
This project has received funding from the European Union’s Horizon Europe research and innovation
programme under grant agreement nº 101058236. This document reflects only the author’s view, and
the EU Commission is not responsible for any use that may be made of the information it contains.

D5.1 – Development
of the ontology for
demolition task
planning

Ref. Ares(2024)722397 - 31/01/2024

D5.1 – Development of the ontology for demolition task planning

2

Project Title
Human-Centred Technologies for a Safer and Greener

European Construction Industry.

Project Acronym HumanTech

Grant Agreement

No
101058236

Instrument Research & Innovation Action

Topic HORIZON-CL4-2021-TWIN-TRANSITION-01-12

Start Date of

Project
June 1, 2022

Duration of Project 36 months

Name of the

Deliverable
Development of the ontology for demolition task planning

Number of the

Deliverable
D5.1 (D20)

Related WP

Number and Name

WP5 - Construction Robotics and Human-Robot

Collaboration

Related Task

Number and Name
T5.1 - Robotic demolition task planning

Deliverable

Dissemination

Level

PU - Public

Deliverable Due

Date
31/01/2024

Deliverable

Submission Date
31/01/2024

Task Leader/Main

Author
Francesca Canale (STAM)

Contributing Morten Lind (SINTEF Manufacturing)

D5.1 – Development of the ontology for demolition task planning

3

Partners

Reviewer(s) Dr. Gabor Sziebig, Dr. Jason Rambach

Revisions

Version Submission date Comments Author

V1.0 12/01/2024 For submission Francesca Canale

Disclaimer

Keywords

Robotic demolition, ontology, knowledge base, task planning

This document is provided with no warranties whatsoever, including any warranty of
merchantability, non-infringement, fitness for any particular purpose, or any other warranty
with respect to any information, result, proposal, specification, or sample contained or
referred to herein. Any liability, including liability for infringement of any proprietary rights,
regarding the use of this document or any information contained herein is disclaimed. No
license, express or implied, by estoppel or otherwise, to any intellectual property rights is
granted by or in connection with this document. This document is subject to change
without notice. HumanTech has been financed with support from the European
Commission. This document reflects only the view of the author(s) and the European
Commission cannot be held responsible for any use which may be made of the information
contained.

D5.1 – Development of the ontology for demolition task planning

4

The HumanTech project

The European construction industry faces three major challenges: increase the safety
and wellbeing of its workforce, improve its productivity, and become greener, making
efficient use of resources.

To address these challenges, HumanTech proposes to develop human-centred cutting-
edge technologies such as wearables for workers' safety and support and robots that
can harmoniously coexist with human workers while contributing to the ecological
transition of the sector.

HumanTech aims to achieve major advances in cutting-edge technologies that will
enable a safe, rewarding, and digital work environment for a new generation of
highly skilled construction workers and engineers.

These advances will include:

● Robotic devices equipped with vision and intelligence that allow them to
navigate autonomously and safely in highly unstructured environments,
collaborate with humans and dynamically update a semantic digital twin of the
construction site in which they are.

● Smart, unobtrusive workers protection and support equipment. From
exoskeletons activated by body sensors for posture and strain to wearable
cameras and XR glasses that provide real-time workers' location and guidance for
them to perform their tasks efficiently and accurately.

● An entirely new breed of Dynamic Semantic Digital Twins (DSDTs) of
construction sites that simulate in detail the current state of a construction site
at the geometric and semantic level, based on an extended Building Information

Abstract

This report comprehensively outlines the efforts undertaken during Task 5.1, focusing on
the development of a task planner for the automatic execution of demolition activities.
At its core, it leverages a demolition ontology, an extension of ifcOWL, to establish a
cognitive foundation. This ontology meticulously delineates the demolition
environment, encompassing representations of walls, openings, and robots. Demolition
task planning has a detailed focus on marking, drilling, and cutting operations. These
tasks seamlessly unfold through the task planner, which meticulously assesses
feasibility based on available resources.

D5.1 – Development of the ontology for demolition task planning

5

Modelling (BIM) formulation that contains all relevant structural and semantic
dimensions (BIMxD). BIMxDs will act as a common reference for all human
workers, engineers, and autonomous machines.

The HumanTech consortium is formed by 22 organisations — leading research
institutes and universities, innovative hi-tech SMEs, and large enterprises,
construction groups and a construction SME representative — from 10 countries,
bringing expertise in 11 different disciplines. The consortium is led by the German
Research Center for Artificial Intelligence’s Augmented Vision department.

D5.1 – Development of the ontology for demolition task planning

6

Contents
1. Introduction.. 7

2. Demolition task in HumanTech... 8

3. Demolition ontology for HumanTech .. 10

3.1. ifcOWL ... 12

3.2. What is missing? ... 14

3.2.1. IfcWall class .. 15

3.2.2. Opening class ... 17

3.2.3. Robot class ... 24

3.3. Ontology architecture .. 26

4. Demolition task planning for HumanTech ... 29

4.1. Demolition task definition .. 30

4.1.1. Marking ... 31

4.1.2. Drilling ... 37

4.1.3. Cutting ... 40

4.2. Task planning and scheduling .. 42

5. ROS-based integration ... 45

6. Towards an actual deployment: Pilot III .. 54

7. Conclusions ... 56

D5.1 – Development of the ontology for demolition task planning

7

1. Introduction
In HumanTech a task planner for the automatic execution of demolition activities has

been developed. The concept behind the task planner is to empower HumanTech

demolition robots to autonomously perform some of the critical demolition operations,

thereby mitigating the risks associated with manual labour. In this innovative approach,

human operators assume a supervisory role, remotely monitoring and ensuring the

task's successful execution.

Automatic task planning in the HumanTech system relies on the HumanTech

demolition ontology, a structured knowledge framework containing information about

building demolition and the demolition environment. This ontology equips the robot

with an understanding of its surroundings and the potential consequences of its actions.

This ontology is an extension of ifcOWL, a Web Ontology Language (OWL)

representation of the Industry Foundation Classes (IFC) schema, made available by

Building Smart. To enhance its applicability to demolition activities, ifcOWL has been

expanded with additional concepts, properties, and relationships. Specifically, new

classes have been defined, like "Robot", "Tool", and "Opening", while the already existing

“IfcWall” class has been extended with supplementary properties.

For instance, within the ontology:

• The "Robot" class has sub-classes "MobileRobot" and "StationaryRobot" and

includes properties such as "hasPayload", "hasTool", and "isAvailable".

• The "hasTool" property establishes a connection between a “Robot” and the

specific “Tool” it employs, which could be a "Marker", a "Driller", or a "Sawblade".

• The "isAvailable" property is represented by a boolean value indicating whether a

particular “Robot” is ready to perform a task.

Reasoning on all this information, it is possible to find out if a robot equipped with the

correct tool is at the current moment available to perform one of the demolition tasks. If

it is available, the task planner can then assign the robot the task and trigger all the

requisite sub-tasks seamlessly.

This document presents a comprehensive overview of the efforts invested in creating

the HumanTech demolition ontology and the associated demolition task planner. It

offers intricate details about the ontology's concepts and properties, providing a

thorough understanding of the demolition environment and the robotic systems

D5.1 – Development of the ontology for demolition task planning

8

involved. The document also delves into the automatic generation of high-level robotic

tasks, pivotal for the successful completion of demolition activities.

2. Demolition task in HumanTech
The demolition activity taken into consideration in the HumanTech project specifically

focuses on cutting openings into existing walls, a common task during renovation

projects. These openings serve various purposes, such as conduits for essential elements

such as MEP (mechanical, electrical, and plumbing) ducts and pipes, as well as

facilitating the addition of doors or windows. Traditionally, these activities are labour-

intensive and potentially hazardous, involving human-operated tools like grinders and

rudimentary guidance systems, leaving the human workers exposed to harmful

environmental factors like dust and falling debris.

Typically, the manual process commences by marking the intended opening on the wall

using tools such as chalk, paint, or markers. This involves identifying and outlining the

specific area of the wall that needs to be removed, emphasizing distinct points such as

corners and key locations along the sides. These marks should be visible and well-

defined to guide the demolition crew in cutting or breaking the wall along the edges

delineated by the marked points. This process is crucial to ensure precision and accuracy

during the demolition work.

Subsequently, the marked area undergoes a survey to ensure the absence of rebar or

pipes inside the concrete (Figure 1). This survey involves the use of a specialized concrete

detector designed for locating rebar, with a typical detection depth of up to 200 mm.

Figure 1: Rebar surveying

D5.1 – Development of the ontology for demolition task planning

9

Following the survey, a machine is utilized to systematically drill the marked opening

(Figure 2). Depending on the wall material (concrete, masonry, drywall, or wood),

appropriate drilling equipment such as a hammer drill or rotary hammer is used. The

drilling process is performed by drilling holes at the corners and critical points which

have been previously marked. These holes serve as starting points for subsequent

cutting or demolition.

Figure 2: Concrete drilling

Once all holes have been successfully cored, the edges of the designated area are then

cut using a circular saw blade (Figure 3). The drilled holes are used as entry points for the

saw blade to initiate the cut, and then the opening is cut along its sides. The saw is

periodically stopped to clear away debris from the cutting area. This helps maintain

visibility and prevents the accumulation of material that could interfere with the saw's

performance.

Ultimately, the concrete at the center of the cut area is isolated and subsequently

removed.

Figure 3: Wall cutting

D5.1 – Development of the ontology for demolition task planning

10

This conventional manual process not only consumes significant labor, but also poses

potential risks to workers due to the operation of heavy machinery and exposure to

environmental hazards. Thanks to the HumanTech project, there is the opportunity to

explore and implement advanced technologies that can enhance the efficiency and

safety of this demolition activity.

Within the project scope, three primary demolition tasks - marking, drilling, and cutting

- have been identified as particularly compelling for robotic automation. This strategic

focus arises from their intricacies and the potential for robotic systems to streamline and

elevate the precision of these operations, making a significant leap towards a safer and

more efficient demolition process.

The exclusion of the rebar surveying task from the robotic scenario was a deliberate

decision, driven by a careful evaluation of its robotic feasibility and value addition. The

perceived value added by automating the rebar surveying task was comparatively lower

in contrast to the marking, drilling, and cutting operations. While the rebar survey is

crucial in the manual workflow for ensuring structural integrity and safety, its exclusion

in the robotic domain was justified by the inherent complexities and the limited

enhancement it would bring to the overall efficiency of the demolition process. The

HumanTech project strategically prioritized tasks with higher potential for robotic

optimization, aiming to maximize the impact of automation on both safety and

efficiency aspects of demolition activities. It is essential to note that, although the rebar

surveying step is not automated in HumanTech, it will still be diligently executed by a

qualified professional before commencing the robotic demolition process, ensuring the

necessary safety measures and structural integrity are upheld.

3. Demolition ontology for HumanTech
In the realm of computer science, an ontology is a formal representation of knowledge,

delineating concepts, objects, properties, and the relationships among them within a

specific data structure known as a Knowledge Base (KB). This structured representation

provides a shared understanding of a particular domain, allowing the organization and

classification of knowledge. Ontologies play a pivotal role in modelling and structuring

information, making it comprehensible and machine-readable.

D5.1 – Development of the ontology for demolition task planning

11

The construction of ontologies often entails the identification of core concepts,

establishing hierarchies and taxonomic relationships between them, and defining

attributes or properties that characterize each concept. These relationships can be

expressed using various logical operators, such as subsumption, disjointness, and

equivalence, to capture the intricate structure of the domain.

The development of ontology languages, such as Web Ontology Language (OWL), has

provided a standardized framework for representing and exchanging ontology-based

knowledge. OWL is part of the Semantic Web technology and allows for the definition

of classes, properties, and individuals, as well as the specification of relationships

between them.

Different kinds of ontologies can be defined according to specific application needs:

• Top-level ontologies. They describe very general concepts like e.g., space, time,

object, event or action that are independent from a particular problem or domain.

• Domain ontologies and task ontologies. They describe, respectively, the

vocabulary related to a generic domain or a generic task or activity, by specializing

the terms introduced in the top-level ontology.

• Application ontologies. They are strictly related to a specific application and used

to describe concepts whose relevance is limited to a specific domain and task.

Their versatility has led to their widespread adoption in numerous fields, particularly in

the context of knowledge management, semantic search, and intelligent systems.

In the context of HumanTech, the goal is to formulate a novel domain ontology that

defines general concepts, properties, and relationships applicable to robotic demolition

environments. Drawing upon existing literature, various ontologies have been proposed,

and therefore there is a number of publications that can be taken as references to define

the HumanTech ontology. One specific work that is particularly pertinent with respect

to the objectives of the project is the ifcOWL1 ontology.

1 https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/

https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/

D5.1 – Development of the ontology for demolition task planning

12

3.1. ifcOWL

ifcOWL is an ontology that represents the Industry Foundation Classes (IFC) data model

using the Web Ontology Language (OWL), contributing to the interoperability and

semantic richness of building information models in the construction industry.

The Industry Foundation Classes2, developed by buildingSMART, are an open

international standard for Building Information Model (BIM) data that are exchanged

and shared among software applications used by the various participants in the

construction or facility management industry sector. The standard includes definitions

that cover data required for buildings over their life cycle, including entities that define

building elements (walls, beams, doors, etc), geometry features (extruded solid area,

swept area solid, etc) and basic constructs (cartesian points, etc). Each IFC data model

is represented as a schema in the EXPRESS data specification language defined in the

10303-11:1994 ISO standard.

In the literature, there are several works that describe attempts to obtain a usable

ontology from IFC EXPRESS schemas. Schevers and Drogemuller3 developed a primitive

version of a unidirectional conversion of an IFC schema to an OWL ontology for research

purposes. Later, Pauwels and Terkaj, based on several previous studies4, proposed a

conversion procedure from EXPRESS schema to OWL ontology5. That work can be

regarded as the basis of the ifcOWL ontology.

The ifcOWL ontology is generated directly from the IFC EXPRESS schema. The

recommended conversion procedure is entirely open and documented, and an

opensource set of reusable Java components that allows to parse IFC-SPF files and

convert them into directed labelled graphs (RDF) is provided in the “pipauwel/IFCtoRDF”

GitHub repository6. The conversion procedure follows the principles displayed in the

below schema (Table 1).

2 https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/
3 Schevers, Hans, and Robin Drogemuller. "Converting the industry foundation classes to the web ontology language."
2005 First International Conference on Semantics, Knowledge and Grid. IEEE, 2005.
4 Beetz, Jakob, Josef P. van Leeuwen, and Bauke de Vries. "An ontology web language notation of the industry foundation
classes." Proceedings of the 22nd CIB W78 Conference on Information Technology in Construction. Technische Universität
Dresden, 2005.
5 Pauwels, Pieter, and Walter Terkaj. "EXPRESS to OWL for construction industry: Towards a recommendable and usable
ifcOWL ontology." Automation in construction 63 (2016): 100-133.
6 https://github.com/pipauwel/IFCtoRDF

https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/
https://github.com/pipauwel/IFCtoRDF

D5.1 – Development of the ontology for demolition task planning

13

Table 1: Summary of the adopted conversion pattern

EXPRESS OWL

Schema Ontology

Simple data type OWL class with a restriction on an owl:DatatypeProperty

Defined data type OWL class

Constructed SELECT

data type

OWL class with equivalence to a union of collection of OWL

classes

Constructed

ENUMERATION data

type

OWL class with equivalence to a one of collection of

owl:NamedIndividual items

Entity data type OWL class

Attribute of entity

data type

Functional object property with specified domain and range;

owl:AllValuesFrom restriction; owl:qualifiedCardinality or

owl:maxQualifiedCardinality restriction

Attribute of entity

data type as a SET

Non-functional object property with specified domain and

range; owl:AllValuesFrom restriction;

owl:minQualifiedCardinality and/or

owl:maxQualifiedCardinality restriction or

owl:qualifiedCardinality restriction

INVERSE attribute object property with a specified owl:inverseOf

DERIVE attribute N/A

WHERE rule N/A

FUNCTION N/A

RULE N/A

Using the ifcOWL ontology, it is possible to represent building data using state of the art

web technologies. This graph model and the underlying web technology stack allows

building data to be easily linked to material data, GIS data, product manufacturer data,

sensor data, classification schemas, social data, and so forth. The result is a web of linked

building data that brings major opportunities for data management and exchange in

the construction industry and beyond.

D5.1 – Development of the ontology for demolition task planning

14

3.2. What is missing?

While ifcOWL is a well-structured ontology, defining concepts and properties that are

relevant for HumanTech, it does not cover all the knowledge needed to deal with the

demolition activities.

Notably, ifcOWL excels in encapsulating information about architectural constructs,

spatial relationships, and environmental elements intrinsic to the building domain.

However, it lacks provisions for representing the aspects related to robotics, an

indispensable factor for the robotic demolition activities considered in HumanTech. For

this reason, the “Robot” class was added to the ontology, along with necessary

information related to it.

Moreover, to align the ontology with the specific requirements of demolition, the

addition of a new class became necessary. Introducing the “Opening” class was essential,

as it serves as the central subject in the context of demolition, a concept that ifcOWL did

not explicitly encompass. This addition ensures a more complete representation, filling

the gap in knowledge coverage and making the ontology better suited for the targeted

domain of robotic demolition.

Finally, to refine the ontology for HumanTech, modifications were made to the existing

IfcWall class within the ifcOWL ontology. This adjustment involved a meticulous review

to streamline the organization of its properties. The goal was to enhance accessibility to

information crucial for HumanTech's objectives, such as the dimensions and position of

the wall. By optimizing the structure of the IfcWall class, we aimed to ensure a more

user-friendly and efficient framework for capturing relevant data in the context of

robotic demolition.

In the next subsections of this document (3.2.1, 3.2.2, and 3.2.3), a comprehensive

description of all the additions and modifications made to the ifcOWL ontology are

provided. Together, these changes collectively shape the HumanTech demolition

ontology.

Table 2 shows the list of namespaces which have been used in the ontology.

Table 2: Prefixes and namespaces for the HumanTech ontology

Prefix Namespace Comment

D5.1 – Development of the ontology for demolition task planning

15

ifc <http://standards.buildingsmart.org/IFC/DE

V/IFC4/ADD1/OWL#>

IFC namespace (v 4)

owl <htthp://www.w3.org/2002/07/owl#> OWL namespace

rdf <http://www.w3.org/1999/02/22-rdf-syntax-

ns#>

RDF namespace

rdfs <http://www.w3.org/2000/01/rdf-schema#> RDF Schema namespace

ht HT: Namespace created ad-hoc for

the HumanTech project

3.2.1. IfcWall class

The IfcWall class is a part of the ifcOWL ontology and represents walls in a building. It is

used to describe various types of walls, such as exterior walls, interior walls, and partition

walls. The IFC standard defines different properties and attributes associated with the

IfcWall class to capture relevant information about walls in a building model.

Some key aspects typically associated with the IfcWall class are its name, geometric

representation, information about the materials that make it up and its composition, and

relationships with other elements of the model, such as doors and windows. In the

context of demolition, the parameters which emerge as pivotal factors are the ones

related to the geometric representation of the wall, which include the shape,

dimensions, and placement of the wall within the building.

However, the inclusion of these parameters in the ifcOWL ontology is intricated and not

always performed in the same way. For this reason, in the HumanTech ontology, the

IfcWall class has been enhanced by incorporating new standardized properties that

pertain to the dimensions and location of the wall. Table 3 outlines the RDF triples used

to represent these ontological statements, with the "Subject" column denoting the

entity, the "Predicate" column indicating the property or relationship, and the "Object"

column representing the value or another entity.

Three new datatype properties have been introduced to capture the dimensions of the

wall: hasHeight, hasLength, and hasWidth. These properties respectively attribute

height, length, and width values to the IfcWall entity.

To express the location of the wall, a new class named Pose has been introduced (as

detailed in Table 4). The Pose class is linked to the IfcWall class through the hasPose

D5.1 – Development of the ontology for demolition task planning

16

object property. The Pose class expresses the position and orientation of an object - in

this case an IfcWall - in a three dimensions space. It is defined by six datatype properties:

three related the translational component (i.e. hasX_pos, hasY_pos, and hasZ_pos), which

defines X, Y, and Z cartesian coordinates of the object with respect to a predefined frame,

and three related to the rotational component (i.e. hasYaw_rot, hasPitch_rot, and

hasRoll_rot), defining yaw, pitch, and roll rotations of the object’s frame with respect to

the predefined frame. In the case of the IfcWall, the Pose class precisely expresses the

position and orientation of the wall with respect to the origin frame of the IFC file.

Table 3: IfcWall class extension

Subject (Entity)
Predicate

(Property/Relationship)
Object (Value/Entity)

ifc:IfcWall hasHeight Height value

Datatype = Float

ifc:IfcWall hasLength Length value

Datatype = Float

ifc:IfcWall hasWidth Width value

Datatype = Float

ifc:IfcWall hasPose Pose

Table 4: Pose class definition

Subject (Entity)
Predicate

(Property/Relationship)
Object (Value/Entity)

Pose hasX_pos X position value

Datatype = Float

Pose hasY_pos Y position value

Datatype = Float

Pose hasZ_pos Z position value

Datatype = Float

Pose hasYaw_rot Yaw rotation value

Datatype = Float

Pose hasPitch_rot Pitch rotation value

Datatype = Float

Pose hasRoll_rot Roll rotation value

D5.1 – Development of the ontology for demolition task planning

17

Datatype = Float

Figure 4 presents a graphical representation of the relations between the IfcWall class,

its properties, and the Pose class.

Figure 4: Graphical representation of relationships among classes related to IfcWall

3.2.2. Opening class

The Introduction of the Opening class serves to specifically represent the focal point of

demolition activities.

Its definition revolves around parameters crucial for accurately describing the opening,

encompassing dimensions and position. These parameters are defined by a qualified

professional, typically an architect or a structural engineer, deciding to create an

opening in a wall. These parameters are translated into the demolition input described

by the variables listed in Table 5.

The demolition input encapsulates key information, including the names of both the

opening and the wall where the opening is intended to be made. These names serve to

uniquely identify each entity. The dimensions of the opening are described by height,

width, and length parameters, defined as shown in Figure 5. The position of the opening

in relation to the wall’s origin is specified by X and Y coordinates, as depicted in Figure 5,

along with an angle in degrees that denotes the offset between the two horizontal lines

of the opening and the wall. Finally, the last parameter describing the opening is the

direction which clarifies the side of the wall, front or back, on which the opening has to

D5.1 – Development of the ontology for demolition task planning

18

be made. This parameter is essential when the opening does not span the entire width

of the wall (i.e. the width of the opening is smaller than the width of the wall). This

direction input is denoted to be equal to 1 if the opening is on the front side, and to -1 if

it is on the back side, as illustrated in Figure 6.

Table 5: Demolition input

Input Description

Opening name Name of the opening

Datatype = String

Wall name Name of the wall where the opening has to be made

Datatype = String

Height Height of the opening

Datatype = Float

Width Width of the opening

Datatype = Float

Length Length of the opening

Datatype = Float

X X coordinate of the corner of the opening with respect to

the origin of the wall

Datatype = Float

Y Y coordinate of the corner of the opening with respect to

the origin of the wall

Datatype = Float

Angle Angle (in degrees) between the horizontal directions of

the wall and of the opening

Datatype = Float

Direction Whether the opening is on the front (1) or on the back (-1)

side of the wall

Datatype = Int

D5.1 – Development of the ontology for demolition task planning

19

Figure 5: Definition of demolition inputs

Figure 6: Definition of direction of opening input

The demolition input has been translated in the HumanTech ontology into the Opening

class defined by the properties and relationships described in Table 6.

The name is assigned to the opening through the hasOpeningName datatype property,

and the opening is linked to its corresponding wall through the isLocatedOnWall object

property. In a parallel manner, the same datatype properties previously employed for

defining the dimensions of the wall - hasHeight, hasLength, and hasWidth - are now

repurposed to describe the dimensions of the opening. Additionally, the Pose class,

initially utilized for conveying the position of the wall, is now linked to the Opening class

D5.1 – Development of the ontology for demolition task planning

20

through the hasPoseOnWall object property. The hasDirection datatype property

defines the direction of the opening.

Table 6: Opening class definition

Subject (Entity)
Predicate

(Property/Relationship)
Object (Value/Entity)

Opening hasOpeningName Name of the opening

Datatype = String

Opening isLocatedOnWall ifc:IfcWall

Opening hasHeight Height value

Datatype = Float

Opening hasLength Length value

Datatype = Float

Opening hasWidth Width value

Datatype = Float

Opening hasPoseOnWall Pose (defined in Table

4)

Opening hasDirection Direction of opening

Datatype = Int

Other than the information coming from the demolition input, there are other data that

it is useful that the Opening class describes.

One first information is related to the demolition status of the opening, indicating

whether the opening has undergone marking, drilling, or cutting, which are the three

fundamental tasks involved in creating an opening in a wall. To this purpose, the

openingStatus class has been created, which is linked to the Opening class through the

hasOpeningStatus object property. The openingStatus class, described in Table 7, has

three boolean datatype properties: openingMarked, openingDrilled, and openingCut.

When set to True, these properties signify that the corresponding demolition task has

been successfully executed.

Table 7: openingStatus class definition

Subject (Entity)
Predicate

(Property/Relationship)
Object (Value/Entity)

D5.1 – Development of the ontology for demolition task planning

21

Opening hasOpeningStatus openingStatus

openingStatus openingMarked Marking status of opening

Datatype = Boolean

openingStatus openingDrilled Drilling status of opening

Datatype = Boolean

openingStatus openingCut Cutting status of opening

Datatype = Boolean

Moreover, an Opening is characterized by two key spatial attributes: points and sides.

The opening points are, for example, the ones showed in red in Figure 7, indicating the

four corners and the four mid-points of the edges of the opening. These points hold

significant importance in the context of the demolition activity, serving as precise

locations where the wall will be firstly marked and then drilled.

Within the HumanTech ontology each point is described by the openingPoint class,

linked to the Opening entity through the hasOpeningPoint object property. As outlined

in Table 8, an openingPoint is defined by a global position with respect to the origin

frame of the IFC file, expressed through the Pose class and the hasGlobalPosition object

property. Each openingPoint is also characterized by the isCorner boolean datatype

property, indicating whether it represents one of the four corners of the opening. Finally,

two additional boolean datatype properties, pointMarked and pointDrilled, convey

whether a specific point has already been marked or drilled, similarly to the properties

within the openingSatus class. These serve as a valuable indicator within the ontology to

track the completion status of the marking and drilling operations for each individual

point.

D5.1 – Development of the ontology for demolition task planning

22

Figure 7: Opening points

Table 8: openingPoint class definition

Subject (Entity)
Predicate

(Property/Relationship)
Object (Value/Entity)

Opening hasOpeningPoint openingPoint

openingPoint hasGlobalPosition Pose

openingPoint isCorner Corner of opening

Datatype = Boolean

openingPoint pointMarked Marking status of point

Datatype = Boolean

openingPoint pointDrilled Drilling status of point

Datatype = Boolean

The opening sides are the ones represented in red in Figure 8, indicating the four edges

of the opening, where the cutting task is set to take place. Similar to the representation

of opening points, each edge is described within the ontology by the openingSide class,

linked to the Opening entity through the hasOpeningSide object property. As outlined

in Table 9, an openingSide is characterized by two global positions relative to the origin

frame of the IFC file, specifying the location of the side as the two points connected by

the edge. These positions are expressed through the Pose class and the

hasStartingPosition and hasEndingPosition object properties. Mirroring the approach

D5.1 – Development of the ontology for demolition task planning

23

taken with opening points, an additional boolean datatype property, sideCut, signifies

whether a specific side has undergone the cutting task.

Figure 8: Opening sides

Table 9: openingSide class definition

Subject (Entity)
Predicate

(Property/Relationship)
Object (Value/Entity)

Opening hasOpeningSide openingSide

openingSide hasStartingPosition Pose

openingSide hasEndingPosition Pose

openingSide sideCut Cutting status of side

Datatype = Boolean

Figure 9 provides a graphical representation of the relations between the Opening class,

and the IfcWall, Pose, openingStatus, openingPoint, and openingSide classes.

D5.1 – Development of the ontology for demolition task planning

24

Figure 9: Graphical representation of relationships among classes related to Opening

3.2.3. Robot class

The Robot class within the HumanTech ontology is a pivotal entity designed to

encapsulate attributes and functionalities about the robotic systems considered in the

project involved in the demolition activities.

The class is defined by the properties and relationships listed in Table 10. The

hasRobotName datatype property assigns a unique identifier or name to each robot,

facilitating clear recognition and task assignment within the dynamic context of the

demolition workflow. The isAvailable datatype property, represented as a boolean value,

provides real-time insight into the availability status of a robot. This information becomes

a cornerstone for the task planner, allowing it to make informed decisions based on the

readiness of the robotic resources. Two other important properties of the Robot class are

the payload of the robot [kg] and its reach [cm], expressed by the three datatype

properties hasPayload, hasHReach, and hasVReach.

To provide information about the demolition tool employed by a robot, the Tool class

defined in Table 11 has been created. Knowing a robot's tool equipment is fundamental

for effective task planning, ensuring that each demolition task assignment is directed to

a robot equipped with the appropriate tool to carry out the task. The object properties

hasTool and isToolOf are one the inverse of the other and represent the link between the

Robot and Tool classes, facilitating a seamless representation of the tool-robot

relationship.

Within both the Robot and Tool classes, additional subclasses contribute to a

hierarchical structure, offering a more refined categorization within the broader top-

level classes. In particular, the MobileRobot and StationaryRobot classes distinguish

D5.1 – Development of the ontology for demolition task planning

25

between mobile platforms, that have the ability to navigate to specific locations, and

stationary manipulators, which lack mobility. Regarding the Tool subclasses, the

introduction of Marker, Driller, and SawBlade represents specific functions these tools

fulfill within the demolition process.

Table 10: Robot class definition

Subject (Entity)
Predicate

(Property/Relationship)
Object (Value/Entity)

Robot hasRobotName Name/ID of the robot

Datatype = String

Robot isAvailable Availability of robot

Datatype = Boolean

Robot hasPayload Payload of robot

Datatype = Int

Robot hasHReach Horizontal reach of robot

Datatype = Int

Robot hasVReach Vertical reach of robot

Datatype = Int

Robot hasTool Tool

MobileRobot rdfs.subClassOf Robot

StationaryRobot rdfs.subClassOf Robot

Table 11: Tool class definition

Subject (Entity)
Predicate

(Property/Relationship)
Object (Value/Entity)

Tool hasToolName Name/ID of the tool

Datatype = String

Tool isToolOf Robot

Marker rdfs.subClassOf Tool

Driller rdfs.subClassOf Tool

SawBlade rdfs.subClassOf Tool

Figure 10 provides a graphical representation of the relations among the Robot and Tool

classes and the definition of their respective subclasses.

D5.1 – Development of the ontology for demolition task planning

26

Figure 10: Graphical representation of relationships among Robot and Tool classes

3.3. Ontology architecture

Figure 11 provides an insightful overview of the ontology architecture, where the “Final

RDF” element represents the core version of the ontology, including all necessary

information to conduct efficient demolition task planning.

The starting point of the architecture is the IFC file which describes the specific

environment where the demolition task is going to take place. The information within

the IFC file is automatically converted into the RDF format using the Java components

provided by “pipauwel/IFCtoRDF” GitHub repository6. This process yields an RDF file

providing a description of all individual elements, including walls, within the specific

environment.

Subsequently, the newly created RDF file is merged with the knowledge description

included in the HumanTech ontology and described in the above sections of this

document. This integration enriches the RDF file with essential knowledge pertaining to

Robots, Tools, and Openings.

Moreover, the description of the individual IfcWalls, already included in the automatically

generated RDF file, is enriched adding values to the new dimensions and locations

properties introduced by the HumanTech ontology. These values are automatically

D5.1 – Development of the ontology for demolition task planning

27

extracted from the IFC file using a Python script based on the IfcOpenShell7 opensource

library. Integration into the ontology is automatically achieved using another script

based on the RDFLib8 Python package.

Furthermore, the Final RDF file incorporates real-time information concerning the

individual robot availabilities and their respective tool equipment. Additionally, this file

encapsulates the opening description derived from the demolition input specified by

qualified professionals.

To conclude the overview, the Final RDF file encompasses organized descriptions of all

individual building elements at the demolition site, information about available robots

and tools, and detailed descriptions of planned openings.

The HumanTech demolition ontology, described in the “Final RDF” file, serves as the

backbone for perception and reasoning within the HumanTech system. Through logical

inference on information such as robot availability and tool compatibility, the system can

make informed decisions, enabling seamless task assignment and execution.

Figure 11: Ontology architecture

To provide a concrete example, Figure 12 shows the top view of the environment

described in the “HT_hospital_Weingarten_C_surgery#4.ifc” file created within the

7 https://ifcopenshell.org/
8 https://rdflib.readthedocs.io/en/stable/

D5.1 – Development of the ontology for demolition task planning

28

HumanTech project, visualized through the Xbim Xplorer9 software application. This

environment includes sixteen IfcWall elements.

Figure 12: “HT_hospital_Weingarten_C_surgery#4” IFC file

Figure 13 shows a graphical representation of the same environment, for what concerns

the IfcWall class, in the Final RDF file. This representation encapsulates sixteen distinct

IfcWall individuals. Furthermore, the example incorporates a demolition input, with the

corresponding Opening individual thoughtfully represented in the graph.

9 https://docs.xbim.net/downloads/xbimxplorer.html

D5.1 – Development of the ontology for demolition task planning

29

Figure 13: Graphical representation of IfcWall and Opening individuals for the “HT_hospital_Weingarten_C_surgery#4”
IFC file

4. Demolition task planning for HumanTech
In the context of robotics, a task planner plays a pivotal role in orchestrating and

coordinating various activities within a robotic system to achieve specific goals

efficiently. It serves as the brain behind the machine, enabling it to make informed

decisions, adapt to changing environments, and execute tasks with precision. The task

D5.1 – Development of the ontology for demolition task planning

30

planner acts as the bridge between high-level objectives and low-level control,

translating abstract goals into a sequence of actions that the robot can perform.

In essence, a task planner in robotics is responsible for generating plans or action

sequences that guide the robot through a series of steps to accomplish a desired

outcome. This process involves considering factors such as the robot's capabilities,

environmental constraints, and the overall mission or task at hand. The planner must be

capable of handling uncertainties, dynamic environments, and unexpected events,

making it an integral component in creating versatile and adaptive robotic systems.

The sophistication of task planners varies depending on the complexity of the robotic

application. Simple tasks may involve straightforward planning, while more complex

scenarios, such as those encountered in industrial automation, autonomous vehicles, or

search and rescue missions, demand advanced planning algorithms and decision-

making processes.

In the context of HumanTech, the task planner is responsible for generating a plan for

the robotic execution of the demolition activity considered in the project: cutting an

opening into a wall. Once the plan, consisting in a series of high-level robotic tasks is

generated, the task planner should check its feasibility with the available resources. This

step is made possible thanks to the communication with the HumanTech ontology,

storing an always updated description of the available robots and tools equipment. If a

robot with the appropriate abilities is available to perform a demolition task, then the

task planner can proceed triggering the specified task.

4.1. Demolition task definition

The task planner is responsible of delineating a series of high-level robotic activities that

must be executed to accomplish the precise cutting of an opening into a wall.

In the HumanTech demolition planning, four primary robotics actions are considered:

navigation, marking, drilling, and cutting. The meticulous order of these activities is

paramount, requiring a specific sequence to ensure the successful creation of the wall

opening. The task planner's objective is to generate this precise order, referred to as a

plan, and to identify the exact locations where these activities must be executed.

D5.1 – Development of the ontology for demolition task planning

31

In the subsequent three sub-sections of this document (4.1.1, 4.1.2, and 4.1.3),

comprehensive descriptions of the specific plans required for accomplishing the

marking, drilling, and cutting operations are provided.

4.1.1. Marking

The robotic marking task consists in drawing some marks on the wall in correspondence

of some distinctive points of the opening, such as its corners. The exact locations where

the markers should be made are the ones specified by the openingPoints stored in the

HumanTech ontology, visually highlighted in red in Figure 7.

In the HumanTech project, to perform the marking task, the manipulator installed on

the HumanTech robotic platform (see deliverable D5.3 for details) will be equipped with

a marking tool. As a mobile platform, the robot undergoes a two-step process: first,

navigating to the correct position in front of the wall, and second, employing the

manipulator and its marking tool to draw the marker on the wall.

The navigation process involves several sub-tasks, including localization, path-planning,

and motion control. Precise coordination is crucial to ensure the robot's arrival at the

correct location. For marking, accurate localization is vital to ensure the marking tool

aligns perfectly with the desired location.

To determine the robot's navigation positions, calculations are made to position it

directly in front of where the mark should be, maintaining a consistent distance of 50

cm from the wall. The robot's orientation is crucial, requiring the front side of the

platform to face the wall. These computations are made considering the direction value

of the opening (either 1 or -1) and the yaw rotation of the specific wall, information both

included in the ontology.

In scenarios where multiple openingPoints align on the same vertical line, the robot's

navigation positions remain constant. Thus, the operational logic involves moving the

robot to a specific position and executing all necessary marks situated in front of that

designated location.

To illustrate visually, consider the scenario with eight openingPoints as represented in

Figure 14. In this case, the mobile platform should navigate to the three distinct positions

highlighted in the figure by an arrow. For instance, when the robot aligns with the red

arrow, the manipulator is tasked with marking the three points highlighted in red. This

D5.1 – Development of the ontology for demolition task planning

32

navigation-to-marking correlation persists for the orange and yellow arrows and their

respective points.

Figure 14: Marking task

The precise workflow of the marking plan generation is illustrated in Figure 15. The

locations of the openingPoints are extracted from the ontology, and for each of these

points, a corresponding robot navigation position is meticulously calculated.

Subsequently, the computed navigation positions are analysed to eliminate duplicates

arising from openingPoints aligned on the same vertical line. This process ensures the

establishment of a direct and unambiguous correlation between the robot navigation

positions and the specific openingPoints that must be marked when the robot occupies

that specific position.

At this point, the complete lists of sub-tasks necessary to complete the marking

operation can be defined.

D5.1 – Development of the ontology for demolition task planning

33

Figure 15: Flow of the marking plan generation

The content of the marking plan is reported in Figure 16, and it encompasses navigation

to a specific position and marking all openingPoints in front of that position, continuing

until all positions have been visited and all points have been marked.

The tasks are triggered by directly communicating with the specific robot assigned to

carry them out. Concerning navigation, the information given to the mobile platform

controller consists of the exact pose (including position and orientation) that it has to

reach. For marking, the manipulator controller is provided with the 3D position of the

openingPoint and the current pose of the mobile platform. All actors involved are

expected to provide feedback to the task planner upon completing the corresponding

task. This feedback loop enables the task planner to know precisely when to proceed

with triggering the subsequent tasks in the sequence.

D5.1 – Development of the ontology for demolition task planning

34

Figure 16: Marking plan

To offer a more concrete example, let us take into account the

“HT_hospital_Weingarten_C_surgery#4.ifc” IFC file, whose content is visually shown in

Figure 12, and a demolition input described by the parameters listed in Table 12.

Table 12: Example of demolition input values

Parameter Value

D5.1 – Development of the ontology for demolition task planning

35

Opening name window_1

Wall name Basiswand:KS 115:2502143

Height 1.5

Width 0.3

Length 1.0

X 0.35

Y 0.5

Angle 0.0

Direction 1

For a complete overview, Table 13 provides some attributes of the “Basiswand:KS

115:2502143” wall.

Table 13: Description of wall “Basiswand:KS 115:2502143”

Attribute Value

Wall name Basiswand:KS 115:2502143

(X, Y, Z) coordinates (0.46, 1.01, -1.0)

(yaw, pitch, roll) rotations (-180.0, 0.0, 0.0)

Height 3.0

Width 0.11

Length 2.02

Based on this information, the marking plan generated by the task planner is the one

described in Figure 17.

Figure 17: Example of marking plan for wall “Basiswand:KS 115:2502143”

D5.1 – Development of the ontology for demolition task planning

36

To illustrate this plan visually, Figure 18 provides a drawing of the top view of the walls of

the environment, with the “Basiswand:KS 115:2502143” wall highlighted in orange. The

three red dots in the figure denote the positions where the mobile robot should navigate

according to the marking plan, with Cartesian coordinates (X, Y) as follows: (-0.89, 1.52), (-

0.39, 1.52), (0.11, 1.52). For completeness, the origin of the wall, represented by (0.46, 1.01)

coordinates, has been illustarted with a red circle. In addition, Figure 19 offers front and

back views of the 'Basiswand:KS 115:2502143' wall, with the opening highlighted in yellow

and the eight marking points from the plan in red. In this example, the direction of the

opening was equal to 1, meaning it was to be made on the front side of the wall, where

the front side is the one that has the origin of the wall at the bottom left corner.

Figure 18: Navigation positions for marking wall “Basiswand:KS 115:2502143”

Figure 19: Marking points for wall “Basiswand:KS 115:2502143”

D5.1 – Development of the ontology for demolition task planning

37

Figure 20 and Figure 21 provide again a visual representation of the navigation positions

within the environment and the marking points on the wall, for the case in which the

direction of the opening would be equal to -1, signifying that the opening was to be

created on the back side of the wall.

Figure 20: Navigation positions for marking wall “Basiswand:KS 115:2502143” – Direction = -1

Figure 21: Marking points for wall “Basiswand:KS 115:2502143” – Direction = -1

4.1.2. Drilling

The robotic drilling task is structured in the same exact way of the marking task, and it

consists in drilling holes on the wall in correspondence of the specific openingPoints

stored in the HumanTech ontology.

This task would be typically assigned to a mobile platform with a manipulator equipped

with a drilling tool, similarly to the HumanTech platform with the marker. However, in

D5.1 – Development of the ontology for demolition task planning

38

the HumanTech project, a drilling tool was not directly available. Consequently, this

specific task is not addressed within the project, but the demolition task planner takes it

into consideration for the comprehensive application scope.

Since, once again, a mobile platform is involved, similar to the marking task, the robot

undergoes a two-step process. First, it navigates to the correct position in front of the

wall. Second, it employs the manipulator along with the drilling tool to create holes in

the wall. The drilling process particularly demands tight control over both the tool and

the robot to guarantee precision and safety.

Figure 22 illustrates the navigation positions and hole locations for the scenario with

eight openingPoints. The mobile platform should navigate to the three distinct positions

highlighted by an arrow, and in each position it should drill all the holes of the same

colour as the arrow.

Figure 22: Drilling task

The precise workflow of the drilling plan generation is illustrated in Figure 23, and is

exactly equivalent to the one explained for the marking task.

D5.1 – Development of the ontology for demolition task planning

39

Figure 23: Flow of the drilling plan generation

The details of the drilling plan are shown in Figure 24, including navigation to specific

positions and drilling of all openingPoints situated in front of those designated locations.

This sequence persists until all positions have been visited, and every corresponding

point has been successfully drilled.

The tasks are triggered by directly communicating with the specific robot assigned to

carry them out. Concerning drilling, the manipulator controller is provided with the 3D

position of the openingPoint and the current pose of the mobile platform.

D5.1 – Development of the ontology for demolition task planning

40

Figure 24: Drilling plan

4.1.3. Cutting

The robotic cutting task consists in cutting the wall in correspondence of the edges of

the opening. The exact locations where the cuts should be performed are the ones

specified by the openingSides stored in the HumanTech ontology, visually highlighted

in red in Figure 8.

In the HumanTech project, a stationary robot equipped with a circular sawblade is

designated for the cutting task. This selection is grounded in the necessity for heavy

D5.1 – Development of the ontology for demolition task planning

41

equipment to carry out the cutting task, typically unsuitable for mobile platforms'

manipulators due to payload limitations. A stationary robot can have instead an

enhanced load capacity, ideal for handling heavier tools. Additionally, it also has a wider

reach, so, if positioned in a suitable position, it is able to cover larger distances without

the need to relocate its base.

Given the stationary robot context, the need for navigation is eliminated, and the cutting

process focuses solely on utilizing the manipulator and its blade to cut the sides of the

opening. This demands meticulous control over both the tool and the robot.

To illustrate visually, consider the opening represented in Figure 25. Here, the stationary

robot is positioned centrally concerning the length of the opening, as indicated by the

colored arrow in the figure. From this central position, the robot systematically cuts the

various sides of the opening, delineated by the yellow, orange, red, and burgundy colors.

Figure 25: Cutting task

The specific workflow for generating the cutting plan is illustrated in Figure 26. It is

relatively less intricate compared to the marking and drilling tasks, as in this case, the

computation of navigation positions is unnecessary. Following the extraction of

openingSides locations from the ontology, it becomes straightforward to define a

comprehensive list of sub-tasks essential for executing the cutting operation.

D5.1 – Development of the ontology for demolition task planning

42

Figure 26: Flow of the cutting plan generation

The content of the cutting plan is reported in Figure 27, and it encompasses performing

the cutting operation for all openingSides.

The tasks are triggered by directly communicating with the specific robot assigned to

carry them out. For cutting, the manipulator controller is provided with the 3D position

of the two points located at the extremity of the specific openingSide, and the current

global pose of the robot base.

Figure 27: Cutting plan

4.2. Task planning and scheduling

After generating the plan, which comprises a series of high-level robotic tasks, the task

planner must assess its feasibility based on the available resources. This evaluation is

facilitated through communication with the HumanTech ontology, storing an always

D5.1 – Development of the ontology for demolition task planning

43

updated description of the available robots and tools equipment. If a robot possessing

the requisite capabilities is available for a demolition task, the task planner proceeds to

initiate the specified task.

Going into more details, the precise flow is represented in Figure 28. It commences with

the reception of a new demolition input detailing the desired opening, following the

information described in Table 5. These input parameters are then automatically

translated into the concepts and properties describing the Opening individual within

the HumanTech ontology.

Initially, all the properties of the openingStatus - openingMarked, openingDrilled, and

openingCut – are all set to all False, signifying that the Opening has not undergone

marking, drilling, or cutting. It is by checking the values of these key properties that the

planning of the demolition activities starts. The first property checked is openingMarked,

as marking is the initial robotic task to be carried out. If the value of this datatype

property is equal to False, indicating that the opening has not been marked yet, the

process can continue with planning marking. Otherwise, the next property,

openingDrilled, is examined, as drilling is the subsequent demolition activity. Following

the same logic, if its value is False, the drilling task is planned; otherwise, the openingCut

property is checked. If its value is False, it is possible to proceed with planning the cutting

activity, otherwise, it means that the opening has already been marked, drilled and cut

and thus the demolition task is completed.

Once the specific robotic task to be performed has been selected - whether marking,

drilling, or cutting - the next step involves checking the ontology to confirm the

availability of a robotic system for that particular task. In the case of marking, the

ontology is queried for MobileRobot equipped with a Marker, with the isAvailable

property currently set to True. Similarly, for drilling, the search involves an available

MobileRobot equipped with a Driller tool. For cutting, a currently available

StationaryRobot equipped with a SawBlade is searched. Additionally, the robot's reach

should be compatible with the opening dimensions since it lacks mobility. Therefore, the

hasHReach property of the robot should be bigger than the length of the opening, and

the hasVReach value should exceed the opening's height. These dimensional properties

of the opening are stored under the hasLength and hasHeight datatype properties of

the Opening individual.

D5.1 – Development of the ontology for demolition task planning

44

If a suitable robot instance meeting these criteria is found, it is selected for the specific

demolition task, and its availability is set to False. Otherwise, if no suitable robot is found,

it indicates that the plan is currently unfeasible.

Upon confirming the availability of the correct robot, the plan for marking, drilling, or

cutting is generated, comprising the sub-tasks outlined in Figure 16, Figure 24, and

Figure 27. These sub-tasks are subsequently triggered by direct communication with the

available robot instance. Once the entire marking, drilling, or cutting task is completed,

the openingStatus is updated accordingly, and the process restarts determining if the

opening requires additional demolition tasks.

Figure 28: Task planning flow

D5.1 – Development of the ontology for demolition task planning

45

In real-world scenarios, the complexity of the task assignment process can escalate,

particularly when contemplating the potential deployment of a fleet of robots within the

environment. In such dynamic settings, considerations extend beyond the mere

availability of a single robot for a specific task. The task planner would need to consider

the spatial distribution of the robotic fleet in relation to the opening's location. Proximity

becomes a crucial criterion, as it influences the efficiency and speed of task execution.

Additionally, the task planner would need to evaluate the capabilities of each robot

within the fleet. This involves assessing not only the general availability but also the

proficiency of the robots in performing specific tasks. Some tasks might be

commonplace, with numerous robots equipped to handle them, while others could be

more specialized and require a meticulous selection process. Consequently, the task

assignment process should be adaptive, taking into account the diverse capabilities and

locations of the robotic fleet, ensuring an optimized and efficient execution of demolition

activities in real-world scenarios.

While the HumanTech project's task planner operates within a simplified framework,

recognizing this potential complexity offers a pathway for future enhancements.

5. ROS-based integration
The integration of the Robot Operating System (ROS) plays a pivotal role in the

operationalization of HumanTech's demolition system. ROS facilitates communication

and coordination between the various components, ensuring a cohesive and

synchronized execution of demolition tasks.

Figure 29 shows an overview of the ROS architecture. The three main actors here are the

robots, the HumanTech ontology, and the task planner. Different ROS services have been

implemented to allow the communication between these actors. In the graph, the

services have been divided into three groups, depending on who is the service provider

and who is the client of the specific service. In particular, the clients are the elements

from which the arrows start, and the service providers are the elements where the

arrows end.

Regarding the communication between the robots and the ontology, the created

services are related to update the ontology regarding the robots’ conditions. This

D5.1 – Development of the ontology for demolition task planning

46

includes adding and removing robots, changing their availability status and changing

their tools equipment.

For the communication between the task planner and the ontology, the available

services are related to:

• initialize a new demolition input, this includes adding to the ontology a new

opening and its opening points and sides;

• check and update the status (i.e. related to marking, drilling, and cutting

operations) of an opening and of opening points and sides;

• get from the ontology the complete list of opening points and sides, which are the

key locations for the demolition activities;

• check the availability of robots equipped with correct tools to perform some

specific demolition activities;

• get information about IfcWalls.

For what concerns the communication between the task planner and the robots, the

ROS services pertain the triggering of the navigation, marking, drilling and cutting tasks.

Figure 29: ROS Architecture

Below, for each ROS service a table detailing its requests and reply parameters is

provided.

addRobot.srv

D5.1 – Development of the ontology for demolition task planning

47

Table 14: addRobot.srv

Type Name

string robot_name

string robot_type

string[] tool_names

string[] tool_types

int16 payload

int16 vertical_reach

int16 horizontal_reach

bool done

removeRobot.srv

Table 15: removeRobot.srv

Type Name

string robot_name

string[] tool_names

bool done

updateRobotAvailability.srv

Table 16: updateRobotAvailability.srv

Type Name

string robot_name

bool availability

bool done

updateRobotTool.srv

D5.1 – Development of the ontology for demolition task planning

48

Table 17: updateRobotTool.srv

Type Name

string robot_name

string[] tool_names_to_remove

string[] tool_names_to_add

string[] tool_types_to_add

bool done

checkRobotAvailability.srv

Table 18: checkRobotAvailability.srv

Type Name

string robot_type

string tool_type

int16 vertical_reach

int16 horizontal_reach

bool availability

string robot_name

string tool_name

checkWallPresence.srv

Table 19: checkWallPresence.srv

Type Name

string wall_name

bool found

float32 x

float32 y

float32 z

float32 yaw

float32 pitch

D5.1 – Development of the ontology for demolition task planning

49

float32 roll

float32 height

float32 width

float32 length

initializeOpening.srv

Table 20: initializeOpening.srv

Type Name

string opening_name

string wall_name

float32 height

float32 width

float32 length

float32 x

float32 y

float32 yaw

int16 direction

bool done

initializeOpeningPoint.srv

Table 21: initializeOpeningPoint.srv

Type Name

string opening_name

int16 n_point

float32 x

float32 y

float32 z

bool corner

bool done

D5.1 – Development of the ontology for demolition task planning

50

initializeOpeningSide.srv

Table 22: initializeOpeningSide.srv

Type Name

string opening_name

int16 n_side

float32 x_start

float32 y_start

float32 z_start

float32 x_end

float32 y_end

float32 z_end

bool done

checkOpeningStatus.srv

Table 23: checkOpeningStatus.srv

Type Name

string opening_name

bool marking_status

bool drilling_status

bool cutting_status

updateOpeningStatus.srv

Table 24: updateOpeningStatus.srv

Type Name

string opening_name

string what_status

string new_value

bool done

D5.1 – Development of the ontology for demolition task planning

51

updatePointStatus.srv

Table 25: updatePointStatus.srv

Type Name

string opening_name

float32 x

float32 y

float32 z

float32 what_status

float32 new_value

bool done

updateSideStatus.srv

Table 26: updateSideStatus.srv

Type Name

string opening_name

float32 x_start

float32 y_start

float32 z_start

float32 x_end

float32 y_end

float32 z_end

float32 new_value

bool done

getOpeningPoints.srv

Table 27: getOpeningPoints.srv

Type Name

string opening_name

bool corner

D5.1 – Development of the ontology for demolition task planning

52

float32[] x

float32[] y

float32[] z

getOpeningSides.srv

Table 28: getOpeningSides.srv

Type Name

string opening_name

float32[] x_start

float32[] y_start

float32[] z_start

float32[] x_end

float32[] y_end

float32[] z_end

navigate.srv

Table 29: goToWall.srv

Type Name

string robot_name

string wall_name

float32 x

float32 y

float32 yaw

bool done

makeMark.srv

Table 30: makeMark.srv

Type Name

string robot_name

D5.1 – Development of the ontology for demolition task planning

53

string opening_name

float32 x

float32 y

float32 z

float32 x_mobile_platform

float32 y_mobile_platform

float32 yaw_mobile_platform

bool done

makeDrilledHole.srv

Table 31: makeDrilledHole.srv

Type Name

string robot_name

string opening_name

float32 x

float32 y

float32 z

float32 x_mobile_platform

float32 y_mobile_platform

float32 yaw_mobile_platform

bool done

makeCut.srv

Table 32: makeDrilledHole.srv

Type Name

string robot_name

string opening_name

float32[] x_start

float32[] y_start

float32[] z_start

D5.1 – Development of the ontology for demolition task planning

54

float32[] x_end

float32[] y_end

float32[] z_end

float32[] width

bool done

6. Towards an actual deployment: Pilot III
In the context of the HumanTech project, the ontology and demolition task planner

described in this document will be demonstrated in Pilot III: Remote controlled

demolition. In particular, the HumanTech robotic platform (see deliverable D5.3 for

details) will be used to demonstrate the marking task application.

Some development effort has therefore been made towards a concrete architecture.

Figure 30 gives an overview of the current consensus of this architecture together with

the fundamental control system architecture, in a combined UML component and

deployment diagram.

At the top level a human operator, the Demolition Operator, initiates a session with the

singleton component DemolitionTaskManager for establishing a demolition task.

Reference information for establishing a demolition task will have been retrieved from

an interaction with the BIMModel component.

The DemolitionTaskManager creates a new DemolitionTaskPlanner for planning and

executing the sub-tasks. The task planner queries the OntologyService, first for getting

feature information and analysing the given demolition task into sub-tasks, and then for

seeking available and capable robots to execute the sub-tasks.

The DemolitionTaskManager, DemolitionTaskPlanner, and OntologyService

components are all reflected as deployed on the same PC node, Offboard Application.

The components DemolitionTaskManager and OntologyService are shown as

singletons, which suffices for the sake of the pilot and demonstration.

For the physical HumanTech robotic system to be able to be available and capable to

solve a sub-task, a task-specific application must be deployed on board. In Figure 30, the

Onboard Applications is a PC for hosting the onboard application specific to solving

D5.1 – Development of the ontology for demolition task planning

55

marking tasks, which are sub-tasks under a demolition task. In addition to an onboard

application PC there is one further customization to the physical HumanTech robotic

system: the addition of a marking tool sensor, which may publish or be queried about

the current state of contact of the marker in the tool.

At the top level of the onboard application is the MarkingTaskOrchestrator component.

It is responsible for providing the availability and capability of the pertinent robot system

under its command, which is required by the OntologyService component. It is also

responsible for the execution of a set of marking sub-tasks assigned to it from a

DemolitionTaskPlanner that have obtained reservation of service.

Once the MarkingTaskOrchestrator has received a list of marking tasks, it will iterate over

them, while orchestrating the onboard system’s Navigation component and the

onboard application’s MarkingTaskExecutor. For each task, the mobile base is

commanded to a suitable target pose near the structure on which to set a mark, chosen

such that the position and direction of marking is within reach of the robot arm. This

mobile base motion is executed by the Navigation component. Once in pose, the most

accurate estimate of the final pose of the mobile base is acquired from the Navigation

component. The mobile base pose and the mark position and direction are now all in

common building or construction site reference. Thus, the marking task can be

formulated with reference to the robot arm base and executed by the

MarkingTaskExecutor component.

For the physical tool for marking, an instrumented marker pen holder for mounting at

the robot arm flange has been developed. Mechanically it maintains the direction of the

pen, while allowing translational compliance along the pen axis with spring return to

resting position. A magnetic sensor can detect if the travel of the pen into the holder is

above some threshold, signalling contact. For real-time sensing into the controlling

application, the node Marking Sensor System hosts the MarkingToolSensor component,

which continually monitors the magnetic sensor and publishes the contact state over

UDP. This is picked up and integrated into ROS by the MarkingToolAdapter component.

D5.1 – Development of the ontology for demolition task planning

56

Figure 30: Marking task application architecture

7. Conclusions
In the field of demolition, the HumanTech project seeks to redefine conventional

practices by introducing cutting-edge automation. The central focus is on developing a

task planner, a strategic tool empowering HumanTech demolition robots to perform

critical tasks autonomously. This paradigm shift aims to diminish the risks associated

D5.1 – Development of the ontology for demolition task planning

57

with manual labor, with human operators playing supervisory roles to ensure the

successful execution of tasks in this new paradigm.

This report presents a comprehensive description of the work carried out during Task 5.1

“Robotic demolition task planning”, dedicated to the development of the task planner.

The demolition ontology, an extension of ifcOWL, serves as the project's cognitive

foundation, offering a detailed representation of the demolition environment,

encompassing walls, openings, and robots. The ontology's architecture establishes a

structured knowledge framework vital for automated task planning.

Demolition task planning is intricately detailed, focusing on marking, drilling, and

cutting operations. These tasks are executed seamlessly through the task planner, which

assesses feasibility with available resources. The integration with the Robot Operating

System (ROS) facilitates efficient communication, allowing the generated plans to be

executed by robotic systems.

As the project advances towards deployment, Pilot III emerges as a pivotal scenario for

validating and refining the task planner theoretical framework into a practical setting.

This phase will serve as a crucial testing ground, offering insights into the application's

real-world efficacy.

In conclusion, the synergic collaboration between the demolition ontology, the task

planner and the robotic systems allows to plan and execute the cutting of openings into

existing walls efficiently and accurately.

