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Abstract—The growing heterogeneity and decentralization in
the modern computing paradigm of edge-cloud continuum in-
troduces new constraints on storage systems, such as storage
type, associated processors, privacy, scarce resources, compliance,
GDPR and geographical restrictions. While existing distributed
data and object stores can ensure data availability and fault-
tolerance, they are not flexible or dynamic enough to address
these diverse set of constraints. In this paper, we introduce
a modular policy-driven data placement framework, CATER,
designed to seamlessly integrate with existing storage systems and
overcome the aforementioned limitations. CATER formulates the
data placement problem as an optimization model, incorporating
data collocation and hardware constraints. We integrated a pro-
totype of CATER with Apache Ozone and conducted experiments
and simulations. Results show a 23% improvement in data
placement while respecting 100% of the constraints.

I. INTRODUCTION

As the proliferation of edge devices continues to acceler-
ate, the need for an efficient and adaptive data storage and
placement framework becomes increasingly vital. In contrast
to cloud computing, edge computing exhibits unique attributes
that give rise to distinct data placement challenges and ne-
cessitate innovative and adaptive solutions. These characteris-
tics include: low latency, proximity to data source, resource
constraints, dynamicity, heterogeneity, stricter privacy and
compliance requirements.

Our research has emanated from a large-scale research
project that created a platform for data processing and artificial
intelligence using network-edge computing. A core element of
such an edge platform is a fault-tolerant storage system, with
an underlying distributed architecture and advanced replication
techniques [1]. Data may be stored as user-friendly files, fixed-
size blocks, or objects with additional metadata. An edge
storage solution must be able to address these heterogeneous
storage type requirements.

Furthermore, edge clusters store data of diverse applications
on multiple nodes leading to numerous constraints going
beyond throughput [2]. For example, due to data sovereignty
and GDPR, restrictions on physical storage location may
arise [3]. The desire to optimize performance may result in
requiring nodes with specific compute architectures, e.g. GPU
or FPGA. To improve safety against side channel attacks [4]
and to apply contractual obligations in multi-tenant settings,
data owners may impose restrictions on data collocation.

These additional constraints must be met without compro-
mising existing mechanisms for robust storage through repli-

Fig. 1. Toy Example. A sample set of applications and datanode definitions.

cation, and while respecting the provider-specific objectives
of storage systems to maintain a high level of efficacy and
performance or to minimize energy consumption.

To establish the need for a novel dynamic data placement
framework in modern computing paradigms, we present a sim-
plified example in a smart chip manufacturing factory floor [5]
that produces chips for various competing vendors. Assembly
lines are serviced by Edge Micro Datacenters (EMDC) [6]
for processing and storage of data. These systems can be
considered a small set of computers behaving as a distributed
computing cluster, often comprising of 4-32 individual com-
puting nodes. The applications of various vendors on these
EMDC’s may have constraints like reluctance to share disks
containing their integrated circuit designs. A particular set of
application requirements and state of datanodes will result in
multiple possible data placement solutions. For simplicity, let’s
assume that each datanode would have sufficient space to store
all applications together. Figure 1 lists various compute prox-
imity and privacy requirements, e.g., Application 1 requires an
ARM processor to process Qualcomm’s data, hence it must be
placed on Node A (the only node with ARM). Intel and AMD
applications restrict their data to be collocated with each other.

Assuming the objective of the storage provider is to maxi-
mize their energy savings by minimizing the number of active
nodes, this example environment with all its constraints, leads
to 27 feasible solutions in total. Three of these solutions are:

One application per node (Figure 2a): As there are four
applications and four nodes, a naive solution is to put each
application on a separate node in a way that doesn’t violate
any constraints. (E.g., 1→ A, 2→ B, 3→ C, 4→ D)

Move application 3 to node A (Figure 2b): As 3 can



(a) All applications on
separate nodes.

(b) Energy saved as one
node is inactive.

(c) All constraints met
with two nodes.

Fig. 2. Three possible solutions for the simplified data placement problem.

run on any hardware and node A meets the rest of the
requirements, moving 3 to A will free up node C, which can
go to sleep mode and save energy, until a new application or
data movement requires it to be reactivated.

Use only nodes A and B (Figure 2c): Placing Intel’s data
on node B provides the best solution that meets all criteria
and uses only two nodes. Reducing active nodes further will
violate collocation constraints.

Physically separating data provides security to a level
beyond what software isolation mechanisms offer. Another
example that reinforces the need for strict data collocation
policies is an EMDC in a hospital, running applications and
storing data from distinct parties, including patient medical
records, hospital administration records, various medical in-
surance companies and device monitoring services.

These real-world scenarios provide a sense of the motivation
for providing a solution for data placement framework and
algorithms that can respect diverse constraints including data
collocation and hardware proximity.

This paper presents CATER, a novel modular poliCy-bAsed
daTa placEment fRamework, that offers a unique view and set
of features to distinguish distributed data stores by allowing
them to expose a range of sophisticated placement strategies in
a dynamic heterogeneous environment. The specific research
contributions of this paper are as follows:

• Design of a data placement framework, that can operate
in an external and loosely-coupled manner with existing
storage systems, and thus can be easily enhanced without
changing the underlying system.

• An optimization model for the provider-defined objective
of minimizing the number of active datanodes. Reducing
active nodes leads to lower energy consumption for
the edge servers [7]. The problem is formulated as an
Integer Linear Program and solved using a Constrained
Programming with CP-SAT solver [8].

• A heuristics algorithm for real-time data placement. This
runs, after the initial optimal placement, to efficiently
handle the modifications in the applications and con-
straints, and to reduce data movement between datanodes.

• A prototype implementation of CATER and integration
with Apache Ozone [9]. This demonstrates the practical

feasibility of our solution and allows us to evaluate the
performance of the proposed placement algorithm.

The subsequent sections of the paper present the related
work (Section II), reference architecture (Section III), prob-
lem definition and formulation (Section IV), implementation
(Section V), and evaluation (Section VI).

II. RELATED WORK

Data placement has generally been considered a sub-task
of the workload placement problemm, which has been shown
to have a significant impact on workload execution [10].
However, with the explosive increase in data volume and the
advent of the Edge computing paradigm (where data takes
precedence over compute), data placement has emerged as
a separate scheduling task with its own distinct challenges.
Specifically, the data placement problem differs from workload
placement in the following ways:

• Data Locality: While mission-critical applications may
suffer from network delays if workloads are located
far away, e.g., in the cloud, the impact is much more
significant for data. Hence, it is of key importance to
minimize data transfer across the network by placing
data close to the computing resources that need it, thus
reducing latency, especially significant when the data
volume is high [11].

• Consistency: Data is generally stored with multiple repli-
cas. This requires ensuring that distributed copies of data
remain consistent and coherent in the face of concurrent
updates and access.

• Scalability: Handling data placement strategies that scale
with an increasing volume of data and system nodes.

• Data Privacy: Managing data placement to comply with
privacy and security regulations; ensuring sensitive data
is stored appropriately [12].

• Heterogeneity: In addition to the same heterogeneity
experienced by processing and compute, storage also
faces significant other diverse constraints in terms of
storage types, media, data types, storage formats, tier-
ing, protocols, and storage models [13]. This makes the
problem distinct enough to inspire data specific solutions
and algorithms for data placement.

The rest of this section presents data storage and placement
solutions that focus on specific objectives.

A. Data Storage Frameworks Targeting Performance

CoHadoop [14] proposed a technique to collocate the related
data on the same set of datanodes. This technique is developed
as an extension to Hadoop and focuses on a major performance
bottleneck of Hadoop which is the ability to collocate related
data on the same set of nodes. This technique requires input
from the applications that some of the files are related and are
supposed to be processed together.

To improve the job run-time, Tula [15] proposed a block
placement technique and disk latency-aware balancer which
ensures that low-latency disks get more blocks, in comparison
to high-latency disks, for reduced overall disk latency, thus



leading to improved job run times. Liu et al. proposed a group-
based replica placement policy [16] for large-scale geospatial
3D raster data, to optimize the locations of the replicas, with
the aim of reducing the network overhead and improving the
cluster performance.

We note that these research contributions focused on im-
proving performance of a data store, mostly Hadoop, rather
than the problem of constraints-based data placement.

B. Data Storage Frameworks Targeting Sensitivity

HadoopSec [17] presents a sensitivity-aware data placement
strategy for Hadoop using a machine learning-based approach
for secure data placement. It was suggested that companies
are concerned with building a single large cluster with data
of multiple projects due to security vulnerabilities and privacy
invasion by malicious attackers and internal users. HadoopSec
also uses a rack-awareness script that utilizes the available
information to find the affinity levels of nodes.

HadoopSec 2.0 is an extension of HadoopSec [18] that
uses a prescriptive, adaptive, and intelligent system to identify
patterns in the input data and group those with similar security
concerns. Similarly, Sensitive Data Detection (SSD) is a
framework proposed for identifying the sensitivity of data to
be stored in Hadoop [19].

HadoopSec and HadoopSec 2.0 use data sensitivity-based
constraints. In contrast, CATER deals with a wider variety
of collocation constraints, and also datanode location, disk
space on node, space demand of applications, and the node’s
architectural specification. This set of constraints can be easily
extended, and, while currently CATER is implemented for
Ozone, it is designed to be easily integrated with other storage
systems, without being intimately tied to just one system.

III. REFERENCE PLACEMENT ARCHITECTURE

Our constraints-based data placement algorithm has been
developed and implemented as an external component, follow-
ing the modern application development style of Kubernetes
and microservices. This loosely-coupled relationship between
storage and placement component will make it easier to
maintain and to update the placement algorithms, without
changing the underlying storage system.

This component is part of the BRAINE system for enabling
Edge AI [20], within which it interacts using APIs to retrieve
application data constraints and policy information (forming
the data management framework) and adapt the algorithm
output to impact workload placement on edge nodes. Our data
placement component interacts specifically with a front-end
for specifying workloads and constraints, and a policy manager
for storing constraints.

Figure 3 illustrates the workflow process, showing the
individual steps involved. Users provide blueprints for the
applications and associated requirements and data restrictions
(Step 0). Blueprints are stored in a service registry and policy
manager so that they can be modified and used for deployment
when desired. Subsequently, a user requests to schedule an
application (Step 1). If there are data placement constraints,

Fig. 3. Deployment Workflow.

step 2 initiates the data placement process, leading to the
subsequent steps 3-9, as labelled in Figure 3.

Note that the workload and data volume may or may not
be deployed on the same compute node, depending on the
solutions found by the algorithm and the restrictions provided
by the user or platform. In the event that the workload and data
are not located on the same node this will not affect workload
functionality as it is supported by the system architecture, but
it may impact data access latency.

IV. DATA PLACEMENT PROBLEM AND SOLUTION

The modular nature of our data placement framework (Sec-
tion III) makes it agnostic to the design of the placement
algorithm and the objectives of a storage provider. For ex-
ample, a provider may use the framework to run an algorithm
that minimizes: (i) Latencies in storage access, (ii) Energy
consumption, (iii) Storage cost, e.g., by allocating cheaper
storage first, (iv) Bandwidth consumption, or the distance
between data source and datanodes.

To demonstrate the efficacy of our placement framework,
we formulate a novel optimization model that solves the data
placement problem and minimizes the number of actively
used nodes and consequently reduces energy consumption
and carbon footprint. The model incorporates a diverse range
of data collocation and hardware-related constraints. In the
remainder of this section, we present our system model,
formulate an optimization model to solve the problem, and
design a heuristics algorithm for real-time computation.

A. System Model

We consider an ecosystem with a set of data storage nodes
(denoted by D) each with a certain storage space available
(denoted by Tj for node j). Datanodes are managed by a
physically distributed but logically centralized storage system
that has a global view on the system. A set of applications
(denoted by A) require a certain amount of storage volume



TABLE I
NOTATION USED IN THE OPTIMIZATION MODEL.

Symbol Description
INPUTS
A Set of applications that require storage volumes
D Set of datanodes
Ri Number of replicas required for application i
Tj Total storage space available on datanode j
Vi Volume size needed for application i
Uxy Binary variable for collocation restrictions. 1 means x and y

cannot be collocated
Cij Binary representing if application i is compatible with node j
OUTPUTS
Pj Binary variable to determine whether datanode j is powered-on

(has an assigned application)
Bij Binary value determining if application i is assigned to node j

(denoted by Vi for application i) and must be placed on a
data node with sufficient storage space.

For fault-tolerance, an application may request multiple
replicas (denoted by Ri for application i). Applications may
also have certain hardware requirements, e.g., type of storage
device or presence of a particular CPU or GPU on the
datanode. We call this requirement, node compatibility. An
application i is compatible with node j if j meets all its
hardware requirements (Cij = 1).

Finally, applications may have data collocation restrictions.
If an application x cannot share a node with y due to privacy
or regulatory requirements, we set binary variable Uxy = 1.

B. Problem Formulation

Table I provides description of all the variables used in the
equations below. The objective of our optimization model is
to minimize the number of nodes while respecting all the user
constraints and requirements.

minimize
∑
j∈D

Pj (1a)

subject to∑
j∈D

Bij = Ri ∀ i ∈ A (1b)∑
j∈D

Bij · Vi ≤ Tj ∀ j ∈ D (1c)

Bij ≤ Cij ∀ i ∈ A, j ∈ D (1d)
Bxj + Uxy ·Byj ≤ 1 ∀ x ∈ A, y ∈ A, j ∈ D (1e)
Pj ≥ Bij ∀ i ∈ A, j ∈ D (1f)

where, Pj is a binary variable that indicates whether node j
is active or not.

Constraint 1b ensures that the required number of replicas
for each application are created on separate datanodes. Con-
straint 1c guarantees that a datanode does not allocate more
storage space than it has. Constraint 1d restricts allocation of
applications to only the compatible datanodes. Constraint 1e
ensures that data of applications that cannot be collocated is
placed on separate nodes. Constraint 1f marks a datanode as
active if an application is assigned to it.

Algorithm 1: Data Placement Heuristics.
Input: Application (X), Request, Current State
Output: New State

if Request == ”Add Application” then
New State =
ADD APPLICATION(X, Current State)

else if Request == ”Remove Application” then
New State = Current State.remove(X)

else if Request == ”Add Constraint” then
if X cannot be served by its current node then

Current State =
Current State.remove(X)
ADD APPLICATION(X, Current State)

else
New State = Current State # No action.

else if Request == ”Remove Constraint” then
New State = Current State # No action.

Time scale of optimization: Our optimization problem is
an integer linear program (ILP) with binary decision variables.
Hence the problem is NP-complete [21]. However, when
solving the problem in real-time, the scale of the system, e.g.,
number of datanodes or application requirements, may lead to
slow computation, possibly impractical for deployment in a
dynamic environment. To tackle such environments, heuristics
can be applied to reduce the computation time.

Another variable is the cost of data movement, which is
an expensive operation [22] and may lead to an unstable or
unprofitable system. One approach is to add a penalty term
in the objective (Equation 1a) and factor in the current node
assignment of applications. As this solution will lead to higher
computation times, we instead define heuristics that make
informed decisions when responding to state changes.

C. Heuristics Algorithm

When a state changes in the storage system, a decision has
to be made by the placement algorithm. State changes are
categorized as, adding an application to the system, adding
constraints to applications, removing or relaxing constraints,
and removing an application. Furthermore, the algorithm could
either ignore the change, modify the state with a good feasible
action, or find the optimal solution.

Our proposed heuristic (Algorithm 1) works by character-
izing the change, exploring the type of decision to apply, and
finding the best way to apply that decision. Moreover, we run
the optimization model periodically or after a certain number
of changes to bring the system back to optimality.

Below we use the toy example from Figure 2 to describe
how the algorithm handles various changes and applies differ-
ent actions. Note that a combination of changes, e.g., adding
multiple applications or constraints, is handled by solving
them sequentially using the steps explained below.

1) Adding a New Application: Algorithm 2 presents the
heuristics involved in calculating the new state.



Algorithm 2: Heuristics to Add an Application.
Input: Application (X), Current State
Output: New State

F ← List of Available Datanodes
Remove nodes from F that fail sanity checks.
if X requested an isolated node then
F ← F −Active Nodes.;

for j ∈ F do
if X has privacy conflicts with applications on j
then F ← F − j;

if X has hardware conflicts with j then F ← F − j;

if |F | == Rx then Assign X to F;
New State = Current State.add(X) ;

if |F | − |Inactive Nodes| ≥ Rj then
F ← F − Inactive Nodes;

Sort F by amount of storage space available.
j ← The first node with sufficient storage space for X.
Assign F [j, j +Rx] to X.
New State = Current State.add(X)

Modify the state: We first find a list of compatible nodes
with enough storage space and not serving an unshareable
application. The list is further narrowed down by excluding
inactive nodes, unless all feasible nodes are inactive. Finally,
the nodes are sorted by amount of available space and the one
with lowest but sufficient space is selected.

For example in Figure 2, assume 2c to be the current state
and a new application (App 5) with organization X’s data
needs to be added. Node B is excluded as it conflicts the
privacy constraints. Nodes C and D are excluded as they are
inactive. Node A is thus chosen to serve Application 5. The
state of the system is modified accordingly.

Note that a chosen solution may be sub-optimal and moving
some applications may lead to optimality. However, this is
avoided to reduce the data movement cost (Section IV-B).

Optimize the state: Executing the optimization model is
deferred, unless the heuristics cannot find a feasible solution.

2) Adding a Constraint:
Ignore the change: In some cases, it might be possible

to not react to a new constraint when the change does not
invalidate the current solution. For example, in Figure 2,
assume (2a) is the current state and a new constraint is added
that prohibits data of application X to be placed on the same
node as application Y . This requirement does not invalidate
the current placement and is ignored.

Modify the state: If adding a constraint to an application
invalidates its current placement, we recalculate its placement.
This is done by first performing the application removal and
then application addition steps to determine another node.
The removing here refers to logical steps taken by the data
placement algorithm and the application is not physically
moved in the storage system until the final decision is reached.

For example, in Figure 2, assume (2b) is the current state
and a new constraint is added such that Application 4 cannot

be placed on Node D. As this invalidates the current solution,
Application 4 is first removed and Node D is set as inactive.
Node A and D are excluded due to constraints. Because node
C is inactive, and node B is already serving an application,
node B is chosen for Application 4.

Optimize the state: Executing the optimization model is
deferred, unless the heuristics cannot find a feasible solution.

3) Removing an Application or Constraints:
Ignore the change: As ignoring an application removal will

not invalidate the current state, this is always the chosen course
of action. Note that the system state may become sub-optimal
but to avoid frequent data movement, such actions are deferred
until the next periodic run of the optimization model.

V. PROTOTYPE IMPLEMENTATION

This section describes our prototype implementation of
CATER. Note that a storage system that intends to use an
external placement framework, such as CATER, must be able
to communicate with the framework e.g., through API calls.
Hence, a few modifications may be required for the storage
system if its incapable of making such calls. We choose
Apache Ozone for integration with CATER and describe the
necessary modifications. In this section, we also explain the
implementation of the data placement framework and the
placement algorithm.

A. Ozone Modification
We opted for Apache Ozone as it is a distributed object store

that can manage both small and large files alike. Unlike HDFS,
Ozone separates namespace management and block space
management. The namespace is managed by a daemon called
the Ozone Manager (OM) whereas the Storage Container
Manager (SCM) manages the block space. Ozone makes a data
placement decision when it receives a request to store a file
or object. By default, Ozone randomly selects nodes for data
placement. We modify this behaviour to implement CATER by
calling an external API (Section V-B). The API call returns the
list of datanodes on which the application’s data can be placed
to satisfy the specified constraints. An external API approach
allows re-use of this component when integrating with other
data stores.

The Ozone implementation details are depicted in Figure 4.
The OM component receives requests to store files. OM
forwards the request to the SCM as a block allocation request.
The SCM forwards this request to the Block Manager (BM)
component [9]. We modified the BM to invoke the external
placement API which returns a list of nodes to be used for
placement. The BM uses this list to send a file-creation request
to the Container Manager (CM). The CM creates the blocks
on the selected nodes to store the files.

Occasionally Ozone might change the location of the file.
For example, because of the recommendation of the load
balancer component, it may change the locations of files to
maintain a balanced state. Such activities are handled by an
alert to CATER via the API and receiving updated instructions.
CATER may also be given an up-to-date map of the desired
allocation to be considered as an input.



Fig. 4. Ozone Internal Working and Calling Placement Framework.

B. Placement API Implementation

CATER is implemented as an external REST API. API
requests detail the required action and pass on information
on the current node state. The API obtains information on
application constraints via a database (key-value store). Using
the current state and the constraints, the framework creates the
list of the nodes for the request.

The framework supports stateless and stateful modes for
maintaining the system state. In stateless mode the framework
expects the storage system to maintain the current state and
pass it along with each request. Whereas in stateful mode, the
framework maintains the current allocation state itself. The
trade-off among the two modes is between bandwidth and
instantaneous access to up-to-date state. A storage provider
may choose a mode based on their preferences.

The API requires an application server such as Apache
Tomcat [23]. Our prototype stores the information in a key-
value store. This key-value store keeps a record of constraints
for all applications and the current application placement on
different nodes. The Placement API uses these two pieces of
information to create a list of nodes for the allocation of the
current request.

The placement algorithm (Section V-C) is implemented in
Python. The data placement API framework is written in
Flask, which is a micro web framework written in Python.
An example call to the ADD APPLICATION function of
heuristics as given in Algorithm 1 looks like the pseudo-code
fragment in Listing 1.

e n d p o i n t = ’ p l a c e m e n t . a p i : 8 0 / per form ’
p l a c e m e n t r e q u e s t = { ’ a p p l i c a t i o n ’ : ’2 ’ , ’ o p e r a t i o n ’ : ’ Add App l i ca t ion ’ ,

’ n o d e s t a t e ’ : {
’ a ’ : {’ t o t a l s p a c e ’ : 4 0 0 , ’ a v a i l a b l e ’ : 2 0 0 , ’ hardware ’ : ’ x86 ’ , ’ apps ’ : [ ’ 1 ’ ]} ,
’ b ’ : {’ t o t a l s p a c e ’ : 2 0 0 , ’ a v a i l a b l e ’ : 2 0 0 , ’ hardware ’ : ’ARM’ , ’ apps ’ : [ ’ ’ ]} ,
’ c ’ : {’ t o t a l s p a c e ’ : 2 0 0 , ’ a v a i l a b l e ’ : 2 0 0 , ’ hardware ’ : ’ x86 ’ , ’ apps ’ : [ ’ ’ ]} ,

}
}
r e s p o n s e = r e q u e s t s . p o s t ( e n d p o i n t , j s o n = p l a c e m e n t r e q u e s t )

Listing 1. Example Call to Placement API in Stateless Mode.

The API also supports the other three operations discussed
in Algorithm 1 i.e. Remove Application, Add Constraint, Re-
move Constraint. The API supports both GET and POST
HTTP methods. The POST method handles the stateless mode

and expects the current state of the nodes along with other
inputs while the GET method handles the stateful mode. The
response to each API call is an updated node state, similar to
the one shown in Listing 1.

C. Placement Algorithm Implementation

After processing the REST API calls, the data placement
framework forwards the request along with the current state
to the placement algorithm which in our case is either the
optimization model or CATER heuristics-based algorithm.
Note that the modular structure of the proposed solution along
with common API definitions allows for easily updating or
replacing the placement logic without making any changes to
the overall system. This approach also allows the usage of
multiple placement algorithms running concurrently where a
storage system and the platform provider can request a solution
based on a particular approach.

The placement optimization model (Section IV-B) is imple-
mented using OR-Tools, an open-source optimization library
developed by Google [24]. The optimization model is an
integer program, implemented in Python and solved using
Constrained Programming with Satisfiability methods (CP-
SAT) solver from OR-Tools.
CATER heuristics algorithm is also implemented in Python

and solves the same problem with same input using the mech-
anism defined in Algorithm 1. In cases where CATER requires
optimization, it calls the optimization module described above.

VI. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed solution,
we built an event-driven simulator and conducted various
experiments. We also integrated our prototype implementation
with Apache Ozone (Section V) to validate and evaluate the
proposed framework in a real-world deployment.

A. Simulation Setup

Our simulation setup and parameters are derived from the
requirements of the BRAINE Edge platform and its industrial
use case [25]. The platform consists of cutomizeable, small
form-factor EMDCs, specifically designed for Edge environ-
ments. The design is modular, with x86 CPU’s, ARM CPU’s,
FPGA’s, GPU’s, and NvME storage available to populate each
system slot. The EMDC backplane connector includes both
a PCIe interface and 25G Ethernet links to connect system
slots together, and also connect to the edge network. [26].
The BRAINE EMDC supports anywhere from 8 to 24 slots,
which influences the number of nodes we will define to
evaluate CATER’s performance. To meet the requirements
of the factory use-case, and to generate diverse meaningful
evaluation results, we assume six ARM and six x86 nodes.

We consider 50 applications of varying sizes with 30
hardware-agnostic applications and 10 of them requiring an
ARM node and x86 node each. These applications represent
workloads running as docker containers (or Kubernetes pods)
in the BRAINE EMDC, with each docker image either com-
plied for x86, or ARM, or both processor types. In BRAINE’s
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Fig. 5. Simulation results averaged over multiple runs. Unlike Ozone default, CATER and Optimal satisfy all application requirements. In comparison to
Optimal, CATER uses more nodes but improves computation time and application movement.

industrial use case for example, each robot on an assembly
line has its own container, and storage requirements. The
application and storage requirements of each robot may differ,
thus a set of 50 applications with a subset of them with certain
placement constraints is similar to the scenario encountered in
the BRAINE use case [25].

For collocation constraints, we consider three classes, low-
constrained, medium-constrained, and high-constrained appli-
cations that can be collocated with 80%, 70%, and 50% of
all applications respectively. These numbers are chosen to
simulate and analyze various scenarios that may arise in a
real-world deployment.

To demonstrate the impact of various system changes
(Section IV-C), we start from a blank state with no active
applications and conduct the experiments in three phases:

Adding applications: In Phase 1, we sequentially add all
50 applications to the environment while assuming that 10 out
of 50 applications have collocation constraints.

Adding constraints: In Phase 2, we evaluate a highly-
constrained system by sequentially increasing the number of
applications with collocation constraints from 10 to 50.

Removing applications: In Phase 3, we sequentially reduce
applications until all have left the system.

We repeat the above experiment 10 times by varying appli-
cation specifications using weighted uniform distributions and
compare three algorithms.

• Optimal: For reference, we solve the optimization model
(Section IV-B) for each step in the experiment.

• CATER: Solves the placement problem using the pro-
posed heuristics (Section IV-C) and when the heuristics
fails, it runs the optimization model to get feasible and
optimal solutions.

• Default: A default Ozone placement algorithm without
privacy handling functionality. Allocates nodes consider-
ing storage space requirements of applications.

We compare these approaches using the following perfor-
mance metrics:

• Nodes used: Number of active nodes that have one or
more applications placed on them at a given time.

• Unsatisfied applications: Number of applications that
were placed on a datanode that violates any of their
requirements e.g., hardware or collocation constraints.

• Computation time: Amount of time taken to solve the
placement problem.

• Movements: The number of times applications were
moved from one datanode to another.

The simulations are carried out on a Linux virtual machine
with 2.2GHz 8-core Intel CPU and 64GB RAM. The results
are presented and analyzed in the following section.

B. Simulation Results

Figure 5 shows the results of our experiments, comparing
CATER with the optimal result and the default Ozone solu-
tion. As a general observation, we can see that CATER and
Optimal both managed to respect all of the application con-
straints and they did so while using fewer storage nodes than
Ozone default. CATER outperformed Optimal in regards to
execution time, but also more significantly, saw a substantial
reduction in the number of data movements, while satisfying
all application constraints.

Inspecting the number of nodes used, we see that Default
always allocated most nodes, due of its lack of a specific
objective other than capacity. In fact it occupied all available
storage nodes for 32% of the experiment duration. In contrast,
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Fig. 6. CATER vs Optimal. Analyzing optimization needs of CATER.

both CATER and Optimal minimised the number of nodes
used. Optimal fared best overall, at the cost of moving data
between nodes at each step in comparison to CATER.

When CATER was unable to find a solution it invoked
Optimal, evident from the decrease in nodes used between
steps 70-80. This manifested in corresponding peaks between
movements and computation time, with matching reduction in
datanodes used. Figure 6 shows this for a single experiment,
evident in which are the aligned changes in number of nodes
and computation time.

Quantifying the cost of data movement between storage
nodes, we captured the differences between the three ap-
proaches. As expected, the Default did not move any ap-
plications. Optimal exceeded CATER in data movements
by a factor of 19 which also resulted in 19 times higher
CPU execution. Evident from the plots is that the problem
complexity is at its peak towards the end of Phase 2 due to the
combination of the number of applications and constraints. As
Optimal is designed to minimize the number of active nodes,
it searches the whole problem space and tries to find any
possible combination which can reduce the active nodes. On
the other hand, CATER focuses on finding a good feasible so-
lution based on the current system state. Consequently, CATER
results in fewer data movements and lower computational cost.

As the constraints are being removed in Phase 3, we notice
that the advantage of Optimal over CATER in terms of the
number of occupied nodes increased. This is because CATER
did not see fit to make any alterations since all the constraints
were still being satisfied.

One can conclude from the results that CATER is an attrac-
tive choice when seeking to respect application constraints,
even when the set of applications and constraints is highly dy-
namic. Using the optimal approach resulted in a substantially
higher number of movements which is detrimental to an Edge
storage system and if not handled carefully can lead to delays
for applications in accessing their data. Over the experiment
lifetime, Optimal occupied just 1.6 fewer storage nodes
compared to CATER, reinforcing the clear benefit of CATER
as an efficient solution for constraint-based edge storage.

C. Scalability Analysis

We note that CATER calls on the optimization model only
when it is not possible to accommodate a new request using
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Fig. 7. Scalability analysis of optimization model.

its heuristic. In fact, the processing time for the optimization
model is quite fast, as this subsection addresses empirically.
During these experiments, we fixed the number of nodes to
24 as referenced in an Edge project as being typical for an
EMDC [20]. We evaluated up to 240 highly-constrained ap-
plications (as defined in Section VI-A) and varied applications
with collocation constraints from 10% to 50%.

The results are depicted in Figure 7, based on an average
of five runs. We observe that even for the most-constrained
case and 240 applications, the optimization model solves the
problem in less than 18 seconds. Given that CATER calls
the optimization model quite infrequently, we posit that the
computation time is not significant enough to hinder the
scalability of our solution in practical deployments.

D. Prototype Implementation Results

We perform these experiments using our modified Apache
Ozone deployment that interacts with the placement frame-
work. With these experiments we aim to demonstrate the fea-
sibility of the proposed framework and evaluate the algorithms
in a real-world deployment. We created up to 40 applications
in same ratio of constraints as discussed in Section VI-A.
and compared Optimal and CATER, based on the the CPU
utilization and API response time. The response time is the
time elapsed from when Ozone invokes call a framework API
until it receives the response.

The experiments were performed on a machine with 16-core
CPU and 64GB RAM, with 8 containers running an Ozone
datanode each. In each experiment, a different number of
total applications is added to the system and the performance
metrics are gathered using Linux utility top and time functions.
Table II presents the results for each experiment.

We observed that, CATER consumed lower CPU than
Optimal to perform the same operations. This is due to
the higher computational requirements of Optimal. The
response time of both approaches grew quite considerably as
the load on the system increased, but with a markedly lower
value for CATER. Note that in accordance with the simulation
results (Figure 5), both Optimal and CATER satisfied all the
application constraints.

To analyze the response times further, we looked at one
particular experiment where a total of 20 applications were
added to the system. Table III shows the API response time
for each application separately. Results show that the response
time for Optimal increased with the application number.



TABLE II
CATER VS. OPTIMAL PERFORMANCE IN REAL DEPLOYMENT ON OZONE.

Metric Algo. Total Added Applications
1 5 10 20 40

% CPU CATER 20.5 35.0 70.2 74.3 79.5
Used OPTIM 27.2 45.1 80.4 84.3 93.5

Response- CATER 0.27 0.85 1.56 2.99 5.80
Time (s) OPTIM 0.28 0.87 1.70 3.86 9.80

TABLE III
CATER VS. OPTIMAL API RESPONSE TIME PER APPLICATION ADDED.

App # CATER OPTIM App # CATER OPTIM
1 0.14s 0.14s 11 0.14s 0.17s
2 0.13s 0.14s 12 0.14s 0.19s
3 0.14s 0.14s 13 0.14s 0.19s
4 0.14s 0.15s 14 0.15s 0.20s
5 0.14s 0.15s 15 0.14s 0.21s
6 0.15s 0.16s 16 0.14s 0.21s
7 0.14s 0.16s 17 0.15s 0.22s
8 0.14s 0.16s 18 0.14s 0.23s
9 0.14s 0.17s 19 0.14s 0.24s

10 0.14s 0.17s 20 0.15s 0.26s

This is due to the fact that as the nodes are populated with
applications, it increases the complexity and the search space
for Optimal as it tries to minimize the objective function and
meet all constraints (Section IV-B). Whereas, for CATER the
response time remains fairly consistent for each application.

VII. CONCLUSION

Emerging data-intensive applications and diverse resource
environments are expected to induce constraints on where
application data is stored. These restrictions may be privacy-
driven, regulatory, or related to hardware compatibility. Cur-
rent storage solutions focus on robust and highly-efficient
storage but for the most part neglect application-level con-
straints. In this paper we presented CATER as an external
service that runs optimization models or heuristic algorithms.
We evaluated our solution through simulation as well as
live Apache Ozone deployment. We demonstrated that our
proposed approach is able to respect constraints and quantify
the cost in terms of resources and performance. CATER used
23% fewer datanodes on average when compared to the default
Ozone algorithm, while satisfying all constraints and with only
a modest amount of data movement between nodes.
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