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Abstract 

This deliverable describes the development of robotic perception algorithms for object 
pose estimation in HumanTech. Object Pose estimation based on camera images as 
input is a key-task for localizing objects for robotic grasping. We first provide an overview 
of the object pose estimation problem and the overall context of the task in the 
HumanTech project with respect to construction material robotic grasping. 
Subsequently, we describe the selected object pose estimation framework for the task, 
the state-of-the-art algorithm ZebraPose developed at DFKI. Finally, we describe the 
object pose estimation task on the HumanTech object of interest category, construction 
bricks. We detail the approach for generating and training our machine learning models 
exclusively on synthetic data and conclude with an evaluation of the brick grasping pose 
accuracy and the next steps for integration of the method on the human-tech robotic 
platform for real-time functionality.   
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The HumanTech project 

The European construction industry faces three major challenges: increase the safety 
and wellbeing of its workforce, improve its productivity, and become greener, making 
efficient use of resources. 

To address these challenges, HumanTech proposes to develop human-centred cutting-
edge technologies such as wearables for workers' safety and support and robots that 
can harmoniously coexist with human workers while contributing to the ecological 
transition of the sector. 

HumanTech aims to achieve major advances in cutting-edge technologies that will 
enable a safe, rewarding, and digital work environment for a new generation of 
highly skilled construction workers and engineers. 

These advances will include: 

● Robotic devices equipped with vision and intelligence that allow them to 
navigate autonomously and safely in highly unstructured environments, 
collaborate with humans and dynamically update a semantic digital twin of the 
construction site in which they are. 

● Smart, unobtrusive workers protection and support equipment. From 
exoskeletons activated by body sensors for posture and strain to wearable 
cameras and XR glasses that provide real-time workers' location and guidance for 
them to perform their tasks efficiently and accurately. 

● An entirely new breed of Dynamic Semantic Digital Twins (DSDTs) of 
construction sites that simulate in detail the current state of a construction site 
at the geometric and semantic level, based on an extended Building Information 
Modelling (BIM) formulation that contains all relevant structural and semantic 
dimensions (BIMxD). BIMxDs will act as a common reference for all human 
workers, engineers, and autonomous machines. 

The HumanTech consortium is formed by 22 organisations — leading research 
institutes and universities, innovative hi-tech SMEs, and large enterprises, 
construction groups and a construction SME representative — from 10 countries, 
bringing expertise in 11 different disciplines. The consortium is led by the German 
Research Centre for Artificial Intelligence’s Augmented Vision department.
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1. Introduction 

 

Human robot Interaction is pivotal in achieving the vision of the HumanTech 

project. The prior deliverable D1.1 went into the details of the HumanTech vision. Robotic 

devices equipped with vision and intelligence are fundamental to safely navigate the 

dynamic and unstructured nature of construction environments.  Intelligent and 

Autonomous robots designed for construction sites will assist human workers, such as 

by transporting or discarding materials. These robots are intended to collaborate with 

human teams and autonomously handle routine tasks like material movement. Human-

robot collaboration encompasses two principal elements: 1) human-robot 

communication and 2) environment perception. The human-robot communication 

facet guarantees that the robot comprehends instructions from the human while 

simultaneously offering insights to the human about its forthcoming activities. 

Environment perception involves using sophisticated Computer Vision algorithms to 

understand and infer surroundings of the robot. 

Because of its dynamic nature, construction environments pose some unique 

challenges. The deliverable D1.1 lists some of the main challenges and motivates the dire 

necessity of human robot interaction in the construction industry. Two of the main 

challenges observed are: 1) The physically demanding nature of the construction 

workplaces i.e., manual material handling, bad work postures etc., lead to multiple 

ailments causing long term effects and 2) increasing labour shortage in the European 

construction industry. 

In line with this, the Work Package 5 (WP5) was created which is intended to deal 

with all tasks related to construction robots and Human robot interaction. Specifically, 

the task 5.4 deals with advance perception with robots. One of the subtasks in this 

relates to a perception and a localization module that estimates high quality, real-time 

locations of the brick in the 3-dimensional world. This information allows a robot to 

automatically grab the brick and hand it over to the human worker. 



 

 
D5.4 - Scientific report on unseen object class and shape estimation for robotic grasping 
  

 
11 

 

. 

Figure 1 – Automatic brick grasping and handover Pilot. 

 

This perception module was developed using a state-of-the-art deep learning 

algorithm which was developed inhouse at the DFKI. This module will be optimized and 

implemented in an embedded processing platform. The processing unit will be 

integrated on a mobile robotic system developed for the HumanTech project, provided 

by partner Baubot. Along with the processing platform an RGB-D sensor (Intel® 

RealSense™ D435i camera) and a gripper will be installed on a robotic arm of the mobile 

robotic system. The automatic grasping and hand-over of bricks is being developed in 

collaboration with our partner SINTEF. This brick grasping and transportation task will 

be demonstrated as part of the pilot in WP7.   

 

1.1. Baubot robotic system 

 

The Baubot mobile robotic system developed for the HumanTech project is a 

mobile robotic platform equipped with an industrial collaborative robot manipulator. 

The robotic system is equipped with various sensor systems that help it in its decision-

making process. The robotic system is built in a modular way where new application use 

cases can be developed independently and integrated into it. This aids in rapid research 

and development along with parallel development cycle for various challenging use 

cases. 
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Figure 2 – Baubot Mobile robotic platform. 

 

Figure 2 shows the Baubot mobile robotic platform with its basic elements. 

Applications involving human robot collaboration can be additionally developed and 

integrated into the platform. The robotic system can take inputs from various external 

applications and perform actions based on the commands that are being passed to the 

robot.  

 

1.2. Gripper and camera on the human-robot arm from SINTEF 

 

Figure 3 shows a 3D-model of the brick gripper. The gripper is meant to grasp a 

brick from a pallet, transfer it safely to a position that is ergonomically favourable for the 

human worker, and finally hand it over. 
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Figure 3 – Gripper with cameras for handing over bricks form a pallet to a worker. 

 

The sensor unit above the gripper is attached to the robot flange. The main 

purpose of the unit is to house the sensors, including a camera used for brick 

identification. In this way, the robot, via manipulation, can bring the sensor to the image 

acquisition location such that the brick is in the field of vision and at the desired distance. 

Once the brick is identified and located, the robot can perform manipulation for gripping 

it. 

Powered by a motor on the backside of the gripper, the two fingers move 

together and apart simultaneously. In the closed position (Figure 3 left) the fingers can 

be moved into the cavities of the brick. Afterwards, the fingers will be moved to the open 

position (Figure 3 right) and secure the brick by applying a constant torque and thereby 

apply a clamping force to the inner walls of the cavities. While handing over the brick, 

the fingers move toward the closed position, releasing the brick, which then hangs freely 

on the fingers and can be taken by a human worker. 
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1.3. 6 Degrees of Freedom (6DoF) Object Pose Estimation 

 

Object Pose Estimation refers to the task of determining the spatial orientation 

and position of an object within an image or a video sequence. This is crucial in 

understanding the three-dimensional (3D) configuration of objects in two-dimensional 

(2D) images. Object pose estimation is a pivotal computer vision task with significance 

in numerous fields, such as Robotics, by enabling robots to perceive and manipulate 

objects effectively; Augmented Reality, for positioning virtual objects accurately in the 

real world; Quality Control, to check the orientation and alignment of parts in 

manufacturing; and Autonomous Vehicles, for identifying and navigating around 

objects. 

 

1.3.1. Definition of 6DoF Object Pose 

 

6DoF object pose refers to determining an object's position i.e., translation along 

the three perpendicular axes (X, Y, and Z) and orientation i.e., the rotation along these 

axes. These are often described by yaw, pitch, and roll. The 6DoF corresponds to three 

translational and three rotational parameters, which jointly describe an object's overall 

pose with respect to a camera in the 3D space. Therefore, the transformation of a 3D 

point on an object from the object coordinate system 𝑂 to the camera coordinate system 

𝐶 is given by the 6DoF pose.  

Formally, the conversion from a coordinate system 𝐴 to a different coordinate 

system 𝐵 is a 6DoF transform consisting of a rotation matrix 𝑹𝒃𝒂 ∈ 𝑆𝑂(3) and a translation 

vector 𝑎௕ ∈ 𝑅𝟛. The rotation matrix 𝑅௕௔ describes the rotation from coordinate system 𝐴 

to 𝐵 whereas 𝑎௕ is the origin of coordinate system 𝐵 expressed in coordinate system 𝐴. 

Now, transformation of a point between the coordinate systems is given as 

     𝒎𝒃 = 𝑹𝒃𝒂𝒎𝒂 + 𝒂𝒃     ( i ) 

Using this notation, the conversion of a 3D point m୭ = [x୭, y୭, z୭]
ୃ in the object 

coordinate system 𝑂 to the 3D point mୡ in the camera coordinate system 𝐶 can be written 

as shown in the Equation (ii). Figure 4 also gives a graphical illustration of this 

transformation.  
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𝒎𝒄 = 𝑹𝒄𝒐 𝒎𝒐 + 𝒐𝒄         ( ii ) 

 

 

Figure 4 – Illustration of 6DoF pose estimation. 

 

 Determining the poses of objects enhances both the semantic and geometric 

comprehension of a scene. This enables a computer vision system to recognize not only 

what is in its view but also the precise 3D location of objects in relative to the camera. 

Such information is vital for numerous computer vision applications. Moreover, 

retrieving an object's 3D placement inherently provides insights into its 2D location and 

its 2D segmentation mask. 

6DoF pose estimation is a fundamental problem, bridging computer vision and 

robotics, enabling machines to perceive and interact with their environment in a 3D 

space. It combines spatial geometry and deep learning insights, aiming to deal with the 

complexities and variabilities in real-world scenarios. Ongoing research focuses on 

enhancing accuracy, robustness, and generalization across different objects and 

environments, driving advancements in robotics, Augmented Reality (AR)/Virtual Reality 

(VR), and more. 
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1.3.1.1 Applications 

 

The importance of 6DoF pose estimation can be seen in many applications. Three 

main examples of this are: 

 Manipulation: In robotics, accurate 6DoF pose estimation is crucial for 

manipulation tasks like picking and placing objects. 

 Navigation: For drones and autonomous vehicles, understanding the pose of 

obstacles and entities is critical for navigation. 

 AR/VR: Precise 6DoF tracking of devices and entities ensures immersive and 

realistic AR/VR experiences. 

 

1.3.2. Challenges 

 

6 DoF pose estimation, especially. Pose estimation form a single RGB image is an 

inherently challenging task. Some of the challenges in 6DoF pose estimation are: 

- Lack of quality, real training data. A primary challenge for learning-driven pose 

estimation techniques is the complexity of labelling real training datasets with 

pose information. Labelling images with ground truth (GT) object poses is an 

extremely tedious and intricate task. The quality of these manual annotations is 

far from perfect. This is bad for learning based methods. Therefore, lot of deep 

learning based methods use synthetically generated data for training and use 

the real data to test and perform inference. 

- Projection ambiguity. Pose estimation, when derived directly from single 

monocular RGB images, is notably a critical issue due to its potential for 

widespread applications. Observing the approaches employed in the BOP 

challenge [1]–[3], most contemporary methods grounded in deep learning 

particularly concentrate on this situation for preliminary pose estimation. 

Techniques utilizing depth or multiple views are typically applied merely for 

subsequent refinement. Nonetheless, the inherent challenge of monocular pose 

estimation lies in its ambiguity, as the projective transformation and the discrete 

structure of images complicate the precise determination of an object's distance 

on the camera's z-axis. 
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- Real time performance. For pose estimation to have practical value, it needs to 

operate in real-time and maintain high precision. Balancing these two 

requirements is notably difficult. While direct pose regression techniques can be 

quick, they often compromise on accuracy [4]–[6]. In contrast, hybrid methods 

based on correspondence generally provide superior pose accuracy but are 

slower  [7]–[9]. The complexity increases when multiple objects are present in the 

scene, as they are usually processed individually. 

- Occlusion: Partial visibility or complete invisibility of objects makes accurate 

estimation difficult. 

- Symmetry: Objects with rotational symmetries present challenges in 

determining the correct orientation. Symmetries create a problem due to the 

ambiguities in training caused by different ground truth for same visual pose. 

- Scale: Variations in object size and distance from the camera affect the model's 

perception and prediction. 

- Lighting and Shadows: Variability in illumination and shadowing can mislead 

estimations. 

- Texture: Texture-less or highly textured objects can skew predictions due to the 

absence or overabundance of features. 

 

1.4. Related work 

 

6DoF pose estimation has become a fundamental computer vision problem [10], 

[11]. Until the advent of deep learning, traditional methods which involved hand crafted 

features were the norm. These have been then replaced by learning-based methods 

which involved Convolutional Neural Networks (CNNs). Research on 6DoF pose 

estimation can be broadly categorised as follows: 

 

1.4.1. Traditional Methods 

 

Traditional methods mainly involve using geometric and feature based methods. 

Pre-deep-learning, researchers proposed a variety of hand-crafted algorithms to detect 

key points and generate features.  Some examples of this are SIFT [[12], SURF [13], BRIEF 
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[14] etc. Using the key points and features, the object pose problem can be estimated by 

forming 2D-3D correspondences between the input image and the 3D object model. 

The 2D-2D correspondences are then used by some geometric algorithms to detect 

pose. These are as follows: 

PnP (Perspective-n-Point) [15] with Random sample consensus (RANSAC) [16]: Given 

a set of 2D image points and their corresponding 3D world points, the pose of the camera 

is determined using the PnP algorithm. RANSAC will then estimate the poses more 

robustly by filtering out outliers. PnP can be used as a standalone module, but usually 

PnP is always used with in a RANSAC framework for outlier rejection. 

Stereo Vision: Triangulates 3D point positions using 2D points from two calibrated 

cameras to aid in pose estimation. 

 

1.4.2. Template and Retrieval-Based Methods 

 

The fundamental concept behind template-based techniques involves using a 

collection of images, termed as templates, that depict the object from multiple angles. 

This collection is designed to encompass nearly all conceivable views of the object. 

During evaluation, the input image's representation is assessed against this entire 

collection based on a specific similarity metric. The top matches are then refined to 

produce the final pose. One of the leading pre-deep learning template-based methods 

for 6 DoF pose estimation is LineMOD [17]. SSD6D detector [18] is a popular end-to end 

deep learning solution based on the template matching idea.  

 

1.4.3. Direct Pose Regression 

 

Neural networks can also be used directly to predict a mapping from an input 

image to the object pose. The work by Rambach, Jason, et al., "Learning 6dof object 

poses from synthetic single channel images." [19], was one of the first methods where a 

CNN is utilized to regress the position and orientation of a camera with respect to an 

object given an RGB image. Subsequently, other methods like PoseCNN [4] and 

DenseFusion [5] also proposed RGB based pose estimation. More recently, CosyPose [6] 
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revisited the task and proposed a 3-stage deep learning based approach and utilises 

synthetic data for better understanding. Another recent work is GDR-Net [20] which uses 

geometry-guided direct regression network for monocular 6D object pose estimation. 

Even though direct pose regression methods appear straightforward to 

implement; they often yield lower accuracy compared to template- and 

correspondence-based solutions. 

 

1.4.4. Hybrid approaches 

 

Recently, combining learning-based approaches with geometric methods are 

showing great results when compared to the weak accuracies of pure end-to-end 

learning methods. AAE [21] learns to generate a latent vector based on the visual 

information of the object in discrete viewpoints. At inference stage, the rotation is 

obtained by comparing the latent code with the pre-generated rotation-latent code 

lookup table. Other indirect/hybrid methods usually estimate the 2D-3D 

correspondence, and solve the object pose using RANSAC/PnP. BB8 [7] firstly defines the 

3D object bounding box corners as the keypoints and PVNet [22] reaches high recall rate 

by predicting the keypoints with a dense pixel-wise voting for sampled keypoints on the 

object. The main drawback of such sparse 2D-3D correspondence methods is that the 

prediction of keypoints in the occluded area lacks in accuracy. Another alternative 

approach involves leveraging dense correspondences, wherein every visible object pixel 

in the image is mapped to its 3D counterpart. The belief is that by increasing the count 

of these correspondences, potential inaccuracies can be offset, yielding more accurate 

poses. Whereas having a limited number of correspondences might produce less 

accurate poses, a comprehensive set of correspondences has the potential to deliver 

better results. Additionally, this approach offers an improved way to handle occlusions. 

The downside is that, because of the dense correspondences, these methods are slow. 

iPose [8] which operates in 3 stages: segmentation, 3D coordinate regression and pose 

estimation, Pix2Pose [9] which unifies the first two stages also into an end-to-end 

network, are two examples of this. 
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2. Object Pose Estimation algorithm – ZebraPose [23] 

 

ZebraPose [23], is a single RGB-based 6DoF pose estimation algorithm. ZebraPose 

proposes a dense correspondence pipeline that combines the concepts of handcrafted 

features and image segmentation in a hierarchical fashion for RGB based 6DoF pose 

estimation. To design a descriptor that encodes surfaces efficiently, ZebraPose uses the 

binary numeral system. Binary-based descriptors are applied other computer vision 

applications like SLAM [24]. In ZebraPose the object surface is split into halves or groups 

over multiple iterations and an encoding of each vertex is done by stacking the assigned 

group labels. By leveraging a hierarchical discrete representation, ZebraPose guarantees 

a compact mapping and simple learning objective as a multi-label classification 

problem. Moreover, learning how to encode a full sequence at once might be 

challenging for neural networks. Therefore, in this algorithm a coarse to fine learning 

scheme is utilized. By design, the encodings on the coarse levels are continuously shared 

in wider object regions. As the network learns to differentiate coarse splits, it focuses on 

finer encoding positions. With a coarse to fine loss and training strategy, ZebraPose then 

manages to predict fine-grained surface correspondences. In contrast to previous works, 

ZebraPose encoding mechanism promotes direct pixel-to-surface matching just by 

means of a look-up table. With a simple matching and PnP-RANSAC, it outperforms the 

state of the art in 6DoF pose on the most commonly used benchmarks. 

In summary, ZebraPose algorithm is a two-stage RGB-based approach that 

defines the matching of dense 2D-3D correspondence as a hierarchical classification 

task. Further, the two-stage algorithm has three components:  

1. Assigning a unique descriptor to the 3D vertex called 3D surface code generation. 

2. Predicting a dense correspondence between the 2D pixels and 3D vertices. 

3. Solving the object pose using the predicted correspondences. 

 

2.1. 3D Surface Code generation 

 

Each vertex on the 3D surface of the object is encoded with a fixed length vertex 

code. This encoding is defined based on the vertices position relative to the 3D surface 
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to enable coarse to fine learning. To enable this, the encoding is constructed with a non-

decimal numerical system with lower radix. This ensures that the representation is very 

efficient. For a code of length d, d iterations of grouping of the vertices are performed. 

Finally, each vertex is assigned to a vertex code with d digits by stacking the class id of 

each grouping operation. This representation is stored and fixed for every 3D object. The 

vertices in each group share the same code. A lookup table is built to map a code to the 

centroid of each group in Gd, which is further used to build 2D-3D correspondence and 

solve the pose. By means of experimenting and ablation studies, a binary system is 

selected as the base for the vertex code. This makes the grouping easier to split i.e., black 

(1) and white (0). The binary descriptor allows one-to-one correspondence for the 

problem of 6DoF object pose efficiently and leads to a big advantage in reducing the 

GPU memory requirement, thus making the whole process faster. This process happens 

offline and the generated mapping between vertex code and the corresponding 3D 

vertex is stored in a look-up table. The illustration for this surface code generation is 

illustrated in the below Figure 5. 

 

 

Figure 5 – ZebraPose Surface code generation [23] 

 

2.2. Pose Estimation Network  

 

To predict the code per pixel in the frame with fine granularity, only the Region of 

Interest (ROI) around object pixels is considered. This ROI is predicted by a 2D detector. 
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The predictions from the 2D detector are cropped and resized from the image to form 

the ROIs. The target vertex code maps are generated using a Convolutional Neural 

Network (CNN) based encoder-decoder network. Using the predicted code and the 

visible mask from the CNN, a correspondence matching is performed. For this matching, 

first the look-up table generated before is used to extract corresponding 2D and 3D 

points. Following that, a RANSAC/PnP solver is used to calculate the rotation R and 

translation t of the object relative to the camera. The entire process from input images 

to the predicted pose from the ZebraPose architecture is presented in the Figure 6. 

 

 

 

Figure 6  – ZebraPose Architecture [23] 

 

2.3. 2D detection network – YOLOv8 

 

As depicted in the Figure 6, the CNN estimates the pose with the cropped ROI 

from a detected bounding box. The object pose estimation is meaningless with a false-

positive detection, also the pose is not even estimated in the case of false-negative 

detection. Therefore, having a 2D detector with high recall and precision is important to 

leverage the detected bounding boxes.  

As a 2D detector we modified the state-of-the-art real-time 2D detector called 

YOLOv8 for our purposes. YOLOv8 [25] is a cutting-edge, state-of-the-art model that 
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builds upon the success of previous You Only Look Once (YOLO) versions and introduces 

new features and improvements to further boost performance and flexibility. YOLOv8 is 

designed to be fast, accurate, and easy to use, making it an excellent choice for a wide 

range of object detection and tracking, instance segmentation tasks. YOLOv8 is built on 

cutting-edge advancements in deep learning and computer vision, offering 

unparalleled performance in terms of speed and accuracy. Its streamlined design makes 

it suitable for various applications and easily adaptable. The architecture of YOLOv8 is 

show in the below. 

. 

 

 

 

Figure 7  – YOLOv8 architecture [25] 
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2.3. Benchmark on 6D Object Pose Estimation Challenge and Awards 

 

The BOP (Benchmark on 6D Object Pose Estimation) Challenge [1]–[3] is a 

significant benchmark in the field of computer vision, specifically for object pose 

estimation. The BOP Challenge is an annual competition that seeks to evaluate and 

compare state-of-the-art methods for 6DoF object pose estimation. It provides 

standardized datasets, evaluation metrics, and tools to ensure consistent comparison of 

different algorithms. The BOP Challenge employs multiple evaluation metrics, to 

evaluate the performance of the algorithms (Discussed more in Section 3.4). These 

metrics give a detailed insight into how well algorithms perform in terms of both 

rotation and translation estimations. The BOP challenge is significant in Bridging 

Research and Application, Understanding Occlusions and Multiple Objects and 

Stimulating Progress. The BOP Challenge plays an integral role in driving progress in 

6D object pose estimation. As techniques continue to evolve and become more 

sophisticated, benchmarks like BOP provide a pathway, guiding researchers and 

practitioners towards the perfect pose estimation in any given scenario. 

 

Figure 8 – BOP Challenge awards 
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The DFKI team participated in the BOP challenge where the ZebraPose [23] 

algorithm was also evaluated. Compared with other methods using RGB input, 

ZebraPose ranked first in multiple datasets even without using pose refinement. The 

ZebraPose was evaluated in BOP challenge 2022 [3] and BOP challenge 2023. In both 

the years, the algorithm won first place and multiple awards in different categories. The 

total list of winners and awards are available on the website 

https://bop.felk.cvut.cz/leaderboards/ . Some of the awards that the DFKI team has won 

are shown in the Figure 8. 
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3. Pose Estimation for Unseen Object Robotic Grasping 

 

Coupled with the challenges mentioned in the above sections, and the presence 

of numerous unseen objects in a construction environment, pose estimation becomes 

a difficult task. In this section, we discuss our design of an end-to-end pipeline based on 

a single RGB image, from a sensor mounted on a robotic arm, for 6DoF pose estimation 

of an unseen object i.e., a brick as an example. As discussed in the introduction section, 

one of the main objectives of this algorithm is to determine the poses of bricks and 

communicate with the robotic arm for brick laying task. The construction brick as shown 

in the following figures is considered for this use case.  

 

Figure 9  – Brick for pose estimation in the construction environment. 

 

 

Figure 10 – Measurements of the brick. 
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The bricks are from the construction sites in Spain. Our partner Acciona facilitated 

the bricks to perform our experiments. 

On first examination, it can seem like bricks can be generalized to a simple cuboid 

structure, and estimating the poses of them might be an easy task. But every brick has 

its own characteristics which introduce additional constraints and are needed to be 

taken into consideration. Also, in cluttered environments, apart from the brick, other 

cuboid like structures should not be detected. Some main challenges that occur in 

dealing with this are, Textures, each brick has its own texture which is very important 

and uniquely defines each brick. These textures allow for feature extraction from deep 

learning. Capturing this texture information is critical; Symmetries, most bricks are 

inherently symmetric in nature. Symmetric objects introduce ambiguity to the pose 

estimation task because multiple poses can appear identical in an image. These objects 

often necessitate extra attention during the creation of ground truth data and in 

defining the loss function; Occlusions, as shown in the Figure 9, the stack of bricks 

directly introduces occlusion. In many cases, we can only see one face of the brick. 

Detecting these highly occluded objects is an extremely difficult task. These challenges 

are not only for bricks but can also be generalised to any objects. 

As deep learning methods learn from data, having a proper dataset with ground 

truth annotations is of paramount importance. However, as mentioned in the challenges 

section 1.3.2, creation of a real dataset with proper GT annotations is very tedious and 

difficult task. Having the manual GT annotations still doesn’t guarantee proper quality 

and can result in more bad than good when training the networks. To tackle this using 

Synthetically generated datasets is a really good solution. 

 

3.1. Synthetic Dataset 

 

As an alternative to deal with the unavailability of real data, synthetically 

generated datasets can be used. A synthetically generated dataset refers to a 

collection of data that has been created artificially through computational and 

algorithmic means rather than being collected from real-world observations. In the 

context of deep learning and computer vision, synthetic datasets can be especially 

valuable due to their ability to provide a rich, annotated source of training data under 
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various controlled conditions, which might be challenging, expensive, or ethically 

complicated to collect in the real world. One example of a computation tool that can be 

used to do this is BlenderProc [26]. 

BlenderProc is a popular procedural Blender pipeline, which implies it generates 

3D scenes by running a sequence of modules in a predefined order. These modules can 

generate and manipulate 3D scenes, render images, and compute various types of data. 

Leveraging this tool along with 3D models can create synthetic datasets for computer 

vision tasks. However, it's crucial to carefully design and validate synthetic datasets to 

ensure they effectively aid model training and are representative of real-world scenarios. 

Ensuring synthetic data closely mimics real-world scenarios to allow models to 

generalize well is very important. Also, the neural network model should be designed 

such that it will not overfit easily on the data it is provided for training. 

ZebraPose was designed to deal with exactly this challenge. ZebraPose 

generalizes well to real data even when completely trained on synthetic data. 

 

3.1.1. Synthetic training data pipeline 

To train ZebraPose model to retrieve the 6DoF pose of an unseen object, in this 

case our brick, we need to create a synthetic dataset.  

Our partner at RPTU provided us with 3D models of the brick using very high-quality 

industrial level scanning. The following Figure 11 shows a visualization of 3D model of the 

brick. 

                   

Figure 11  – 3D model of the brick 
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BlenderProc4BOP is a data synthesis approach, based on BlenderProc [26], 

implemented as part of the BOP [1]–[3] challenge, which aims at capturing the state of 

the art in estimating the 6D pose. Recent works [27], [28] have shown that, physically 

based rendering (PBR) and realistic object arrangement help to reduce the synthetic-

to-real domain gap in object detection and pose estimation tasks. BlenderProc4BOP 

exploits these advantages to achieve a rich spectrum of generated images. In this data 

synthesis approach, the selected object is arranged inside an empty room, with objects 

from other BOP datasets used as distractors.  

Keeping with the context of the brick laying task discussed before, the dataset will 

be created with stacks of bricks that would represent the same in a construction site. 

This can be seen in Figure 9. The most important point in creating a synthetic dataset is 

that it should capture the real-life scenarios to as close as possible. The following figures 

show different rendering scenarios that were considered to emulate real-life scenarios. 

 

            

Figure 12 – a) Random orientation; b) Same orientation; c) Top layer random missing brick; d) Random length and height. 
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The above images already look very realistic, but they look too perfect compared 

to real life scenarios. To add more unevenness, we also add offsets to the bricks resulting 

in more realistic looking stacks. Figure 13 below depicts this. 

       

Figure 13  – Adding offsets to the bricks. 

Moreover, by using varying number of backgrounds we can create a dataset 

which has a lot of variations to assist the networks in generalizing well. Finally, randomly 

placing objects from the BOP [3] datasets around the stack of bricks and randomly 

placing the bricks in the scene, instead of stacks of bricks, completes the dataset. The 

final dataset is shown in Figure 14 below. Here, the brick was taken as an example as it 

was also aligning with the other tasks in the HumanTech project specifically in WP5 and 

WP7. But this can be generalized to any other unseen object and a similar photorealistic 

dataset can be created. 

 

Figure 14  – Final dataset with all the scenarios. 
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3.1.2.  Dataset properties  

 

The final dataset consists of about 10,000 images. Although this might seem too 

few, our ZebraPose algorithm has shown good performance at learning 

correspondences and accurately estimating poses from similar amounts of images even 

if they are synthetically generated. The training images are divided into two types, type 

1 consisting of stacks which amount to about 80 percent of the dataset and type 2 which 

consists of randomly placed bricks which amount to about 20 percent of the dataset. 

The dataset is split into three parts, i.e., train, val and test.  Each split contains 9500, 300 

and 200 images respectively. The train and val splits are used during the training. The 

test split is used to evaluate the performance of the trained detector and pose estimator. 

The quantitative result of the evaluation is shown in Section 3.4. 

 

3.2. Training Pipeline 

 

Once the dataset was generated as discussed above, ZebraPose needs to be 

trained to retrieve the 6DoF poses. As explained before and as shown in the  

Figure 6, ZebraPose also requires a region of interest from a 2D detector. The 2D 

detector as well as the ZebraPose algorithm was trained with the synthetically 

generated dataset.  The trained YOLOv8 2D detector is then used to retrieve 2D 

detections i.e., localizing the bricks in the image. This is done in the form of detecting 2D 

bounding boxes. These boxes are now the region of interests which are cropped from 

the image and sent to the ZebraPose network. The region of interest contains the object 

for which the 6DoF pose needs to be retrieved.  

 

 

Figure 15  – Training pipeline 
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3.3. Realtime 6DoF pose estimation for robot grasping. 

 

In addition to the need of more than one modality (depth, point cloud etc.), the 

main limitations of many 6DoF pose estimation algorithms is that they are not real time. 

Using the training mechanism explained in previous section, we designed an end-to-

end pipeline to retrieve poses at real time. The pipeline requires just a single RGB image, 

and the result is the poses of the objects in this RGB image. A visualization depicting the 

outline of the realtime pose estimation pipeline from an RGB image in the context of 

brick pose is shown in the figure below. 

 

 

Figure 16  – Real time pose estimation pipeline for robot grasping. 

 

In the Figure 16, the select best candidate module, will take the predicted 3D 

poses of all the detected bricks and select one or more best candidates that can be 

grasped or picked up by the robotic arm. In the case of brick laying task,  Figure 17 shows 

some possible candidates that a robotic arm can grasp. The selection of the best 

candidate bricks will be based on three main factors 1) Occlusion ratio, by comparing 

the ratio of the Amodal mask and Modal mask. The Amodal mask refers to the mask of 

the object which also contains the occluded regions, and the Modal mask refers to only 

the visible parts of the object in the image. Therefore, by taking the ratio of these we can 

decide which of the bricks should be eliminated as a candidate. If this occlusion ratio is 

high, it means the object is occluded by other objects and surroundings in the 3D world.  

The objects with lowest occlusion ratios are selected as candidates. 2) Relative height, 

in the case of brick stacks, the bricks which are on the top of the stacks are an ideal 

option. Using the IMU sensor and the world coordinate to camera coordinate system 

transformations, the top bricks are identified. 3) Network confidence, the ZebraPose 

algorithm also predicts a confidence value for each pose estimation. This confidence 

value is also considered as a filter to select the best candidate. 
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Figure 17 – Example of best candidate bricks for grasping. 

 

The pipeline will be optimized and deployed on the Baubot robot platform 

(Section 1.1 & Figure 2). The best candidate selection is optimized and bundled together 

with the pose estimation algorithm. Furthermore, this module is developed in 

collaboration with SINTEF to test it with the robotic arm. The RGB image is recorded by 

the Intel® RealSense™ D435i [29] camera mounted on the robotic arm of the Baubot 

robot. The Intel® RealSense™ D435i as shown in Figure 18, contains an RGB camera 

sensor, stereo depth setup and an inertial measurement unit (IMU) sensor all integrated 

in a small form factor. With an Intel module and vision processor, the D435i is a powerful 

complete package which can be paired with customizable software. It's particularly 

known for its application in robotics and drones for navigation, environmental 

understanding, and object recognition. This makes using the D435i a good fit for our use 

cases. 
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Figure 18  – Intel® RealSense™ D435i [29] 

 

3.4. Evaluation metrics and results 

 

The performance of deep learning algorithms is measured using some evaluation 

metrics. Evaluation metrics are used to evaluate deep learning models to provide a 

quantifiable measure of the model's performance. By comparing a model's predictions 

against actual outcomes, metrics give insights into the model's accuracy, efficiency, and 

areas of improvement. Overall, evaluation metrics offer an objective standard for 

assessing a model's efficacy and ensuring it meets the desired goals. 

 

3.4.1. Evaluation of 2D detector 

The performance of object detection models is usually evaluated using a 

combination of metrics that measure both classification accuracy and localization 

precision. As quality of 2D detections is also especially crucial, the YOLOv8 detector 

should be extensively evaluated. Here are some of the widely used metrics for evaluating 

2D object detection: 

Precision: This metric indicates the proportion of positive identifications (detected 

objects) that were actually correct. It is calculated as:  
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Precision = True Positives (TP) + False Positives (FP) / True Positives (TP)  

Recall (Sensitivity): Recall calculates the proportion of actual positives that were 

correctly identified.  

Recall = True Positives (TP) + False Negatives (FN) / True Positives (TP)  

Average Precision (AP): For object detection tasks, precision and recall are usually 

plotted together as a Precision-Recall curve for different objectness score thresholds. 

The area under this curve is the Average Precision. AP gives a single-number measure 

of a model's quality across different threshold values.  

Mean Average Precision (mAP):  It computes the average of APs for all classes. In some 

contexts, mAP might be computed at different Intersection over Union (IoU) thresholds. 

Intersection over Union (IoU): This metric measures the overlap between the ground 

truth bounding box and the predicted bounding box. It's defined as:  

IoU = Area of Overlap / Area of Union 

High IoU values indicate that the predicted bounding box closely matches the ground 

truth. 

For practical evaluations, the choice of metric often depends on the specific 

problem at hand. For instance, in safety-critical applications, a high recall might be 

preferred over high precision, as missing an object might have more severe 

consequences than a false positive detection. On the other hand, in scenarios where 

manual validation of detections is costly, a high precision might be more desirable to 

reduce false alarms. For our use case, i.e., robot grasping, High Precision indicates that 

the detected objects are genuinely present in the scene and are viable grasp targets. A 

high precision means the robot will not waste time or risk errors by attempting to grasp 

falsely detected objects. For tasks involving delicate items or where misgrasps are costly, 

maximizing precision can be essential. This is particularly relevant when handling fragile 

items where a misgrasp due to a false detection could be detrimental. High Recall 

implies that the robot successfully detects and localizes a vast majority of viable objects 

for grasping in the scene. It ensures minimal missed opportunities.  
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Model 

 Box    Mask   

P R mAP50  P R mAP50 Speed  

Large 0.96 0.865 0.929  0.948 0.822 0.881 16.6 ms 

Medium 0.952 0.864 0.925  0.952 0.817 0.881 12.2 ms 

Small 0.943 0.831 0.911  0.948 0.788 0.859 6.6 ms 

 

Table 1 – Evaluation metrics of 2D detections. 

Therefore, for our application having an extremely high precision with a high 

enough recall is particularly important. The results of the evaluation done on the brick 

object are shown in Table 1. The Model type Large, Medium, and Small represents 

different sized of the neural network. The larger network has higher number of layers. 

But from the evaluations we can see all the variations perform well. The results also show 

that we achieve very high precision while also maintaining a high recall rate. In the table, 

Box represents the tight-fitting bounding box around the detected bricks and the Mask 

represents the semantic segmentation mask of the detected brick. The mAP50 

specifically means that detections are considered correct (a True Positive) if their IoU 

with the ground truth is greater than or equal to 0.50 (or 50%). In other words, for a 

detection to be deemed correct, it needs to overlap with the ground truth bounding box 

by at least 50%. 

 

3.4.2. Evaluation of the Pose Estimator 

 

BOP challenge [2][3] discussed in previous sections provides three pose-error 

functions by default, to evaluate the error of an estimated pose with respect to the 

ground-truth pose of an object. As the ZebraPose was evaluated as part of BOP 

challenge [2][3], these errors are directly computed first to get a baseline. These error 

functions are defined as 

 VSD (Visible Surface Discrepancy) which treats indistinguishable poses as 

equivalent by considering only the visible object part. 

 MSSD (Maximum Symmetry-Aware Surface Distance) which considers a set of 

pre-identified global object symmetries and measures the surface deviation in 3D. 
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 MSPD (Maximum Symmetry-Aware Projection Distance) which considers the 

object symmetries and measures the perceivable deviation. 

 

An estimated pose is considered correct with respect to a pose-error function e, if 

e < θe, where e ∈ {VSD, MSSD, MSPD} and θe is the threshold of correctness. The fraction 

of annotated object instances for which a correct pose is estimated is referred to as 

Recall. The Average Recall (AR) with respect to a function e, denoted as ARe, is defined 

as the average of the Recall rates calculated for multiple settings of the threshold θe and 

error specific tolerance values. The accuracy of a method on a dataset D is measured by 

ARD=(ARVSD+ARMSSD+ARMSPD)/3, which is calculated over estimated poses of all objects. 

The Average Recalls of all the three metrics for the brick object is shown in the 

below Table 2. These metrics are calculated using the default evaluation from BOP 

challenge. In particular, ARVSD is the average of Recall rates calculated for τ ranging from 

5% to 50% of the object diameter with a step of 5%, and for θVSD ranging from 0.05 to 0.5 

with a step of 0.05. ARMSSD is the average of Recall rates calculated for θMSSD ranging from 

5% to 50% of the object diameter with a step of 5%. Finally, ARMSPD is the average of Recall 

rates calculated for θMSPD ranging from 5r to 50r with a step of 5r, where r = w/640 and w 

is the image width in pixels. 

 

ARD ARVSD ARMSSD ARMSPD 

64.77 55.10 62.39 76.80 

 

Table 2 – Recall rates based on the error function for 3D poses. 

Although, we can see good Recall rates for the metrics, it does not reveal the 

whole picture. More particularly, it is important to understand which metrics affect the 

task of robotic grasping specifically. In Table 2, the recall values are computed and 

averaged over different thresholds as discussed before. Computing the values like this is 

more suitable for applications like AR, where the perceivable error is more important. 

These errors are then focused on the perspective projection i.e., the closer the objects 

are to the camera the more accurate they must be. In the task of robotic 

grasping/manipulation, where the robot arm operates in a 3D space, the absolute error 

of the estimated poses becomes extremely important. In the above defined three 
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metrics, specifically, the MSSD is the metric which is more suitable for robotic grasping 

task. The other two functions, VSD and MSPD are more geared towards AR tasks.  

Along with MSSD, evaluating Average Distance of Model Points proposed by 

Hinterstoisser et al. [29] which is geared more towards robotic grasping, will give a 

clearer picture on the performance of the ZebraPose. Instead of averaging the recall 

rates over all the different thresholds, for robotic grasping task, it would make more 

sense to observe the absolute error at these specific threshold values. Additionally, to 

handle the symmetric nature for some objects (like bricks), the Average Distance of 

Model Points metric also has a symmetric variant as well. The definitions of both are as 

follows. 

ADD (Average Distance of Model points for objects) & ADD-S (for objects with 

Symmetry) [30]: Computes the average distance between 3D points of the ground truth 

object pose and the estimated object pose. For objects with significant symmetry, the 

ADD-S metric considers the closest point distances, which will be more appropriate. 

The threshold used to calculate the metrics in Table 2 range from 5% to 50% 

percent of the diameter. The upper bound of 50% of the diameter is too high for the 

robotic grasping task. In line with the robot grasping scenario, instead of using 

percentages, the metrics are evaluated at specific values i.e., in terms of centimetres 

(cm). Therefore, while penalizing very small values and maintaining generalizability, the 

new θe selected for evaluating the metrics are: 1.5cm, 3cm, 4.5cm and 6cm. The results of 

this are documented in the below Table 3. 

 

Error Metric (all 

bricks) 

AR1.5cm AR3cm AR4.5cm AR6cm ARmean 

ADD-S 63.33 74.50 80.11 83.72 75.42 

MSSD 22.15 44.65 56.55 64.85 47.10 

 

Table 3 – ADD-S and MSSD metrics at specific thresholds. 

The results show that the ADD-S metric performs well even with a very hard 

threshold of 1.5cm. The MSSD metric also performs well as it can recover almost 25 

percent of poses. The important thing to note here is that these metrics are calculated 

for all the GT detections i.e., even for the bricks which are completely occluded and only 
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one face is visible (as seen in Figure 9). To further analyse the metrics, only the GT where 

at least 85% of the brick is visible are considered. With this new constraint the metrics 

above are evaluated again. These results are documented in the Table 4.  For the robot 

grasping task, the best candidate selection module (Section 3.3 &  

Figure 16) will select the brick which also has very high visibility. So, evaluating only 

on bricks which have high visibility give a clearer picture. The results clearly show that 

they are significantly higher than the results evaluated for all GT. Especially, the ADD-S 

and MSSD metrics at 1.5cm which is a very hard threshold, also are much higher. The 

MSSD metric with 3cm threshold shows a drastic improvement over 1.5cm. The overall 

mean values are much higher when compared to the previous results in Table 4 as well. 

This shows that the designed pose estimation algorithm ZebraPose, is not only suitable 

for robot grasping task but it also predicts pose estimations with high accuracies. 

 

Error Metric (85% 

visibility factor) 

AR1.5cm AR3cm AR4.5cm AR6cm ARmean 

ADD-S 86.9 94.00 95.10 96.20 93.10 

MSSD 30.15 61.20 80.32 87.45 64.9 

 

Table 4 – ADD-S and MSSD metric evaluated for bricks with high visibility. 

 

3.4.3. Qualitative results 

 

The quantitative results in the previous section is computed on the synthetic data, 

due to the availability of GT information. However, in a real time use case GT information 

does not exist. Therefore, a qualitative analysis by using visualizations shows accuracy of 

the pose estimation model. In this section, the qualitative results on both synthetic and 

real images are shown. 
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Figure 19 – 2D detection results. 

 

 

 

Figure 20 -2D detection on some real images. 

The Figure 19 shows the visualization of the 2D detections and the segmentation 

masks on the synthetic dataset. It can be seen that, even the bricks at the bottom of the 

stack which are extremely occluded are also detected. Next, Figure 20 shows some 

images of the 2D detections and masks on some real images captured by the RealSense 

camera. For simplicity visualization with one brick is shown. 
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Figure 21 – Visualisation of 3D poses from 2D detections. 

 

Subsequently, using the 2D detections the pose estimations are retrieved using 

the pose algorithm discussed in previous sections. The visualization of the pose i.e., the 

3D model projected back to the image using the predicted pose is shown in Figure 21. 

For the real time case, the visualizations are shown below in the Figure 22. The 

arrows at the centre of the brick depict the object coordinate axes and the white arrows 

depict the grasp area. 

 

 

Figure 22 – Visualisation of 3D pose on a real image. 
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A video showing the visualisation of the realtime pose estimation using the 

RealSense camera is available at: 

https://youtu.be/FnVuRsujjVE  
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4. Conclusion and next steps 

 

Predicting 6DoF poses in the real world when there is no availability of datasets is 

a very challenging task. Towards this, the dataset generation pipeline and the designed 

algorithm tackle this problem. The dataset generation pipeline creates photorealistic 

samples of the real-world scenes by exploiting physically based rendering mechanisms 

of BlenderProc. As seen from the evaluation and results in the previous section, the 

presented approach for object detection and pose estimation are also able to generalize 

well in handling the domain gap from synthetic to real-world. Furthermore, the simple, 

efficient, and real time design of the end-to-end pipeline closes the loop, transferring 

research guided implementations to real-world practical scenarios. The ZebraPose 

algorithm of DFKI is not only state-of-the-art in accuracy but also is very efficient. Not 

only that, but it also runs at real time speeds, thanks to the simple binary encoding 

mechanism. Even with the overhead for a need of 2D detector the pipeline is designed 

to be still very fast. Even though, the accuracy of ZebraPose depends on the quality of 

the 2D detections, our modified YOLOv8 algorithm is very good at retrieving all the 

objects while also precisely localizing them in the image, as shown in the evaluation 

section. 

As next steps, first, the designed pipeline is to be packaged into an easily 

installable software and integrated into the robotic platform (Figure 2). As it is 

impractical to install enormous number of hardware components on the robotic 

platform, the hardware availability and capacity will be limited.  

 

Figure 23 – Nvidia Jetson Hardware [31]. 
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Therefore, the pipeline should also be able to run under computational 

restrictions. This means optimizing and finetuning the pipeline by using techniques like 

Quantization [32] in deep learning to ensure the neural network runs on lower hardware 

resources. Towards this, Nvidia Jetson [31] embedded computing boards are a good fit.  

NVIDIA Jetson is a series of compact embedded computing platforms developed 

by NVIDIA, tailored for AI and deep learning applications. Each Jetson board features a 

potent GPU based on NVIDIA architectures.  These boards come with integrated 

memory, essential I/O interfaces and most importantly with an accompanying JetPack 

SDK. Using the SDK developers get tools and libraries optimized for the platform, 

facilitating AI-focused projects, especially in robotics and edge devices, where the 

platform's power efficiency proves crucial. 

Secondly, the pilot concept as part of WP7-task 7.2, involves Human Robot 

communication for the bricks grasping and handover task as show in the Figure 1 of the 

introduction section 1. Towards this, having the pose estimation setup locally available 

on the robotic platform, facilitates integration with other components. This is done in 

collaboration with other partners like SINTEF, Baubot, RPTU and Acciona. For example, 

once the hardware setup with the pipeline installed on it is deployed on the Baubot 

robot platform (Section 1.1 & Figure 2), our partner SINTEF, involved in the human-robot 

collaboration tasks (T5.6), will send an image or a sequence of images captured from the 

RealSense camera (Figure 18) mounted on the arm, to the deployed pipeline. In return, 

the pipeline will then send back the best candidate bricks in each image. More 

specifically, the 6DoF pose relative to the camera for each of the best selected candidate 

bricks will be sent back. The robotic arm with the gripper (Section 1.2 & Figure 3) will use 

this information to grasp the bricks and hand it over to the humans. 
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