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Key points 79 

• There is an urgent need for accurate biomarkers in patients with steatotic liver 80 

disease, to stage and grade fibrosis and inflammation, for monitoring disease 81 

progression and for improving drug development and approval pipelines.  82 

• The rapid development and decreased costs of high-throughput omics 83 

technologies in combination with excellent computational power has created a 84 

golden opportunity for new types of biomarkers which reflect biological disease 85 

processes and can be combined in multiplex systems of molecules. Multi-omics 86 

may thereby facilitate an era of accurate, personalised diagnostics. 87 

• Heterogeneity in the development and progression of steatotic liver disease can 88 

be disentangled by the interplay between host genetics, transcriptomics, 89 

proteomics, metabolomics and lipidomics on the one hand, and gut microbial, viral 90 

and fungal metagenomics and meta-transcriptomics on the other hand. 91 

• Hypothesis-free approaches have revealed the potential of omics technologies for 92 

the discovery of liver disease biomarkers and have proposed many more 93 

candidate biomarkers than the traditional hypothesis-driven studies. However, few 94 

of these omics-based biomarker candidates are rigorously tested in independent 95 

cohorts, and none have yet been implemented in clinical practice.  96 
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Summary 97 

The rising prevalence of liver diseases related to obesity and excessive use of alcohol 98 

is fuelling an increasing demand for accurate biomarkers aimed at community 99 

screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognosis 100 

and prediction of treatment efficacy. Breakthroughs in omics methodologies and the 101 

power of bioinformatics have created an excellent opportunity to combine clinical 102 

needs with technological advancements. Omics technologies allow for advanced 103 

investigations into biological processes from the genes to transcription and regulation, 104 

to circulating protein, metabolite and lipid levels, as well as the microbiome including 105 

bacteria, viruses and fungi. We consequently find ourselves in a period of rapid 106 

progress in technology and bioinformatics that may allow for development of precision 107 

biomarkers for personalised medicine. However, there are important barriers to 108 

consider in omics biomarker discovery and validation, including the use of semi-109 

quantitative measurements from untargeted platforms, which may exhibit high 110 

analytical, inter- and intra-individual variance. Standardising methods and the need to 111 

validate across diverse populations, presents a challenge, partly due to disease 112 

complexity and the dynamic nature of biomarker expression in different disease 113 

stages. Lack of validity causes lost opportunities when studies fail to provide the 114 

knowledge needed for regulatory approvals, all of which contributes to a delayed 115 

translation of these discoveries into clinical practice. While no omics-based biomarkers 116 

have matured to clinical implementation, the extent of data generated through omics- 117 

technologies holds the power of hypothesis-free discovery of a plethora of candidate 118 

biomarkers to be further validated. To explore the many opportunities of omics 119 

technologies, hepatologists need detailed knowledge of commonalities and 120 
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differences between the various omics layers, and both the barriers to and advantages 121 

of these approaches.  122 
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Introduction 123 

More than one third of the adult population have steatotic liver disease either metabolic 124 

dysfunction associated steatotic liver disease (MASLD), alcohol-related liver disease 125 

(ALD) or a combination of these (MetALD).(1-3) Patients with progressive disease 126 

experience high liver-related morbidity, extrahepatic complications and premature all-127 

cause mortality.(4, 5) There is consequently an urgent need for accurate risk 128 

stratification and effective treatments that modify the natural course of disease.(6, 7) 129 

Progression of steatotic liver disease follows a profibrotic path, resulting in pivotal liver-130 

related events that critically affect prognosis. It is consequently important to explore 131 

biomarkers that predict precursors of cirrhosis and portal hypertension in the form of 132 

significant and advanced fibrosis, these disease stages predict later liver-related 133 

events. Relevant biomarker endpoints for how patients function, feel, and survives are 134 

decompensation, acute-on-chronic liver failure, hepatocellular carcinoma, and 135 

death.(8-10) 136 

The performance of existing and future biomarkers depends on their intended context 137 

of use and validation (Figure 1, Table 1).(11) General practitioners and hepatologists 138 

managing steatotic liver disease from ALD, MetALD and MASLD particularly lack tests 139 

for accurate diagnosis of significant fibrosis (≥F2) and steatohepatitis, for prognosis, 140 

monitoring and prediction, and for evaluating the efficacy of interventions.(8, 12) Yet, 141 

traditionally, the diagnostic accuracy of a biomarker is evaluated by area under the 142 

receiver operating characteristic (AUROC), sensitivity specificity and predictive 143 

values. However, these performance characteristics depend on disease prevalence in 144 

the studied population.(13) Consequently, future biomarkers need to be tailored to the 145 

intended population and tested in cohorts which reflect the appropriate disease 146 

prevalence. 147 
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This review will explore the advantages and limitations of exploring omics technologies 148 

for biomarker discovery across the spectrum of steatotic liver disease. We highlight 149 

the state of the art of individual omics technologies: genetics, transcriptomics, 150 

proteomics, lipidomics, metabolomics, metagenomics, metatranscriptomics, viromics 151 

and mycobiomics. These technologies have been selected from a wider list of currently 152 

available omics technologies as they represent to most common examples of the 153 

promises and obstacles of omics based biomarkers for clinical hepatology. 154 

Opportunities for omics technologies 155 

A new era of biomarker development has been revealed in recent years thanks to high 156 

throughput omics technologies combined with increasing computational power and the 157 

ability of running artificial intelligence and machine learning methods with routine 158 

hardware and software. This major advancement allows for hypothesis-free testing of 159 

thousands or even millions of analytes.(14, 15) Multi-omics is thereby able to 160 

disentangle complex molecular interplays between host genes, gene transcription, 161 

proteins, metabolites and lipids, in addition to interactions between the host and 162 

microbiome consisting of bacteria, viruses and fungi (Figure 2). Recent development 163 

and promising biomarker targets from omics technology are highlighted in Table 2. 164 

Omics measurements consequently result in a multitude of candidate biomarkers.(16-165 

19) 166 

To enable the accurate separation of patients with progressive liver disease from those 167 

with non-progressive disease, researchers aim at understanding disease 168 

heterogeneity and pathophysiology through host-gut-environment interactions.(20) 169 
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In the struggle to identify effective anti-fibrotic interventions for MASLD and ALD, 170 

omics-based biomarkers that reflect biological fibrotic processes may be used to 171 

identify future drug targets, thereby abating the frequent failures of phase III clinical 172 

trials.(21) There is a similar search for accurate biomarkers to reduce clinical trial 173 

screening failures.(17) Finally, non-invasive biomarkers to replace liver biopsy as the 174 

surrogate endpoint would effectively allow for shorter, less costly trials and reduced 175 

patient discomfort.(22)  176 

The analysis costs of genetics, transcriptomics, proteomics, lipidomics, metabolomics, 177 

metagenomics and metatranscriptomics are decreasing thanks to technological 178 

development and an increase in the capacity of high-throughput omics platforms.(23, 179 

24) We therefore expect multi-omics approaches to become increasingly accessible 180 

for clinical management of liver disease patients over the next decade.  181 

Barriers to omics technologies 182 

Omics-based biomarkers offer more opportunities for discovery than traditional 183 

biomarkers, which quantify a low number of analytes, often only one. However, no 184 

omics-based biomarker has penetrated from development to implementation. This 185 

shortcoming can be attributed to several barriers across different omics technologies, 186 

including 1) technological maturity, 2) cost, 3) analytical validity, 4) untargeted 187 

coverage and 5) semi-quantitative measurements, which are usually laboratory or 188 

instrument specific. 189 

Except for genetics, omics technologies are in their infancy (Figure 3). This immaturity 190 

results in several obvious limitations, most notably that the evidence base remains 191 

incomplete. 192 
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Technological development is moving rapidly from high cost and low throughput to low 193 

cost and high throughput.(15, 25) However, finite budgets remain a challenge for the 194 

maturation of omics-biomarkers. Current cost pressures create a trade-off between 195 

analyte depth and abundance versus sample throughput and sample size.(18) The 196 

limited ability to robustly detect low-abundance analytes generates ‘technological 197 

bias’.(26) Omics studies typically aim for great depth to discover low-abundance 198 

biomarkers, but this means that investigators cannot afford as many samples, thus 199 

risking spurious findings. The high-dimensional nature of omics data also requires 200 

extensive computational protocols and processing power, further increasing time 201 

usage and costs.(27) However, increasingly higher demands for omics technologies 202 

within the healthcare system will lead to the development of routine protocols and 203 

market competition, driving costs downward. 204 

Omics measurements can be divided into two analytical methods: non-targeted and 205 

targeted. Non-targeted omics takes a hypothesis-free approach to the semi-206 

quantitative analysis of a very large number of molecules, often aided by machine 207 

learning and other advanced bioinformatics. Non-targeted omics is consequently 208 

highly suited for discovery of new biomarkers. However, this approach faces three 209 

major challenges: 1) semi-quantitative measurements are relative and, as such, study 210 

specific. Findings are therefore difficult to replicate in external validation. Candidate 211 

biomarkers detected by untargeted approaches must therefore be validated using a 212 

targeted platform, such as enzyme-linked immunoassay (ELISA) for absolute 213 

concentrations.(28) 2) Non-targeted measurements are more prone to analytical 214 

biases such as batch effect and variations related to sample handling and 215 

processing.(29) 3) Non-targeted approaches usually require more complex and 216 

therefore less standardised- bio-informatics analyses pipelines. 217 
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The targeted approach uses quantitative assays to measure concentrations of 218 

predefined panels of up to a few hundred molecules.(30, 31) Targeted omics can be 219 

done, for example, by using calibration curves and spike-in of internal standards to 220 

allow for absolute quantification and is well suited to either searching for high-221 

abundance biomarkers or for hypothesis-driven biomarker evaluation. Discovery of 222 

novel targets and pathways is especially useful in drug discovery and searching for 223 

disease aetiology; however, its application in routine analysis in the clinic is still being 224 

evaluated. 225 

Different omics technologies each have their own set of specific advantages which 226 

hold great potential for personalised and precision medicine (Figure 4; Table 2). 227 

Nevertheless, in order to bring omics-based biomarkers into the clinic, the current 228 

process involves transforming them into analytically reproducible assays that can be 229 

validated across laboratories and cohorts while also meeting regulatory 230 

requirements.(32, 33) These requirements can be insurance against hurried, spurious 231 

findings but can also limit the speed of discovery and development to validation. 232 

The subsequent sections delineate the technical complexities and biomarker 233 

prospects across diverse omics disciplines. 234 

Genetics 235 

Genetics is the most widely investigated omics technology, linking single nucleotide 236 

polymorphisms to cirrhosis, hepatocellular carcinoma and steatosis, particularly for 237 

MASLD and ALD.(24, 34, 35) From family and population-based studies, the 238 

heritability of MASLD ranges from 20–70% depending on ethnicity and how MASLD is 239 

diagnosed.(36) For the heritability of ALD, studies suggest alcohol use disorder 240 

heritability ranges from 30–50% and ALD-related cirrhosis ranges from 21–67%.(37) 241 
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However, disagreement within the field exists on the proportion of the genetic variance 242 

for ALD that is independent of the genetic predisposition to alcohol dependence.(37, 243 

38) 244 

Genotyping of individuals for genome-wide association studies (GWAS) is typically 245 

performed using microarrays to measure common variants, due to the higher cost of 246 

next-generation sequencing (NGS). NGS methods encompass: 1) whole exome 247 

sequencing, which targets coding regions with functional significance and 2) whole 248 

genome sequencing, which captures nearly every genotype across the genome, both 249 

coding and non-coding, including rare variants. Whole genome sequencing is 250 

expected to become the method of choice in the future for untargeted discovery as 251 

costs continue to decrease.(39) NGS methods can be effective tools for precision 252 

diagnostics in rare monogenic forms of liver disease. Patients who remain 253 

undiagnosed despite comprehensive clinical workups may benefit from genomic 254 

analysis to improve disease prognostication. Examples include ABCB4, ABCB11 and 255 

ATP8B1 to distinguish idiopathic cholestasis.(40)   256 

Large-scale GWAS and meta-analyses have elucidated the genetic architecture of 257 

steatosis, steatohepatitis, and fibrosis from ALD and MASLD, using liver biopsies, 258 

imaging, elastography, liver enzymes and electronic health records. These efforts 259 

have identified risk loci common to ALD and MASLD, including PNPLA3, TM6SF2, 260 

GCKR, SERPINA1 and MBOAT7.(41-45) Novel protective loci include HSD13B17, 261 

MTARC1, GPAM and PSD3.(35, 45, 46) 262 

Genetic risk scores (GRS) combining multiple genome-wide significant SNPs 263 

(P<5×10−8) can be used for risk prediction and stratification. A higher GRS, including 264 

PNPLA3, TM6SF2 and HSD17B13, confers a 12-fold increased risk of cirrhosis and a 265 
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29-fold increased risk of hepatocellular carcinoma in the European population.(47) 266 

Likewise, a higher GRS derived from PNPLA3, TM6SF2, MBOAT7, GCKR and 267 

HSD13B17 amplifies the effect of liver steatosis on the risk of subsequent hepatic 268 

events.(48) Despite considerable interest, the predictive value of a given GRS over 269 

simple biochemical biomarkers has been marginal. Combining PNPLA3, TM6SF2, 270 

HSD17B13 and MBOAT7 with metabolic traits slightly increases the area under the 271 

curve for diagnosing advanced liver fibrosis, from 0.75 to 0.80 in ALD patients.(49) 272 

Prediction of a 10-year cirrhosis risk by adding GRS to the APRI score (age platelet 273 

ratio index) increased the prognostic information by less than 5% and improved the C-274 

index from 0.804 to 0.809 in the UK Biobank.(50) This limited impact is likely due to 275 

the fact that clinical features from five to ten years before disease explain more 276 

variance compared to the few SNPs with small effect sizes identified so far.(51) Yet 277 

there is promise: a study based on UK Biobank data demonstrated that a GRS 278 

improves risk stratification and diagnostic accuracy, particularly in subgroups of 279 

individuals with diabetes, obesity or a fatty liver index above 60. This suggests that 280 

integrating a genetic risk GRS with clinical non-invasive markers holds the potential to 281 

refine individual risk prediction for severe liver disease, especially in individuals at risk 282 

for MASLD.(52) 283 

Polygenic scores have achieved greater predictive power than GRS for complex 284 

diseases by including hundreds to thousands of SNPs, rather than being restricted to 285 

only those that reach genome-wide significance (P<5x10-8).(53) Polygenic scores 286 

developed for liver diseases are still under development and require well-powered 287 

GWAS studies, validated in independent study populations of varying ancestries to 288 

ensure generalisability. 289 

Transcriptomics 290 
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The transcriptome is the sum of all RNA transcripts of a tissue or blood sample, 291 

commonly used to examine gene expression. Circulating RNA species include several 292 

classes of shorter RNAs, with microRNAs (miRNA) being by far the most studied. 293 

Quantification of miRNAs can be done by sequencing or reverse transcription 294 

quantitative polymerase chain reaction (qPCR), often in targeted or multiplexed 295 

panels. These methods are sensitive, often quantitative, and relatively low in cost. In 296 

contrast, sequencing all small RNAs is considerably more expensive but allows for 297 

measurement of other types, such as PIWI-interacting RNAs, transfer-RNA fragments, 298 

ribosomal and nucleolar RNAs, each of which contains tens to thousands of different 299 

species.(54, 55) Small RNAs in circulation constitute a novel source of MASLD-related 300 

biomarker candidates. For example the hepatocyte enriched miR-122, and other 301 

miRNAs (miR-34a, miR-193a).(56-58) Once a promising RNA biomarker has been 302 

identified, the RNA can be detected with high sensitivity and accuracy based on 303 

targeted RT-qPCR or microfluidics-based nano-sensors. 304 

The extracellular RNAs are an especially interesting subtype of circulating 305 

miRNAs.(59) They are enclosed in vesicles or are protein bound, which protects them 306 

from degradation and facilitate their transport, in turn allowing for cell-to-cell paracrine 307 

communication or long-distance signalling.(60) Liver-derived miRNAs, as extracellular 308 

RNA, appear to be important regulators of metabolic disease, particularly MASLD and 309 

steatohepatitis.(56) Recent studies show that levels of liver-derived miRNAs are 310 

modified by weight-loss or insulin-sensitising treatments.(61, 62)  311 

MiRNAs also show promise as biomarkers for ALD, MASLD and steatohepatitis, 312 

prominently miR-34a, which is part of the NIS2+ score.(63, 64) In addition, both miR-313 

193 and miR-122 plasma levels are found to be increased in MASLD patients with 314 

steatohepatitis and advanced fibrosis.(65, 66) The liver-specific miR-122 also predicts 315 
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type 2 diabetes and decreases following weight loss.(61, 62) Yet low miR-122 is a 316 

marker of poor prognosis in patients with cirrhosis.(67) Therefore, it appears that the 317 

liver’s miR-122 expression is temporary, from upregulation as steatohepatitis 318 

progresses, to a decline in cirrhosis patients. A similar non-linear pattern is seen for 319 

body weight, and naturally limits the potential use of miR-122 as a diagnostic 320 

biomarker, but points toward a possible role in causal pathways. It also illustrates the 321 

importance of consecutive recruitment and inclusion across the disease spectrum in 322 

biomarker research. 323 

Microbiome 324 

The human body is home to a large number of microbes, on all skin and mucous 325 

surfaces.(68) The vast majority reside in the gut, home to ten trillion bacteria.(69) The 326 

gut microbiota exerts important effects on host physiology by producing diverse 327 

metabolites, modulating the immune system and preventing infection by 328 

pathogens.(70) The gut microbiota can profoundly affect the liver, as microbial 329 

products can enter the blood circulation and thereby encounter the liver as the very 330 

first organ.(23, 71, 72)  331 

Shotgun metagenomic sequencing evaluates both the species-level taxonomic profile 332 

and the functional profile of the microbiome but requires resource-heavy sequencing 333 

equipment and advanced bioinformatics. The cheaper amplicon sequencing of the 334 

bacterial 16S ribosomal RNA genes enables determination of a taxonomic profile 335 

without large computational resources, but with lower resolution, at the genus or family 336 

level. Metatranscriptomics quantifies microbial RNA to describe how gene 337 

transcriptional activity across bacterial species can change according to health or 338 

disease.(73)  339 
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Several studies have shown alterations in the gut microbiome of patients with cirrhosis 340 

or steatohepatitis from ALD or MASLD, compared to healthy individuals.(74-77) The 341 

more severe stages of liver disease are associated with dysbiosis, decreased 342 

abundance of potentially beneficial families such as Ruminococcaceae and 343 

Lachnospiraceae, and increase in potentially pathogenic families such as 344 

Enterobacteriaceae and Bacteroidaceae.(23, 78) One metagenomic study in 345 

decompensated cirrhosis patients found elevated levels of Veillonella and 346 

Streptococcus species, but reduced levels of butyrate-producing commensal bacteria, 347 

including Faecalibacterium prausnitzii and Coprococcus comes.(77) Other studies 348 

have demonstrated increased epithelial permeability in liver disease patients, which 349 

allows for translocation of bacterial components and metabolites, such as 350 

lipopolysaccharides, secondary bile acids and pathogen-associated molecular 351 

patterns, fuelling liver inflammation and fibrosis.(79-82) Consequently, microbial 352 

derived products can be important biomarkers of treatment effects, as in the RIFSYS 353 

trial, where circulating levels of the microbiome-generated metabolite trimethylamine-354 

N-oxide remained stable in cirrhosis patients treated with Rifaximin-α, but increased 355 

in placebo treated patients.(83) 356 

While accumulating evidence indicates that microbiota disturbances play a role in the 357 

development and progression of liver diseases, the biomarker potential of the gut 358 

microbiota is still in its infancy. 359 

Viromics and mycobiomics 360 

The virome and mycobiome, though considered premature omics fields, exhibit 361 

promise in light of advancing technologies, making them interesting for future 362 

exploration.  363 
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The gut virome mainly consists of bacteriophages (viruses infecting bacteria) and 364 

viruses infecting eukaryotic cells. Viruses are the most diverse genetic elements on 365 

earth, which poses several technical challenges for virome research.(86)  366 

Due to the small genome size of viruses compared to prokaryotes and eukaryotes, the 367 

enrichment of faecal samples for viruses before DNA and RNA extraction is 368 

recommended. A reverse transcription step is necessary to also capture RNA viruses. 369 

As bacteriophages are highly diverse and highly individual specific, they are not 370 

sufficiently represented in databases. Hence, a de novo genome assembly approach 371 

and a viral identification method that is, at least partially, independent of databases is 372 

crucial to also identify novel viruses from sequencing data.(87)  373 

Recent developments in bioinformatics tools have allowed for improved identification 374 

(geNomad), taxonomic classification (vConTACT2), host prediction (iPHoP) and 375 

functional annotation (Cenote-Taker2) of viral sequences, advancing the field to help 376 

identify associations between the virome and human health and disease.(88-92) 377 

Viruses can directly affect the human host by killing target cells such as hepatocytes 378 

or by modulating the immune system. The human host can also be indirectly affected 379 

by the gut virome through the effect of the gut phages on the composition and function 380 

of the gut bacterial community.(93)  381 

Changes in the gut virome have been linked to the presence and severity of liver 382 

diseases such as MASLD, ALD, alcohol-related hepatitis and cirrhosis.(94-97) The 383 

high inter-individual variability of the human gut virome, however, limits the 384 

identification of robust viral biomarkers.(98) Overall, viral diversity might be a better 385 

biomarker than a set of individual viruses, but viral diversity lacks disease specificity, 386 

similar to dysbiosis.(94, 96) Other approaches which overcomes the low prevalence 387 
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of individual viral genomes are to look for virome biomarkers of higher taxonomical 388 

orders (e.g. families) or grouping bacteriophages by their bacterial host, but these 389 

more diverse groups of viruses will be more difficult to detect using qPCR tests.(99) 390 

Finally, viral-encoded genes might be less individual specific, for example, toxins or 391 

auxiliary metabolic genes, and hence better suited as biomarkers. These genes could 392 

be horizontally transferred to their bacterial hosts, thus altering the functional 393 

capacities of the targeted bacteria and thereby indirectly affecting the human host.  394 

The fungal fraction of the microbiome, the mycobiome, are important in maintaining 395 

intestinal homeostasis and immunity. But although there has been advancement in the 396 

field of mycobiome research, this omics technology is still in its infancy. Early studies 397 

have shown that Candida overgrowth can be linked to ALD and cirrhosis, and that 398 

elevated levels of anti-S. cerevisiae antibodies, cross-react with Candida albicans 399 

found to associate with increased mortality in ALD.(100-102) 400 

Proteomics 401 

Proteins are the most prominent source of biomarkers and drug targets in human 402 

diseases. Routine laboratory testing is dominated by proteins (42% of all analytes) and 403 

as of 2017, 75% of drugs approved by the US Food and Drug Administration (FDA) 404 

targets human proteins.(28) Aminotransferases, albumin, bilirubin and coagulation 405 

factors are examples of routinely measured proteins for assessing liver function.  406 

Proteomics seeks to map all proteins in a biological sample, with existing platforms 407 

quantifying hundreds to tens of thousands of proteins, depending on the sample type. 408 

Several cell type-resolved human liver proteome maps have been published, 409 

establishing a robust reference for the abundance of over ten thousand proteins in 410 

human liver cells.(103) Mass spectrometry (MS)-based proteomics and affinity-based 411 
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proteomics are commonly used technologies for the large-scale study of proteins. MS-412 

based proteomics is the most comprehensive approach and the gold standard for the 413 

quantitative profiling of proteins, post-translational modifications and protein-protein 414 

interactions.(104) MS-based proteomics is an ideal approach for unbiased protein 415 

profiling across all organisms and sample types (Table 2). The untargeted approach, 416 

also known as discovery proteomics, offers a global view of the proteome and is often 417 

used for uncovering novel biomarkers. However, the lack of standardisation as well as 418 

its semi-quantitative nature is a significant hurdle for discovery proteomics – values 419 

obtained in a specific study can typically only be compared horizontally to other 420 

samples acquired within the same study. In contrast, targeted MS-based proteomics 421 

focuses on specific proteins of interest, providing precise quantification, validation and 422 

clinical applications. 423 

Recent technological advancements in MS-based proteomics, including the 424 

automation of sample preparation, improvements in liquid chromatography, as well as 425 

the development of novel MS acquisition methods and sophisticated informatics 426 

solutions, have made it feasible to generate thousands of proteome profiles in a single 427 

clinical study. (105) This further translates into reproducible and robust results. At the 428 

same time, researchers have started to apply machine learning-based classification 429 

algorithms to demonstrate the predictive or discriminative power of proposed 430 

biomarkers in liver disease.  431 

Affinity-based proteomics platforms such as Olink and SomaScan have been widely 432 

applied in human plasma and serum studies.(45, 106, 107) These platforms offer 433 

measurements for dozens and up to thousands of proteins, with standardised 434 

workflows allowing for value comparison across studies. However, studies comparing 435 

the two platforms have highlighted inconsistencies in quantification for a significant 436 
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number of proteins.(108) Consequently, findings from these platforms often require 437 

validation by an orthogonal method, ideally mass spectrometry, which excels in its 438 

specificity of identification and quantification.(109) Other methods include ELISA and 439 

similar techniques, which measure the concentration of a single protein, making them 440 

better suited for biomarker validation and implementation. 441 

The FDA-approved OVA1 test for ovarian cancer serves as an example of a biomarker 442 

identified by MS-based proteomics but which was ultimately developed using 443 

immunoassays. The test consists of a panel of five proteins, four of which were first 444 

published in 2004. Five years later the test received FDA clearance.(110) 445 

More than 200 candidate protein biomarkers for MASLD and 22 for ALD have been 446 

reported, although none have matured into clinical practice.(15, 111-113) The two 447 

most recent proteomics biomarker studies were selected from 2,201 candidate 448 

proteins for MASLD fibrosis and 1,235 candidates for ALD fibrosis, resulting in 8- and 449 

9-protein biomarker panels.(15, 113) Complement component C7 was part of both 450 

panels, while the other proteins differed. Consequently, much work remains to be done 451 

in terms of evaluation of disease specificity and external validation of these signatures.  452 

Metabolomics and lipidomics 453 

The metabolome comprises all small molecules in the human body, originating from 454 

both endogenous and environmental sources, and encompasses a biochemically 455 

diverse array of metabolites such as sugars, lipids, amino acids, fatty acids, alkaloids, 456 

and polyphenols.(114) One example of a lipid metabolite biomarker is 457 

phosphatidylethanol, used to detect alcohol consumption, derived from the trans-458 

phosphatidylation of phosphatidylcholine in the presence of ethanol.(115)  459 
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Humans are thought to contain around 3,000 endogenous or common metabolites 460 

while the plant kingdom harbours around 200,000 metabolites, of which 90% are still 461 

unquantified or unidentified.(114) Metabolomics platforms are usually a combination 462 

of different chemical analyses using mass spectrometry. The platforms detect anything 463 

between 100 and 1000 metabolites, and their quality is based on prior work identifying 464 

the metabolites with pure standards in in-house identification libraries. Public libraries 465 

are available, to characterise molecular features, but they only provide putative 466 

identifications as the certainty is insufficient to derive meaningful conclusions. In 467 

addition, machine learning approaches are used to identify the large number of new 468 

metabolites.(116) MS- and affinity-based metabolomics can detect several thousand 469 

human metabolites, although, as mentioned, the diverse nature of the metabolome 470 

necessitates the use of multiple analytical chemistry techniques (Table 2).(114)  471 

Lipidomics is an especially promising metabolomics technique for biomarker discovery 472 

in steatotic liver disease. In a study of early ALD, the lipidomic signature of ALD 473 

patients began to differ from matched healthy controls as early as minimal 474 

fibrosis.(117) The bioactive lipid classes sphingomyelins and phosphocholines were 475 

downregulated in both liver tissue and plasma with increasing fibrosis stages and were 476 

both diagnostic of significant fibrosis and predicted liver-related outcomes. This finding 477 

was validated in an independent cohort of advanced ALD cirrhosis.(118) Other studies 478 

suggest that lipid panels can predict advanced forms of MASLD: molecular lipids in 479 

blood have shown good diagnostic performance for MASLD and MASH in well-480 

powered studies, with elevated triglycerides and reduced lysophosphatidylcholines 481 

and phospholipids.(119, 120) Interestingly, unsaturated triglycerides are increased 482 

with the presence of the PNPLA3 risk variant.(121) A 10-metabolite panel including 483 

eight eicosanoid molecules predicted advanced fibrosis with an area under the ROC 484 
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curve of 0.94.(122) Finally, recent data suggest that the liver lipidome of patients with 485 

ALD respond differently to acute alcohol intoxication than that of MASLD 486 

patients.(123) This finding indicates that there are likely distinct molecular differences 487 

between the two diseases, which may explain the marked difference in disease 488 

progression and risk of liver-related complications. 489 

The use of metabolomics and lipidomics in hepatology is challenged by specificity, as 490 

most known metabolites have common disease pathways.(124) Furthermore, while 491 

some metabolites are found to be stable, others, such as glucose and cholesterol, 492 

have been shown to have a daily flux or to be affected by diet.(125) Hence, the 493 

establishment of a baseline level is important, especially when measured longitudinally 494 

throughout liver disease progression or regression. 495 

Multi-omics 496 

Clinical studies are increasingly generating multiple omics layers, allowing for 497 

integrated multi-omics investigations of liver disease.(126, 127) Machine-learning 498 

based feature selection from several omics layers can help determine the diagnostic 499 

and prognostic weight of each omics layer, but more importantly, multi-omics 500 

integration can capture disease complexity by addressing biologically relevant 501 

interactions between genes, their expression and their products. Unfortunately, 502 

integrating multiple types of omics remains a computational barrier. Consequently, 503 

current multi-omics studies rarely integrate more than two omics layers, and often 504 

instead interpret the outputs in parallel.(73, 128)  505 

One study of multi-omics integration, performed GWAS in 9,491 MASLD patients and 506 

detected 20 gene variants predictive of steatosis and/or cirrhosis.(45) From this, the 507 

researchers combined GWAS with transcriptomics and proteomics to derive 508 
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expression quantitative trait loci and protein quantitative trait loci in the European 509 

populations. This multi-omics integration resulted in 16 putative genes associated with 510 

273 circulating proteins, enriched in order to enable multiple metabolic and catabolic 511 

processes, including the metabolism of hormones, lipids, alcohol, vitamins, steroids 512 

and monocarboxylic acid. This represents an integrative step forward in understanding 513 

disease mechanisms. 514 

The regulatory landscape from an omics perspective 515 

The regulatory qualification of a biomarker requires thorough planning and 516 

patience.(11) For example, the Enhanced Liver Fibrosis test (Siemens Healthcare) 517 

obtained FDA approval in 2021, with the first core clinical study published in 2004 518 

(Figure 5).(129, 130) The nordicPRO-C3TM biomarker (pro-peptide of type III collagen, 519 

Nordic Bioscience and Roche Diagnostics) took five years to complete assay 520 

development, minimising pre-analytical measurement uncertainty, followed by six 521 

years to create clinical evidence before having a Letter of Intent accepted by the FDA 522 

(Figure 5). 523 

Every year, thousands of papers on biomarkers are published, yet very few enter 524 

clinical practice.(131) This so-called valley of death often happens because the 525 

transition from academic studies to implementation and commercialisation fails.  526 

There are many reasons for the transition to fail. First, understanding the biological, 527 

pre-analytical and analytical factors that contribute to measurement uncertainty is 528 

important.(132) Second, when validating a biomarker, the FDA mandates the 529 

establishment of a predefined hypothesis and statistical analysis plan. Hence, the 530 

distribution of the cohort needs to allow for sufficient statistical power to address the 531 

potential context of use, whether it is diagnostic, prognostic or predictive. The 2016 532 
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BEST (Biomarkers, EndpointS and other Tools) resource from the FDA and National 533 

Institutes of Health Biomarker Work Group provides a notable glossary of biomarker 534 

definitions.(133) These considerations are important in moving from discovery to the 535 

internal and external validation of a biomarker. Third, for a study to adhere to Good 536 

Clinical Practice, regulatory standards, protocols and documents needs to be in place, 537 

describing procedures for sample collection and handling, measurement techniques 538 

and quality assurance systems. Fourth, biomarker measurements need to be 539 

conducted within certified laboratories and the informed consent process should 540 

encompass the explicit acceptance of sample utilisation for research, as well as for 541 

registration and commercialisation. To make a real difference, a biomarker needs to 542 

be implemented on a worldwide platform, and while many biomarkers may be 543 

interesting in a research setting, very few qualify according to the Clinical and 544 

Standards Institute guidelines. 545 

The current failure of omics to transition from academic research to implementation 546 

and commercialisation may be partly due to the untargeted nature of most omics 547 

analyses, rendering them best suited for discovery. But the field also remains 548 

hampered by study designs dominated by retrospective studies without adherence to 549 

regulatory issues.(134) However, the burden is not only on biomarker research and 550 

development units, but also on regulatory agencies such as the FDA and the European 551 

Medicines Agency, which have been slow to adapt their approval procedures to the 552 

large data generated by omics on novel measurement platforms, associated by 553 

advanced biostatistical methods. Only in 2019 was the report from the Head of 554 

Medicines Agencies on Big Data issued, with a subgroup report on Bioanalytical 555 

Omics.(135, 136)  556 
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Conclusion  557 

Omics technologies offer several advantages. They can identify associations between 558 

biomolecules and diseases, uncover underlying mechanisms and identify new 559 

biomarkers with untargeted hypothesis-free or targeted hypothesis-driven 560 

approaches. Despite the growing enthusiasm, we currently find ourselves in an 561 

exploratory phase where there is a lack of sufficient high-quality studies to provide the 562 

conclusive evidence of analytical validity, discovery, development and validation that 563 

would meet the requirements of regulatory authorities. The next five to ten years will 564 

inevitably provide crucial improvements in the evidence base and maturity of multi-565 

omics, allowing for the first omics-based biomarkers to enter into clinical practice as 566 

precision tools for personalised medicine.  567 
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Abbreviations: ALD, Alcohol-related Liver Disease; cACLD, compensated Advanced 568 

Chronic Liver Disease; DC, Decompensated Cirrhosis; ELISA, enzyme-linked 569 

immunoassay; FDA, U.S. Food and Drug Administration; GCKR, glucokinase 570 
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Risk Scores; GWAS, Genome-Wide Association Studies; HSD17B13, hydroxysteroid 572 
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Disease; MAF, minor allele frequency; MetALD, MASLD with increased alcohol intake; 574 

MBOAT7, membrane bound O-acyltransferase domain-containing 7; mRNA, 575 

messenger RNA; miRNA, microRNA; MTARC1, mitochondrial amidoxime reducing 576 

component 1; NMR, Nuclear Magnetic Resonance; NPV, Negative Predictive Value; 577 

PNPLA3, patatin-like phospholipase domain-containing protein 3; PPV, Positive 578 

Predictive Value; PSD3, pleckstrin and Sec7 domain-containing 3; qPCR, quantitative 579 
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Table 1 1018 

Table 1. Biomarker indications and clinical use. 1019 

  1020 

 Diagnostic Prognostic Monitoring Prediction* Surrogate endpoint 

Outcome of 
interest 

Disease present 
or not; disease 
staging 

Development of 
clinical events, 
mortality 

Change in 
disease severity 

Effect of 
treatment 

Substitute for one or 
more clinical outcomes 

Subclasses 
of biomarkers 

Screening 
Susceptibility/ 
risk stratification 

Efficacy of 
intervention; 
pharmacodynamic 
response 

Safety (adverse 
events) 

Reasonably likely 
surrogate endpoint 

Measurement 
timing 

Baseline Baseline Longitudinal 
Baseline, before 
intervention 

Start and end of 
intervention study 

Clinical 
characteristic 

Reflects true 
disease state  

Reflects patient 
or disease 
characteristics 

Biomarker 
changes correlate 
with changes in 
extent or status of 
disease 

Reflects patient 
or disease 
characteristics 

Effect on the surrogate 
endpoint predicts a 
clinical benefit 

Statistics 
used 

Discriminative 
accuracy, 
sensitivity, 
specificity, NPV, 
PPV, calibration 
curves, 
goodness of fit, 
information 
criterium, odds 
ratio 

C-statistics, 
hazard ratio, 
time-dependent 
receiver 
operating 
characteristics 
curve, Aalen-
Johansen or 
Kaplan-Meier 
estimator 

Correlation 
coefficients: 
diagnostic and 
prognostic 
accuracy of 
∆biomarker** 

Treatment effect 
in biomarker 
positive vs. 
biomarker 
negative 
patients if 
patient groups 
have the same 
prognosis 

Correlation coefficients: 
diagnostic accuracy of 
∆biomarker to detect 
change; prognostic 

accuracy of ∆biomarker 

Examples of 
omics-based 
biomarkers 

Proteomics for 
diagnosis of 
ALD fibrosis, 
inflammation 
and 
steatosis(15) 

Genetic risk 
polymorphisms 
for development 
of hepatocellular 
carcinoma in the 
population(47) 

Changes in Lyso-
phosphocholines 
by lipidomics in 
MASLD during 
dietary 
intervention(137) 

A polygenic 
score to predict 
weight loss in 
response to 
physical 
activity(138) 

No omics markers 
approved as surrogate 
endpoints, but single 
molecules may arise 
from omics discovery 

*A prognostic biomarker is used to identify the likelihood of a clinical event in a patient, while predictive biomarkers 
identify patients who are more likely to experience beneficial or adverse effects of an intervention. **∆ means change from 
baseline. Abbreviations: ALD, alcohol-related liver disease; MASLD, metabolic dysfunction-associated steatotic liver 
disease; NPV, negative predictive value; PPV, positive predictive value; ROC, receiver operating characteristics curve. 
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Table 2. Omics based biomarkers in hepatology1021 

Table 2       

 

Specimen Outcomes of interest 
Technology 
(untargeted) Technology (targeted) 

Number of analytes 
(targeted tech.) 

Examples of biomarker 
candidates 

Genetics Whole blood, 
buffy coat 

SNPs, candidate 
genes, GRS,  
polygenic scores 

Whole genome 
sequencing 
 

Microarray-based 
genotyping or whole 
exome sequencing 

>6*106 common 
SNPs (MAF > 0.01) 

PNPLA3, TM6SF2, GCKR, 
MBOAT7, HSD17B13, 

SERPINA1(14, 41, 45, 139) 
Transcriptomics All tissue 

types, 
plasma, 
serum, whole 
blood 

RNA sequences: non-
coding RNA (miRNA, 
long noncoding RNA), 
coding mRNA, steady 
state RNA levels 

Reverse transcription-
quantitative polymerase 
chain reaction. 
Small RNA-sequencing 

Reverse transcription-
quantitative polymerase 
chain reaction 
Targeted sequencing 
panels 

105 miR-34a(140), miR-122, miR-21 

Proteomics All tissue 
types and 
body fluids 

Protein abundance Mass spectrometry, 
Proximity Extension 
Assay (commercialized 
by Olink Explore) and 
SomaScan Assay 
(commercialized by 
SomaLogic) 

Mass spectrometry 
(parallel or multiple 
reaction monitoring). 
Proximity Extension 
Assay (used by Olink 
Target), ELISA 

1 -104 TREM-2 was discovered by single-
cell sequencing, subsequently 
developed into an ELISA 

assay.(141-143) Compliment 
component C7 identified as a 
fibrosis marker in two independent 

biomarker studies.(15, 113) 
Metabolomics 
and lipidomics 

Plasma, 
urine, stool, 
liver, adipose 
tissue 

Metabolite abundance.  
Lipid abundance w.r.t. 
lipid class, lipid 
saturation / 
unsaturation, lipid size 

Gas or liquid 
chromatography 
coupled to mass-
spectrometry 

Triple-quadrupole mass-
spectrometry, 
NMR spectroscopy 

102 -103 Glutamate and glutamine (144) 
Triglycerides, such as 
TG(48:0)(145) and TG(50:2)(117); 
Phosphatidylcholines, such as 
PC(36:4)(146); Sphingomyelins, 

such as SM(41:1)(117, 118) 
The Metabolomics-Advanced 
steatohepatitis fibrosis score 
developed to detect at-risk MASH 

Viromics Stool, saliva, 
plasma, skin 

Viral genomes (DNA or 
RNA) and their 
encoded genes 

Shotgun metagenomic 
sequencing 

Quantitative polymerase 
chain reaction 

Variable (depending 
on sequencing depth 
and sample diversity) 
with limited overlap 
between samples 

None, but bacteriophages which 
target cytolytic Enterococcus 
faecalis could potentially be 
markers of resistance against 
alcohol-induced liver injury.(139) 

Microbiomics Stool, saliva, 
skin, mucosa 

Bacteriomics Shotgun metagenomics 
or amplicon sequencing 

Quantitative polymerase 
chain reaction or 
Antibody test 

100-1,000 species 
per sample, with 105 -
106 genes 

Cytolytic Enterococcus faecalis 

(139) 

Abbreviations: ELISA, enzyme-linked immunoassay; GRS, Genetic Risk Scores; MAF, minor allele frequency; SNP, Single NucleotidePolymorphisms; miRNA, microRNA; NMR, 
nuclear magnetic resonance 
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Legends 1022 

Figure 1. Intended use of biomarkers and the spectrum bias.  1023 

Due to the spectrum effect, diagnostic accuracy for the same biomarker will change 1024 

when tested in populations with different prevalence of disease. Discrete types of 1025 

omics allow biomarkers to be tailored to the different contexts of use and different 1026 

disease spectrums. Plots illustrate variability in sensitivity and specificity, as well as, 1027 

PPV and NPV with disease prevalence in the studied cohort, derived from Usher-1028 

Smith et al.(13). cACLD, compensated advanced chronic liver disease; DC, 1029 

decompensated cirrhosis; F0 – F2, denotes liver fibrosis stage; NPV, negative 1030 

predictive value; PPV, positive predictive value. 1031 

Figure 2. The potential of omics-based biomarkers  1032 

Illustrated by layers of biological signals and the complexity of biological molecules 1033 

within the human body. The environmental signals introduce another layer of 1034 

complexity as individual risk factors of disease. MAF, minor allele frequency; SNP, 1035 

Single-Nucleotide Polymorphism.  1036 

Figure 3. Omics timeline with major scientific and technological breakthroughs, 1037 

using genetics as reference.  1038 

The immaturity of most omics technologies result in a shortage of (a) high-quality 1039 

diagnostic studies, (b) independent validation of novel biomarkers, (c) established cut-1040 

offs for clinical decision making, (d) analytical standardisation. GWAS, Genome-Wide 1041 

Association Studies; PCR, Polymerase Chain Reaction; mRNA, messenger RNA; MS, 1042 

Mass-Spectrometry; FDA, U.S. Food and Drug Administration; NMR, Nuclear 1043 

Magnetic Resonance; miRNA, microRNA; exRNA, extracellular RNA; NASH, Non-1044 

Alcoholic Steatohepatitis. 1045 
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Figure 4. Population-based versus personalized omics biomarkers, promises 1046 

and challenges.  1047 

miR, microRNA. Examples are based on references (64, 117, 147-150)  1048 

Figure 5. Regulatory pathways of three commercial biomarkers  1049 

Illustrating the regulatory timeline of nordicPRO-C3TM, Enhanced Liver Fibrosis test 1050 

(ELF) and FibroScan. Eash timeline shows significant publications and regulatory 1051 

milestones. Please refer to the supplementary materials for specific publications and 1052 

milestones. 1053 

Jo
urn

al 
Pre-

pro
of



Futile referral

F0     –      F2 cACLD DC

Late referral

Clinical performance ofClinical performance of
a biomarkera biomarkerPatient characteristicsPatient characteristicsBiomarker types andBiomarker types and

intention of useintention of use

F0F0 cACLDcACLD DCDC

Futile referralFutile referral

F0F0 cACLDcACLD DCDC

Too lateToo late

F0F0 cACLDcACLD DCDC

Diagnostic

Monitoring

cACLD DC

Clinical performance ofClinical performance of
a biomarkera biomarkerPatient characteristicsPatient characteristicsBiomarker types andBiomarker types and

intention of useintention of use

F0F0 cACLDcACLD DCDC

Futile referralFutile referral

F0F0 cACLDcACLD DCDC

Too lateToo late

F0F0 cACLDcACLD DCDCF0     –      F2

cACLD DC

Clinical performance ofClinical performance of
a biomarkera biomarkerPatient characteristicsPatient characteristicsBiomarker types andBiomarker types and

intention of useintention of use

F0F0 cACLDcACLD DCDC

Futile referralFutile referral

F0F0 cACLDcACLD DCDC

Too lateToo late

F0F0 cACLDcACLD DCDC

F0     –      F2

Liver health tracker

Go to general practitioner?

Refer to secondary care?

Monitor effect of lifestyle 
intervention

Diagnose steatohepatitis
Diagnose cACLD

Intended use of 
biomarkers

Spectrum effect: 
Variability in sensitivity 

and specificity

Citizens at risk 
of liver disease

General practice

Secondary care

Predict development of 
liver-related events

Monitor change in 
disease severity
Measure efficacy of 
intervention

Predict expected effect 
of treatment

Diagnostic

Monitoring

Diagnostic

Prognostic

Monitoring

Prediction

Patient characteristics
Spectrum effect: 

Variability in positive and 
negative predictive value

Prevalence of disease (%)
0 10020 40 60 80

1

25

50

75

100

PPV = 38%
NPV = 98%

Prognostic Intervene in general prac-

tice to improve prognosis?

Prevalence of disease (%)
0 10020 40 60 80

1

25

50

75

100

PPV = 80%
NPV = 88%

Prevalence of disease (%)
0 10020 40 60 80

1

25

50

75

100

PPV = 92%
NPV = 72%

Prevalence of disease (%)
0 10020 60 80

1

25

50

75

100

Sensitivity = 74%
Specificity = 94%

40

Prevalence of disease (%)
0 10020 40 60 80

1

25

50

75

100

Sensitivity = 79%
Specificity = 83%

Prevalence of disease (%)
0 10020 40 60 80

1

25

50

75

100

Sensitivity = 88%
Specificity = 78%

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Jo
urn

al 
Pre-

pro
of



Diet

Antibiotics & 
other  medications

THE OMICS POTENTIAL IN BIOMARKER DEVELOPMENT

Environmental 
Signals

Biological
 Signals

Sociodemographics

Clinical Data

Me3

Metabolomics & Lipidomics
Small molecules & lipids (<1000 Da)

>200,000* molecules

Proteomics & Metaproteomics
>100,000*protein coding genes in the 

human microbiome

Transcriptomics & 
Metatranscriptomics

>40,000 molecules

Genomics & Metagenomics
>6 Million common SNPs (MAF>0.01)

>25,000 protein coding genes

*The technology detects 100s with one platform

Jo
urn

al 
Pre-

pro
of



2015

Global reference 
for human genetic 
variation

2005-2008
Next Generation 
Sequencing

2002
First GWAS 
published

2003
Humane Genome 
Project completed

1995

Bacterial genome 
sequenced

1983
PCR invented

DNA sequencing
1967-1977

1961
Triplet codon

1953
DNA double 

helix structure

Discovery of DNA 
molecule

1869

1988
Human Genome 
Organisation 
(HUGO) founded

Genetics

1994
The term ‘Proteome’ 
coined

2001

Human Plasma 
Proteome Project 
launched

2014
First low-stringency 
drafts of the human 
proteome published

2002
UniProt Consortium 
formed

Proteomics

Clinical maturity

Transcriptomics

1961
mRNA discovery 
published

1993
First microRNA 
described

2001
MicroRNAs 
found in humans

2003
ENCODE: more non-coding 
RNAs than mRNAs

2019

exRNA atlas on RNAs 
in various biofluids

2020
NIS4: biomarker for 
NASH and liver fibrosis

Viromics

1898
Term ‘virus’ 
introduced

1915-17
Discovery of 

bacteriophages

2003
First human fecal virome 
study published

2018
Beginning of Global 
Virome Project

2020

First human fecal virome 
studies in liver disease

Microbiomics

2019
Global reference 
genome catalogue 
of the human gut 
microbiome created

First gene catalogue 
of the human gut 

microbiome 
2010

2008
Human 
Microbiome 
Project launched

2006

First shotgun meta-
genomic study for human 
fecal samples published

1988

The term ‘Metagenomics’ 
was coined

Metabolomics

& lipidomics

1971
First metabolites 
profilling

Human 
Metabolome 

Database 
created

2005

2013
LipidBlast Libraries

2007
First papers on metabo-
lomics in liver disease

2016

Single-cell 
proteomics 
demonstrated

Absolute quantification 
by MS-based 
proteomics 

2004

510(K) MS-based 
protein analysis device 
approved by the FDA 
for clinical use

2013

First MS measure-

ments of a molecule 

1910

1932

Correct structure of 
cholesterol described 

1998
The term 

‘Metabolomics’ 
introduced 

1999

NMR-based meta-

bolomics defined 

2003
Lipid maps 
established
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Me3

Me3

Personalized

Population

Precision

Promise: Population health through the perspective of environmental exposure, 
nutrition and lifestyle. Challenge: Lacks specificity and a complete understanding of 
a healthy (liver) status from the omics perspective. 

Promise: Response-guided therapy and medication on the individual basis. 
Challenge: Individual and daily variations may lead to significant noise level.  

Promise: Stratification of patients to improve outcome of treatment and reduce 
side effects. Monitoring of disease development. Challenge: Translational omics 
research in the clinics is still in its infancy; lack of bench-to-bedside investigations.  

Example 1. miR-34a is part of the NIS2+ score,  used to diagnose steatohepatitis in at-risk patients. Example 2. 
Glucose is commonly  used to diagnose diabetes and determine treatment. Example 3. Plasma alanine 
aminotransferease and aspartate aminotransferase is used individually and as a ratio, in the general practice to 
indicate presence of liver damage.

Example 1. Adding the genetic risk polymorphisms: PNPLA3, TM6SF6, GCKR, and MBOAT7 to known metabolic 
traits aids prediction of outcome. Example 2. Branched-Chain Amino Acids, diacylglycerol, triglyceride, 
phosphatidylcholines, phosphatidylethanolamine, sphingomyelin levels differentiates clinical clusters of people 
with type 2 diabetes  Example 3. Distinct patterns of lipid depletion can be measured in circulation and are 
found to associate with progressive alcohol-related liver fibrosis. 

Example 1. Levels of ceramides are found to link genetic predisposition and dietary habits to cardiometabolic 
disease risk. Example 2. Genetic polymorphy of HSD17β13 as a predictive biomarker for the effect of future 
treatments in liver disease. Example 3. Interleukin 28B gene on chromosome 19 as predictive for the extend of 
treatment needed in patients with hepatitis C infection.
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Me3

Me3

Personalized

Population

Precision

Promise: Population health through the perspective of environmental exposure, 
nutrition and lifestyle. Challenge: Lacks specificity and a complete understanding of 
a healthy (liver) status from the omics perspective. 

Promise: Response-guided therapy and medication on the individual basis. 
Challenge: Individual and daily variations may lead to significant noise level.  

Promise: Stratification of patients to improve outcome of treatment and reduce 
side effects. Monitoring of disease development. Challenge: Translational omics 
research in the clinics is still in its infancy; lack of bench-to-bedside investigations.  

Example 1. miR-34a is part of the NIS2+ score,  used to diagnose steatohepatitis in at-risk patients. Example 2. 
Glucose is commonly  used to diagnose diabetes and determine treatment. Example 3. Plasma alanine 
aminotransferease and aspartate aminotransferase is used individually and as a ratio, in the general practice to 
indicate presence of liver damage.

Example 1. Adding the genetic risk polymorphisms: PNPLA3, TM6SF6, GCKR, and MBOAT7 to known metabolic 
traits aids prediction of outcome. Example 2. Branched-Chain Amino Acids, diacylglycerol, triglyceride, 
phosphatidylcholines, phosphatidylethanolamine, sphingomyelin levels differentiates clinical clusters of people 
with type 2 diabetes  Example 3. Distinct patterns of lipid depletion can be measured in circulation and are 
found to associate with progressive alcohol-related liver fibrosis. 

Example 1. Levels of ceramides are found to link genetic predisposition and dietary habits to cardiometabolic 
disease risk. Example 2 (from oncology). BRCA1 gene mutations are used in ovarian and breast cancers to 
determine treatment. Example 3 (from oncology). BCR-ABL fusion gene is used in leukemia to determine 
treatment and predict response to targeted therapy.
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201920162013

Assay development 
Approximately 5 years

Letter of Intent 
accepted by the FDA

~ 50.000 test results


A) PRO-C3

2018 2022 2024201620102004

Prior development 
and maturity of HA, 
TIMP1 and PIIINP

Approved by the FDA 
(Prognostic marker)

2021

CE mark

B) Enhanced Liver Fibrosis (ELF) test

2021 2023

Prognosis

Diagnosis

Monitoring

20082005

Approved by the FDA
CE mark

C) FibroScan

2003 2019

PRO-C3 > 100 publications

ELF > 300 publications

FibroScan > 4400 publications

2010 2013 2016 2022
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