone up to 7920 cm⁻¹

<u>A. Barbe</u>, M.-R. De Backer, Vl. G Tyuterev, D.Mondelain, S. Kassi, A.Campargue, E. Starikova

Theoretical model : C_S / C_{2V} **species** Nuclear spin statistics: C_{2V} species (666, 888, 686, 868) : nuclear spin statistical weight = 0 **Only one** rovibrational level exists for each $[J, K_a]$ value C_{S} species (668, 886) : $[J, K_a, K_c = J - K_a]$ and $[J, K_a, K_c = J + 1 - K_a]$ levels have the same nuclear spin statistical weight **Twice more** energy levels and **twice more** A-type transitions ($K_a = 0$) than for C_{2V} species 0.12 C + 25₁₂₄- 24₁₂₅ 25_{5 21} + 24_{5 19} - 25_{5 2} 21₉₁₂ - 22₉₁₃ + 21₉₁₃ - 22₉₁₄ 22_{8 15}- 23_{8 16}+ 22_{8 14}- 23₈ 25_{0 25} - 26_{0 26} $23_{716}^{-} - 24_{717}^{+} + 23_{717}^{-} - 24_{16}^{-}$ 25_{1 25} - 26_{1 26} 0.08 25₂₂₃ - 26₂₂₄ Absorption coeffitient (10⁻⁶ cm⁻¹) 26_{3 24} 25₂₂₄- 26₂₂₅ 0.04 0.00 $\mathbf{C}_{\underline{2V}}$ 25₂₂₃- 26₂₂₄ 24_{5 20} - 25_{5 21} . 23_{7 16} - 24_{7 17} 25_{1 24} - 24_{1 25} 25_{0 25}- 26_{0 26} 25_{3 22}- 26_{3 23} 0.08 112 - 22_{9 13} 22₈₁₅- 23₈₁₆ 0.04 Hitran meeting 2014 0.00 6175.6 6176.0 6176.2 6175.4 6175.8 6176.4 6176.6 Wavenumber (cm⁻¹)

Resonance interactions

V-diagonal blocks of the effective rovibrational Hamiltonian (Watson-type form):

C_{2V} and C_S species $\underbrace{^{eff}H^{VV}}_{eff} = E^{VV} + \left| A - \frac{1}{2} (B + C) \right| J_z^2 + \frac{1}{2} (B + C) \mathbf{J}^2 + \frac{1}{2} (B - C) J_{xy}^2 - \Delta_K J_z^4 - \Delta_{JK} J_z^2 \mathbf{J}^2 - \Delta_J \left(\mathbf{J}^2 \right)^2$ $-\delta_{K}\left\{J_{z}^{2},J_{xy}^{2}\right\}-2\delta_{J}J_{xy}^{2}\mathbf{J}^{2}+H_{K}J_{z}^{6}+H_{KJ}J_{z}^{4}\mathbf{J}^{2}+H_{JK}J_{z}^{2}\left(\mathbf{J}^{2}\right)^{2}+H_{J}\left(\mathbf{J}^{2}\right)^{3}$ $+h_{K}\left\{J_{z}^{4},J_{xy}^{2}\right\}+h_{KJ}\left\{J_{z}^{2},J_{xy}^{2}\right\}\mathbf{J}^{2}+2h_{J}J_{xy}^{2}\left(\mathbf{J}^{2}\right)^{2}+L_{K}J_{z}^{8}+...$ where $\{A, B\} \equiv AB + BA$ and $J_{xy}^2 \equiv J_x^2 - J_y^2$ Allowed rovibrational resonance interactions: ${}^{eff}H_{Coriolis}^{VV'} = C_{001}(J_{+}-J_{-}) + C_{011}(J_{+}(J_{z}+1/2) + (J_{z}+1/2)J_{-}) + C_{021}(J_{+}(J_{z}+1/2)^{2} - (J_{z}+1/2)^{2}J_{-})$ C_{2V} species + C_{201} **J**² $(J_{+} - J_{-})$ + $C_{003} (J_{+}^{3} - J_{-}^{3})$ + $C_{031} (J_{+} (J_{z} + 1/2)^{3} - (J_{z} + 1/2)^{3} J_{-})$ $+C_{211} \mathbf{J}^2 (J_+ (J_7 + 1/2) + (J_7 + 1/2) J_-) + \dots$ ${}^{eff}H_{Anharm}^{VV'} = F_{000} + F_{200} J^2 + F_{020} J^2_z + F_{002} (J^2_+ + J^2_-) + F_{022} [J^2_+ (J_z + 1)^2 + (J_z + 1)^2 J^2_-] + F_{020} J^2_+ (J_z + 1)^2 J^2_-]$ $+F_{202}\mathbf{J}^2(J_+^2+J_-^2)+...$ where $J_{+} = J_{r} \mp i J_{y}$ **Coriolis and Anharmonic resonance interactions can occur simultaneously** C_S species Hitran meeting 2014

Dipole selection rules

Results of the $2v_1+2v_2+3v_3$ _2 band analysis of ¹⁶O¹⁶O¹⁸O near 6320 cm⁻¹

Simultaneous analysis of the $2v_2+5v_3$ and $5v_1+v_3$ bands of ${}^{16}O{}^{18}O{}^{16}O$

	2 4	5 2 8			<u>, , , , , , , , , , , , , , , , , , , </u>	5 K	{
	(i)	Spectroscopic EH	parameters (in cm	i ¹)	(iii) Statistics fo	r the line posi	tions
State		(025)	(501)	(124) *	Vibrational state	(025)	(501)
E^{VV}		6151.3855 ₀ (13)	6182.3007 ₀ (14)	6189.599 ₃ (22)	J max	31	30
A-(B+C)/	2	2.79211 ₆ (13)	2.802906 ₅ (79)	2.76127 ₈ (55)	K_a max	10	9
(<i>B</i> + <i>C</i>)/2		0.3931193 ₆ (79)	0.401574 ₀ (81)	0.3911964 (33)	Number of transitions	416	353
(B-C)/2		0.0280599 (16)	0.025656 ₀ (19)	0.02303 ₅ (19)	Number of levels	220	194
K	$\times 10^3$	0.24694 (34)	0.18854 (10)	g	$rms (10^{-3} \text{ cm}^{-1})$	7.	87
JK	$\times 10^{5}$	-0.278 ₃ (11)	-0.179 ₀ (21)	g			
J	×10 ⁶	0.513 ₁ (14)	0.353 ₉ (20)	g	(iv) Statistics f	for the intensit	ties
δ_{K}	$\times 10^4$	0.123 ₂ (18)	0.194 ₄ (45)	g	J max	28	29
δ_J	$\times 10^{6}$	0.1335 (11)	g	g	K_a max	10	7
H_K	×10 ⁶	0.3859 (23)	g	g	Number of transitions	294	41
Resonan	ce coupl	ing terms:			rms (%)	21.0	20.6
$C_{001}^{(dark4)(5)}$	⁰¹⁾ -0.0)3674 ₀ (25)			S_{v} (cm/molecule) ^{<i>a</i>}	4.69×10 ⁻²⁴	3.79×10 ⁻²⁴
$C_{001}^{(dark4)(0)}$	²⁵⁾ -0.0)7358 ₈ (19)				(625 lines)	(558 lines)
	(ii) Dip	ole transition mom	ent parameter (in	Debye)			
		2 2+	5 3	5 ₁ + ₃			
<i>d</i> ₁	×10 ⁴	0.5402	₉ (54)	0.4921 ₀ (84)			
d_2	×10 ⁷	-0.427	₆ (75)				
d_3	×10 ⁸	0.323	, (86)				

* Assignment from new ab initio PES: Tyuterev VI.G., Kochanov R.V., Tashkun S.A., Holka F. and Szalay P.G., New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range // J.Chem.Phys, in press, v 139 (2013)

2 1+5 3 band of ¹⁶O¹⁸O¹⁸O near 6630 cm⁻¹

<u>8 9 10 11</u>	78	<u>3 4 5 6 7</u> 2	Ka 0 1 2 3 4 J	3 Vibrational state (205) (57) Band centre (cm^{-1}) (628 146)	dark3	(205)	dark2	dark1	ate
		2		$\mathbf{J}(\mathbf{J}') \mathbf{J} = $	$0034.4007_0(57)$	6628.1462 ₀ (52)	6595.40 ₃ (25)	6586.420 ₄ (75)	V
		2	2 1 2	[f] J max 24	3.0458 [f]	2.797188 ₄ (43)	2.6422 ₅ (35)	2.86284 (14)	(B+C)/2
		1 2		[f] $K_a \max$ 12	0.3688 [f]	0.3678088 ₅ (39)	0.371289 (11)	0.37284 (11)	+ <i>C</i>)/2
		3 1 1	5 2 2 3 3 1	[f] Number of transitions 633	0.0274 [f]	$0.025419_0(12)$	0.0250 [f]	0.0259 [f]	·C)/2
	1	4 3 2 1		Number of levels 368	g	0.12442_3 (88)	g	g	×10 ³
1	1 1	3 2 2 1 1	8 1 2 3 2	$rms (10^{-5} \text{ cm}^{-1})$ 4.03	g	-0.5703 ₉ (83)	g	g	$x \times 10^{3}$
1	2 1	3 2 2 1 2	9 1 1 1 3 2	a	g	-0.171 ₃ (15)	g	g	×10*
4 1 1 1	1 4	1 2 2 1 1		$S_{\nu} = 1.14 \times 10^{-24}$ cm/molecule	g	$0.106_6(14)$	g	g	×10°
2 1 1 1	3 2	1 2 2 2 3		at 296 K (988 lines)	g	-0.204 ₁ (47)	g	g	×10°
2 2 2 2 2 3 1 3 1	2 2 3 3	3 2 4 2 2 1 2 3 3 3	13 2 1 2 3 2 14 3 1 1 2	fl-fixed to the values	6- (50)	$\times 10^2 - 0.3/3$	C(dark 2)(205)	upling terms: $(10^2 - 0.4101 - (86))$	dark1)(205)
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	31 31	2 2 2 2 3	15 1 1 2 2 2 16 2 2 1		(12)	×10 0.545	$C_{011}^{(aarb 2)(205)}$	(10 0.41017 (80)	11 dauh1)(205)
2 3 2	1 2	1 2 3 1	17 1 1 1 2	predicted from PES (*);	1 (13)	×10 ² 0.623	$C_{011}^{(aark 5)(205)}$	$(10^3 0.83_7 (22))$	03
3 3 2 2 1 2	3	1 2 1 1 1		el-estimated value		oye)	arameter (in Deb	nsition moment pa	Dipole tra
2 2 1	2	1 1 1 1	20 1 1 1 1					10 ⁴ 0.28 [e]	$\overline{d_1^{(A)}}$ ×
8 9 10 11	7 8	<u>3 4 5 6 7</u>	Ka 0 1 2 3 4						
			J 1 1						0.04
		2							
		1 2	4 2 2 3 1 2		₃ band	1 of the $2_{1}+5$	d spectrum	Simulate	
		3 1 1	5 2 3 3 1						0.00
	1	4 2 2 1 1	7 2 1 4 2					-	0.02
1	1 1	3 2 2 1 1	8 1 2 1 3 2						
1 1 1	2 1 3 1	3 3 2 1 3	10 2 1 1 3 3	the should ded held held the second second second	لله ومله وله والع الع الع ال	ndedialitation	a la la la la la	ha hat hat h	
4 1 1 1	14	1 2 2 1 1							0.00
2 1 2 2	3 <u>2</u> 2 2	3 2 4 2 2	12 2 1 1 1 2 13 3 1 3 2						0.01
3 3 3 1	3 3	1 2 3 2 3	14 2 2 1 1 2						0.04
1 3 1 1 1 3 1	3 1 3 1	1 2 2 3 3 1 1 2 3	15 2 1 1 2 16 1 1 1 1 1					CRDS	
2 3 2	1 2	1 2 3 1 1	17 2 1 1 2						
3 1 2 2 2 2	3	1 1 2 1							0.02
	5	1 2 2 2	20 1 1 1 1 2						
2 3 1	2	1 2 2 1			disht. ht	Lill Market histories	ulida e dal dal d	المسارل والملائش الرابي	
2 3 1 2 2 2 2	2	1 1 1		under andere ander ander ander andere andere and and a state of the second second second second second second s	III MILLA MAI LA LA, M., L		WI 16, 06 18)		
2 3 1 2 2 2 2 1 1	2 2 2 1	1 1 1 3	23 1 1				and the second	and the second sec	
2 3 1 2 2 2 2 1 1	2 2 1	1 1 1 3 1 1 1	23 1 1 24 1 1		6620	6610	6600	590	0.00
1 1 1 2 3 1 3 2 3 3 1		ate of 688, symmet 3 4 5 6 2 1 2 1 1 2 3 1 1 4 3 2 1 3 2 1 3 2 2 1 3 2 1 3 2 2 1 3 2 1 3 2 2 1 3 2 1 1 2 2 1 1 2 2 3 3 2 1 1 2 2 3 3 2 4 2 1 1 2 2 3 3 2 4 2 1 2 2 3 3 2 4 2 1 2 2 3 3 2 4 2 1 2 2 3 1 1 2 2 3 1 1 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			n of the 2 ₁ +5	d spectrum	- Simulate	0.04

	Bar	nd centre			A			В			С	
(668)	Obs.	Calc. ^a	0- C	Obs.	Calc. ^a	(O-C)	Obs	Calc. ^a	(O-C)	Obs	Calc. ^a	(0- C)
(223)_1	6026.084	6026.13	-0.05	3.4472	3.4375	0.0097	0.3974	0.3961	0.0013	0.3487	0.3470	0.0017
(025)	6213.492	6213.56	-0.07	3.3752	3.3714	0.0038	0.3962	0.3944	0.0018	0.3466	0.3455	0.0011
(501)	6276.706	6276.71	0.00	3.4137	3.4035	0.0102	0.4028	0.4019	0.0009	0.3575	0.3556	0.0019
(223) 2	(225 212							0 2052	0.0010	0.2504	0.2500	0.0004
	6325.213	6325.38	-0.17	3.4000	3.3936	0.0064	0.3972	0.3953	0.0019	0.3504	0.3500	0.0004
(686)	<u>6325.213</u> B	6325.38	-0.17	3.4000	3.3936 A	0.0064	0.3972	0.3953 B	0.0019	0.3504	0.3500 C	0.0004
(686)	6325.213 B Obs.	6325.38	-0.17 e O-C	3.4000 Obs.	3.3936 A Calc. ^{<i>a</i>}	0.0064 (0-C)	0.3972	<i>B</i> Calc. ^{<i>a</i>}	(O-C)	0.3504	Calc. ^{<i>a</i>}	(0-C)
(686)	6325.213 B Obs. 5983.636	6325.38	-0.17 e 0-C -0.35	3.4000 Obs. 3.2182	3.3936 A Calc. ^a 3.2083	0.0064 (O-C) 0.0099	0.3972 0bs 0.4208	<i>B</i> <i>C</i> alc. <i>^a</i> 0.4202	(O-C) 0.0006	0.3504 Obs 0.3652	0.3500 C Calc. ^{<i>a</i>} 0.3646	(O-C) 0.0006
(686) (133)/(223 (025)	B Obs. 5983.636 6151.385	6325.38 Cand centre Calc. ^{<i>a</i>} 5983.98 6151.66	-0.17 e 0-C -0.35 -0.27	3.4000 Obs. 3.2182 3.1852	3.3936 A Calc. ^a 3.2083 3.1756	0.0064 (O-C) 0.0099 0.0096	0.3972 Obs 0.4208 0.4212	B Calc. ^{<i>a</i>} 0.4202 0.4220	(O-C) 0.0006 -0.0008	0.3504 Obs 0.3652 0.3651	C Calc. ^{<i>a</i>} 0.3646 0.3659	(O-C) 0.0006 -0.0008
(686) (133)/(223 (025) (501)	B Obs. 5983.636 6151.385 6182.301	6325.38 and centro Calc. ^{<i>a</i>} 5983.98 6151.66 6182.51	-0.17 e O-C -0.35 -0.27 -0.21	3.4000 Obs. 3.2182 3.1852 3.2045	A Calc. ^a 3.2083 3.1756 3.1950	0.0064 (O-C) 0.0099 0.0096 0.0095	0.3972 0.5972 0.55 0.4208 0.4212 0.4272	B Calc. ^{<i>a</i>} 0.4202 0.4220 0.4257	(O-C) 0.0006 -0.0008 0.0015	0.3504 Obs 0.3652 0.3651 0.3759	C Calc. ^{<i>a</i>} 0.3646 0.3659 0.3753	(O-C) 0.0006 -0.0008 0.0006

Band centers and rotational constants using empirically optimised PES:

Tyuterev VIG, Kochanov RV, Taskhun SA, *Analytical representation for accurate potential energy function of the ozone molecule and extended vibration calculations*. Proceedings of HighRus Conference, St. Petersbourg, July 2012. <u>http://</u>symp.iao.ru/en/hrms/17/proceedings Assignment is consistent with those obtained from new ab initio PES:

Tyuterev Vl.G., Kochanov R.V., Tashkun S.A., Holka F. and Szalay P.G., New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range // J.Chem.Phys, in press, v 139 (2013)

Comparison of theoretical predictions and experimental values (in cm⁻¹) for the rotational constants of the ¹⁶O¹⁸O¹⁸O and ¹⁸O¹⁶O¹⁸O states

(699)	Ba	nd centre			A			В			С	
(000)	Obs.	Calc. ^{<i>a</i>}	О-С	Obs.	Calc. ^a	(O-C)	Obs	Calc. ^a	(0-C)	Obs	Calc. ^a	(O-C)
(025)	6054.64	6055.08	-0.44	3.1214	3.1137	0.0077	0.3968	0.3950	0.0018	0.3454	0.3434	0.0020
(223)_2	6168.35	6168.96	-0.61	3.1412	3.1329	0.0083	0.3980	0.3964	0.0016	0.3486	0.3480	0.0006
(205)	6628.14	6628.80	-0.66	3.1650	3.1562	0.0088	0.3932	0.3915	0.0017	0.3424	0.3411	0.0013

(969)	Ba	and centre			A			В			С	
(000)	Obs.	Calc. ^{<i>a</i>}	0- C	Obs.	Calc. ^a	(0- C)	Obs	Calc. ^a	(0- C)	Obs	Calc. ^a	(0- C)
(133)/(223)	5964.74	5964.97	-0.23	3.3638	3.3540	0.0098	0.3746	0.3741	0.0005	0.3302	0.3297	0.0005
(501)	6195.36	6195.28	0.08	3.3566	3.3476	0.0090	0.3801	0.3788	0.0013	0.3371	0.3364	0.0007
(223)/(313)	6240.48	6240.43	0.06	3.3133	3.2952	0.0181	0.3736	0.3766	-0.0030	0.3296	0.3332	-0.0036
(205)	6457.44	6457.35	0.09	3.2315	3.2099	0.0216	0.3710	0.3807	-0.0097	0.3282	0.3391	-0.0109

Band centers and rotational constants using empirically optimised PES:

Tyuterev VIG, Kochanov RV, Taskhun SA, Analytical representation for accurate potential energy function of the ozone molecule andextendedvibrationcalculations.ProceedingsofHighRusConference,St.Petersbourg,July2012.http://symp.iao.ru/en/hrms/17/proceedingsofHighRusConference,St.Petersbourg,July2012.

Assignment is consitent with those obtained from new ab initio PES:

Tyuterev VI.G., Kochanov R.V., Tashkun S.A., Holka F. and Szalay P.G., New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range // J.Chem.Phys, in press, v 139 (2013)

HITRAN meting 2014

			6	666 ne	ew r	esu	lts				
	Label	N	E obs	Pred	Nb	Nb		Nb	*	0.0	* in 10 ⁻³ cm ⁻¹
	$v_1v_2v_3$	global	(cm ⁻¹)	ab initio	tran	lev	J_{max}	dark	rms *	0-0	
				(CRDS						
	133	37B	5919.160	5919.114	433	264	38	0	7.5	0.046	_
	411	38B	5947.070	5946.296	294	179	34	0	8.5	0.774	
\top	034	58A	6046.076	6044.711	135	77	43	1	14.8	1.365	
	105	39B	6063.922	6063.118	531	265	43		3.3	0.804	
	510	59A	6100.216	6099.285	22	17	31	1	10.2	0.931	
	133	41B	6124.287	6124.998	507	338	44	1	6.1	-0.711	
	232	60A	6154.702	6155.528	479	227	49		6.6	-0.826	
	331	42B	6198.534	6197.503	115	80	25	0	4.5	1.043	
	025	44B	6305.047	6303.590	734	368	40		7.5	-0.543	
	124	65A	6343.983	6343.946	46	31	42		20.7	0.037	
	501	45B	6355.722	6354.702	506	271	35	1	9.7	1.020	
	430	66A	6365.264	6365.588	53	36	31		201	-0.324	
	223	46R	6386.996	6388.120	596	284	37		5.4	-1.124	
	044	69A	6506 129	6505 560	304	147	<u>4</u> 9	0	36	0 569	
	421	50B	6567.841	6567.979	270	169	36		010	-0.138	
	205	51B	6586 966	6588 945	419	220	35	2	10.2	-1 979	
	143	53B	6716 539	6717 496	717	220	33 37			-0.957	
	520	55D 76Δ	6751 246	6751 218	836	511	33	3	85	0.028	
	242	70A 77A	6764 789	6765 487	0.50	511	33 46	5	0.5	-0.698	
	035	57R	6805 /87	6805 133	508	248	33	0	10.2	0.070	
	511	59B	6981 870	6980 684	161	126	25	0	37	1 186	
	233	60B	6990.068	6990 224	231	168	25	1	72	-0 156	
	125	64B	7130.813	7133.306	289	171	33	4	4.8	-2.493	
	153	67B	7286.580	7288.175	213	135	25	1	5.0	-1.595	
	601	71B	7394.801	7393.589	213	126	31	1	5.1	1.212	
	351	72B	7446.067	7445.558	144	96	23	*		0.509	
	045	73R	7452.322	7452.810	88	39	23	2	14.3	-0.488	
	351	76B	7578.828	7577.974	146	93	30	3	7.5	0.854	
	243 2	80B	7686.114	7687.224	198	92	30	2	13.6	-1.110	
	271	82B	7739.623	7741.147	135	83	26	3	7.9	-1.524	
	405	86B	7860.077	7863.318	210	121	26	- 1	13.7	-3.241	HITRAN meting 2014

668 new results

*	in	10-3	cm ⁻¹
---	----	------	------------------

Label v ₁ v ₂ v ₃	N global	E obs (cm ⁻¹)	Pred ab initio	Nb tran	Nb lev	J _{max}	Nb dark	rms *	O-C	
			(CRDS						
223_1	100Aø	6026.084	6026.132	551	366	24	1	5.0	-0.048	
025	107Aø	6213.492	6213.564	498	292	29	0	7.5	-0.072	
501	111Aø	6276.706	6276.706	601	390	32	2	10.2	0.000	
223_2	114Aø	6325.213	6325.377	505	325	27	1	5.4	-0.164	
610 ?	126Aø	6566.635	6566.992	352	247	33	1	4.4	-0.357	
502 ?	128Aø	6613.688	6613.519	211	156	21	0	6.3	0.169	
035 ?	137Aø	6784.839	6784.872	399	241	23	2	3.8	-0.033	
Tot				5772	4018		13			

686 new results

Label V1V2V3	N global	E obs (cm ⁻¹)	Pred ab initio	Nb tran	Nb lev	J _{max}	Nb dark	rms *	O-C	
	0		(CRDS						
223_1 025	40B 43B	5983.636 6151.385	5983.981 6151.656	356 416	190 220	27 31	3 1	4.9 7.9	-0.345 -0.271	
501 223 2	45B 46B	6182.300 6225.299	6182.510 6225.195	353 183	194 116	30 22	2	13.1	-0.210 0.104	
Tot				1673	972		7			
										HITRAN meting 2014

	Label	N global	E obs (cm ⁻¹)	Pred ab initio	Nb tran	Nb lev	J _{max}	Nb dark	rms *	O-C	* in 10 ⁻³ cm ⁻
4,	v1v2v3	giobai	(em)	(CRDS			uark			
\forall	025	107Aø	6054.647	6054.917	746	389	29	2	6.0	-0.270	
	223_2	112Aø	6168.355	6168.759	471	289	25	1	5.4	-0.404	
	205	135Aø	6628.146	6628.424	632	244	24	3	4.0	-0.278	
					1049	922	-	0			
			8	68 ne	ew r	esu l	lts				
	Label	N	E obs	Pred	Nb	Nb	Imax	Nb	rms *	0-C	
	v ₁ v ₂ v ₃	global	(cm ⁻¹)	ab initio	tran	lev	• max	dark	11105		
					CRDS						
	223_1	41B	5964.753	5964.974	315	168	25	2	6.7	-0.221	
	501	46B	6195.369	6195.282	344	191	27	2	6.9 10.5	0.087	
	515 205	48D 51R	0240.484 6457 448	0240.429 6457 352	289 151	159 244	27	1	10.5	0.055	
	143	51D 54B	6535 823	6536 070	324	194	30	1	3.0 4 2	-0 247	
	035	57B	6713.422	6713.434	188	118	28	1	3.1	-0.012	
	Tot				2645	1603		15			

			888	new	resi	ilts				
	Label	N	E obs	Pred	Nb	Nb	I	Nb	rms *	0-C * in 10 ⁻³ cm ⁻¹
	V 1 V 2 V 3	global	(cm ⁻¹)	ab initio	tran	lev	Jmax	dark		<u> </u>
				C	CRDS					
$\mathbf{\Psi}$	025	44B	5982.657	5984.439	507	283	35		-	1.782
	430	65A	6011.487	6011.836	32	21	37			0.349
	501	45B	6012.227	6013.048	566	313	38	1	9.5	0.821
	214	66A	6048.271	6047.101	184	92	38			-1.170
	115	46B	6073.575	6072.132	599	307	35			-1.443
	016	71 A	6244.102	6245.001	89	49	42			0.899
	205	51B	6273.575	6270.604	659	330	37	2	6.3	-2.971
	304	73A	6297.404	6296.358	131	104	43			-1.046
	233	54B	6392.891	6392.213	344	191	33	2	9.3	-0.678
	035	58B	6555.813	6556.786	574	310	37			0.973
	134	82A	6593.628	6592.661	352	162	48	2	10 /	-0.967
	511	59B	6610.079	6611.039	255	164	35	2	18.4	0.960
	233	60B	6643.808	6642.897	364	233	34			-0.911
	125	64B	6797.736	6796.461	389	213	30	2	7.3	-1.275
	431	66B	6826.395	6825.511	183	109	25	1	3.7	-0.884
	305	71B	7012.075	7009.092	252	158	29	2	9.2	-2.983
	017	73B	7101.159	7101.475	206	128	28	0	0 0	0.316
	045	74B	7115.051	7115.370	133	101	27	0).)	0.319
	441	86B	7505.893	7503.402	75	48	23	0	16.4	-2.491
	163	90B	7632.176	7629.530	222	131	30	1	9.5	-2.646
	027	96B	7752.035	7752.696	136	79	26	2	9.5	-0.673
	0111	101B	7910.411	7908.838	80	58	21	1	8.1	-1.573
	Tot				6785	3852		19		
	All six I	sotopes			27540	16349				

HITRAN meting 2014

% of recent results from CRDS

Specific case of ¹⁶O₃

210 vibrational levels predicted up to 8000 cm⁻¹

Number of analyzed bright levels :89

Number of darks levels 42 tot:131

cm⁻¹

Percentage : 62% total; 91 % up to 4000

HITRAN meeting 2014

Information

All these results , added to older ones are included in the S&MPO (Spectral and molecular properties of ozone).

Two recent publications :

Ozone spectroscopy in the electronic ground state: High resolution spectra analyses and update of line parameters since 2003, J.Q.S.R.T 130 (2013) 172-190, A.Barbe, S.Mikhailenko, E.Starikova, M-R De Backer,D. Mondelain *et al*

S&MPO . An information system for ozone spectroscopy on the web. J.Q.S.R.T 145 (2014) 169-196 Y.Babikov,S.Mikhailenko, *HITRAN Imeeting 2014* A.Barbe, VI.G Tyuterev

Acknowledgements

Semen Mikhailenko and Serguei Tashkun (IAO SB RAS, Tomsk, Russia) for their contribution to this presentation; ANR ozone IDEO FI 07215-01-01; LEFE chat ; VAMDC European contract; SAMIA cooperation between CNRS and RFBR (Russie);

and the audience for their attention !

HITRAN meeting 2014