HEC-RAS 2D Workshop

Presenter: Shahab Afshari

Ph.D. Candidate and Research Assistant at

City University of New York / City College

Email: safshar00@citymail.cuny.edu

Ph.D. Advisor: Balazs M. Fekete

Email: bfekete@ccny.cuny.edu

February, 2017

 The City College
of New York
 Surface Dynamics Modeling Lab

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straight of New York
 Image: Straight of New York

 Image: Straig

of Engineers®

Introduction

The hydraulic modeling is the application of fluid dynamic to simulate the movement of water. Hydraulic models are applied to determine the extent of a floodplain and probability of a flood occurrence.

By 2D hydraulic model, we can determine what would happen if, for instance, the dam failed and given that information how far the extent of the flood inundation goes, how fast the floodwave propagates, thus we can prepare evacuation maps, emergency action plans, etc. On the other hand, the 1D models, cannot determine the direction of flow, where the floodwave goes, and this is based upon the engineers judgment to address these unknowns. The 1D models can be useful in domains having confined corridors, steep valleys, etc., while 2D models are considered to be more practical in flat terrain, highly urbanized area where floodwave flowing around the buildings and through roads in various directions.

2D hydraulic models have been around for over 15-20 years, however, the real problems that consulting firms and municipalities have not been using the 2D modeling software were due to difficulties of setting up the 2D models and lack of required information, e.g. terrain models, landcover variation, etc., while setting up the model.

Introduction

HEC-RAS 2D software developed by Hydrologic Engineering Center of U.S. Army Corps of Engineer is an free advanced two-dimensional flow simulator and hydraulic analyst where allows user to perform 2D and combined 1D/2D unsteady flow routing.

The 2D flow simulation by HEC-RAS 2D can be performed in number of ways. The following are examples:

- Detailed 2D channel modeling
- Detailed 2D channel and floodplain modeling
- Combined 1D channels with 2D floodplain areas
- Combined 1D channels/floodplains with 2D flow areas behind levees
- Directly connect 1D reaches into and out of 2D flow areas
- Directly connect a 2D flow area to 1D Storage Area with a hydraulic structure
- Multiple 2D flow areas in the same geometry
- Directly connect multiple 2D flow areas with hydraulic structures
- Simplified to very detailed Dam Breach analyses
- Simplified to very detailed Levee Breach analyses
- Mixed flow regime. The 2D capability (as well as the 1D) can handle supercritical and subcritical flow, as well as the flow transitions from subcritical to super critical and super critical to subcritical (hydraulic jumps).

Objectives of This Workshop

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- 2. Required geophysical and flow information for setting up HEC-RAS 2D models
- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- 4. Overview of how to execute a combined 1D/2D unsteady flow model in HEC-RAS
- Overview of how to demonstrate the result of a combined 1D/2D unsteady flow model in HEC-RAS and RAS Mapper output capabilities

Study Domain

Location: Bald Eagle Creek, Pennsylvania

Existing Structures: Dam, Levee, man-made and/or geophysical Obstructions

Required Operating Systems: *Windows XP, Vista, 7, 8, 8.1, and 10 both 32-bit and 64-bit*

Objectives of This Workshop

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- 2. Required geophysical and flow information for setting up HEC-RAS 2D models
- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- 4. Overview of how to execute a combined 1D/2D unsteady flow model in HEC-RAS
- Overview of how to demonstrate the result of a combined 1D/2D unsteady flow model in HEC-RAS and RAS Mapper output capabilities

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- HEC has added the ability to perform two-dimensional (2D) hydrodynamic routing within <u>the unsteady flow analysis portion of</u> <u>HEC-RAS</u>.
- Users can now perform one-dimensional (1D) unsteady-flow modeling, two-dimensional (2D) unsteady-flow modeling (Saint Venant equations or Diffusion Wave equations), as well as combined 1D and 2D unsteady-flow routing.
- 2D flow modeling is accomplished by adding 2D flow area elements into the model in the same manner as adding a storage area.
- A 2D flow area is added by drawing a 2D flow area polygon; developing the 2D computational mesh; then linking the 2D flow areas to 1D model elements and/or directly connecting boundary conditions to the 2D areas.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models Different Association of 1D - 2D Geometries
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) <u>Can perform 1D, 2D, and combined 1D</u> and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models Different Association of 1D - 2D Geometries
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) <u>Can perform 1D, 2D, and combined 1D</u> and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) <u>Saint-Venant or Diffusion Wave</u> ≺ <u>Equations in 2D.</u>
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

H(x, y, t) =z(x, y) + h(x, y, t)

z: bed elevation
h: water depth
H: water surface
elevation
u, v: x, y velocities

g : gravi. accel. ; v_t : horz. Eddy. Coeff. c_f : bed friction coeff. ; f : Coriolis par.

Full Saint-Venant (Dynamic Wave) equation:

$$\frac{\partial H}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} + q = 0 \quad \text{continuity equ.}$$

Momentum equs.

 $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -g \frac{\partial H}{\partial x} + v_t \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - c_f u + f v$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -g \frac{\partial H}{\partial x} + v_t \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - c_f v + f v$$

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) <u>Saint-Venant or Diffusion Wave</u> <u>Equations in 2D.</u>
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

Unsteady, advection, turbulence, and Coriolis 🛛 🖌 Terms can be disregarded to arrived at simplified form

$$H(x, y, t) =$$

$$z(x, y) + h(x, y, t)$$

z: bed elevation
h: water depth
H: water surface
elevation
u, v: x, y velocities

g : gravi. accel. ; v_t : horz. Eddy. Coeff. c_f : bed friction coeff. ; f : Coriolis par.

Full Saint-Venant (Dynamic Wave) equation:

$$\frac{\partial H}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} + q = 0 \quad continuity equ.$$

Momentum equs.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -g \frac{\partial H}{\partial x} + v_t \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - c_f u + f v$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -g \frac{\partial H}{\partial x} + v_t \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - c_f v + f v$$
10

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) <u>Saint-Venant or Diffusion Wave</u> ≺ <u>Equations in 2D.</u>
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

$$H(x, y, t) =$$

$$z(x, y) + h(x, y, t)$$

z: bed elevation
h: water depth
H: water surface
elevation
u, v: x, y velocities

g : gravi. accel. ; v_t : horz. Eddy. Coeff. c_f : bed friction coeff. ; f : Coriolis par.

Diffusion Wave equation:

$$\frac{\partial H}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} + q = 0 \quad \text{continuity equ.}$$

Momentum equs.

$$g \frac{\partial H}{\partial x} + g(S_x - S_f) = 0$$

$$g \frac{\partial H}{\partial y} + g(S_y - S_f) = 0$$

$$S_x = \frac{dz}{dx}; S_y = \frac{dz}{dy}; S_f = \frac{\tau}{\rho g R}$$

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) <u>Implicit Finite Volume Solution</u> < <u>Algorithm.</u>
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- The implicit solution algorithm allows for larger computational time steps than explicit methods.
- The Finite Volume Method provides an increment of improved stability and robustness over traditional finite difference and finite element techniques.
- 2D flow areas can start completely dry, and handle a sudden rush of water into the area.
- Additionally, the algorithm can handle subcritical, supercritical, and mixed flow regimes.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.

d) <u>1D and 2D Coupled Solution Algorithm.</u>

- The 1D and 2D solution algorithms are tightly coupled on a time step by time step basis with an option to iterate between 1D and 2D flow transfers within a time step.
- For Instance, consider a river that is modeled in 1D with the area behind levee is modeled in 2D а (connected hydraulically with a Lateral Structure). Flow over the **levee** (Lateral Structure) and/or through any levee breach is computed with a headwater from the 1D river and a tailwater from the 2D flow area to which it is connected. The weir equation is used to compute flow over the levee and through the breach.

1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models

- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) <u>Unstructured</u> or <u>Structured</u> ≺ <u>Computational Meshes.</u>
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- The software was designed to use unstructured computational meshes, but can also handle structured meshes.
- This means that computational cells can be triangles, squares, rectangles, or even five and six- sided elements (the model is limited to elements with up to eight sides). The computational mesh does not need to be orthogonal but if the mesh is orthogonal the numerical discretization is simplified and more efficient.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) <u>Detailed Hydraulic Table Properties for</u> <u>2D Computational Cells and Cell Faces.</u>
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- Within HEC-RAS, computational cells do not have to have a flat bottom, and cell faces/edges do not have to be a straight line, with a single elevation.
- Instead, each Computational cell and cell face is based on the details of the underlying terrain.
- HEC-RAS has a 2D flow area preprocessor that processes the cells and cell faces into detailed hydraulic property tables based on the underlying terrain used in the modeling process.
- This type of model is often referred to in the literature as a "high resolution subgrid model" (Casulli, 2008).

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) <u>Detailed Hydraulic Table Properties for</u> · <u>2D Computational Cells and Cell Faces.</u>
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- For an example, consider a model built from a detailed terrain model (2ft grid-cell resolution) with a computation cell size of 200x200 ft. The 2D flow area pre-processor computes an elevation-volume relationship, based on the detailed terrain data (2ft grid), within each cell.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) <u>Detailed Hydraulic Table Properties for</u> · <u>2D Computational Cells and Cell Faces.</u>
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- The cell computational centers are the locations where the water surface elevation is computed for each cell.
- Each cell face is a detailed cross section based on the underlying terrain below the line that represents the cell face.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) <u>Detailed Hydraulic Table Properties for</u> <u>2D Computational Cells and Cell Faces.</u>
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- A cell can be partially wet with the correct water volume for the given water surface elevation (WSEL).
- Each computational cell face is evaluated similar to a cross section and is preprocessed into detailed hydraulic property tables (elevation versus wetted perimeter, area, roughness, etc...).
- The flow moving across the face (between cells) is based on this detailed data.
- A small channel that cuts through a cell, and is much smaller than the cell size, is still represented by the cell's elevation volume relationship, and the hydraulic properties of the cell faces.
- Additionally, the placement of cell faces along the top of controlling terrain features (roads, high ground, walls, etc...) can further improve the hydraulic calculations using fewer cells overall. (application of *breakline*)

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) <u>Detailed Flood Mapping and Flood</u> · <u>Animations.</u>
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) 64-Bit and 32-Bit Computational Engines.

- Mapping of the inundated area, as well as animations of the flooding can be done inside of HEC-RAS using the RAS Mapper features.
- The mapping of the 2D flow areas is based on the detailed underlying terrain.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) <u>Multi-Processor Based Solution</u> -<u>Algorithm (Parallel Computing).</u>
- i) 64-Bit and 32-Bit Computational Engines.

- The 2D flow area computational solution has been programmed to take advantage of multiple processors on a computer (referred to as parallelization), allowing it to run much faster than on a single processor.

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) <u>Multi-Processor Based Solution</u> -<u>Algorithm (Parallel Computing).</u>
- i) 64-Bit and 32-Bit Computational Engines.

- The 2D flow area computational solution has been programmed to take advantage of multiple processors on a computer (referred to as parallelization), allowing it to run much faster than on a single processor.
 - 2D model made over larger area

- 2D model made over smaler area
 2D model having the least geometrical details
 - and specifications

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- The 2D flow modeling algorithm in HEC-RAS has the following capabilities:
- a) Can perform 1D, 2D, and combined 1D and 2D modeling.
- b) Saint-Venant or Diffusion Wave Equations in 2D.
- c) Implicit Finite Volume Solution Algorithm.
- d) 1D and 2D Coupled Solution Algorithm.
- e) Unstructured or Structured Computational Meshes.
- f) Detailed Hydraulic Table Properties for 2D Computational Cells and Cell Faces.
- g) Detailed Flood Mapping and Flood Animations.
- h) Multi-Processor Based Solution Algorithm (Parallel Computing).
- i) <u>64-Bit and 32-Bit Computational</u> -<u>Engines.</u>

- HEC-RAS now comes with both 64 bit and 32-bit computational engines. The software will use the 64-bit computational engines automatically if installed on a 64-bit operating system.
- The 64-bit computational engines run faster than the 32-bit and can handle much larger data sets.

Objectives of This Workshop

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- 2. Required geophysical and flow information for setting up HEC-**RAS 2D models**
- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- 4. Overview of how to execute a combined 1D/2D unsteady flow model in HEC-RAS
- 5. Overview of how to demonstrate the result of a combined 1D/2D unsteady flow model in HEC-RAS and RAS Mapper output capabilities

• Define a project:

E HEC-RAS 5.0.3	
File Edit Run View Options GIS Tools Help	
<u>₹</u> ∎×±± <u>∞</u> ©≓±×± <u>≭</u>	♥ ✔️ᢞ灣ビঙஂ♪ 뿐 ◧ ▦ ☞ ▫ऽऽ
Project. Bald Eagle Creek Example Dam Break Study	c:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D\BaldEagleDamBrk.prj
Plan:	
Geometry: Bald Eagle Multi 2D Areas	c:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D\BaldEagleDamBrk.g06
Steady Flow:	
Unsteady Flow: 1972 Flood Event - 2D Leve Structure	c:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D\BaldEagleDamBrk.u01
Description : The United States Army Corps of Engineers has granted a	ccess to the information in this model for instructional

	-			
🚰 HEC-RAS 5.0.3		New Project		
File Edit Run View Options GIS Tools Help		Title	File Name	Selected Folder Default Project Folder Documents
New Project		TestProj	.prj TestProj.prj	C:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D_test
Save Project Save Project As				Shahab
Rename Project Title				HEC-RAS Sector - Training
Delete Project Project Summany	1			20 Unsteady Flow Hydraulics BldEadeCrkMulti20 test
Import HEC-2 Data Import HEC-RAS Data Generate Report				LandCover
Export GIS Data				
Export to HEC-DSS		OK Cancel Help	Create Folder	□ c:
Restore Backup Data		Set drive and path, then enter a new project title and file r	name.	
Debug Report (compress current plan files)				
Exit				

Establish a Horizontal Coordinate Projection to use for your model, from within **HEC-RAS Mapper**:

If the data is in a specific spatial coordinate projection, that projection should be set in RAS Mapper.

- Developing a Terrain Model for use in 2D Modeling and Results Mapping:
 - It is absolutely essential to have a detailed and accurate terrain model in order to create a detailed and accurate hydraulics model. The quality of the terrain data can be a limiting factor in the quality of the hydraulics model the user can create.
 - HEC-RAS uses gridded data for terrain modeling.
 - It is necessary to create a terrain model in HEC-RAS Mapper before the user can perform any model computations that contain 2D flow areas, or before the user can visualize any 1D, 2D, or combine 1D/2D mapping results.

📑 RAS	S Mapper	If you have not established a Herizantal
€ (0.	Tools Help Set Projection for Project Web Imagery New Terrain Add Map Layers Add Map Layers New Land Cover Import NLD Manage Results Maps Render Mode Options Show Legend Show Profile Line Distance Image: Content of the second	If you have not established a Horizontal Coordinate Projection yet, then this will pop-up HEC-RAS Spatial Reference System It is recommended that the Project Spatial Reference System (SRS) be set before creating GIS data. Would you like to set the SRS now? Click 'Yes' to jump to the dialog where the ESRI Projection file (*.prj) file is set, or 'no' to go directly to the terrain creation dialog.

- Developing a Terrain Model for use in 2D Modeling and Results Mapping:
 - RAS Mapper can import terrain data that is in the floating point grid format (*.flt); GeoTIFF (*.tif) format; ESRI grid (*.adf) files;
 - Define the elevation precision of the new terrain data layer (Rounding [Precision] field, 1/32 is the default for English units)
 - **3.** This allows the user to provide a name for the new Terrain Layer (**Filename** field, the default name is "Terrain")

🚼 RAS Mapper	New Terrain Layer
File Tools Help Set Projection for Project Web Imagery New Terrain Add Map Layers New Land Cover Import NLD Manage Results Maps Render Mode Options Show Legend Show Profile Line Distance	Set SRS hput Terrain Files Filename Output Terrain File Rounding (Precision) 1/32 Filename: C:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D_test\Terrain\hdf Create Cancel

If you have not established a Horizontal Coordinate Projection yet, then this will pop-up

- Developing a Terrain Model for use in 2D Modeling and Results Mapping:
 - RAS Mapper can import terrain data that is in the floating point grid format (*.flt); GeoTIFF (*.tif) format; ESRI grid (*.adf) files;
 - 2. Define the elevation precision of the new terrain data layer (**Rounding [Precision]** field, 1/32 is the default for English units)
 - **3.** This allows the user to provide a name for the new Terrain Layer (**Filename** field, the default name is "Terrain")

RAS	5 Mapper	New Terrain Layer
File	Tools Help Set Projection for Project	Set SRS
+ V	Web Imagery New Terrain	Filename Projection Cell Size Rounding Info Image: Constraint of the second seco
	Add Map Layers	
	Import NLD	
	Manage Results Maps Render Mode Options	Output Terrain File 2 3
	Show Legend	Filename: C:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D_test\Terrain\Terrain.hdf
	Show Profile Line Distance	Create Cancel

Floating point grids consist of a main file with the ***.flt** file extension, and they also have a ***.hdr** file, and possibly a ***.prj** file that goes along with it. Note: if the ***.flt** file is not in the same projection as what has been set in RAS Mapper, then the user must have a ***.prj** file that describes the projection of the ***.flt** file).

My suggestion is to turn all Raster terrain files into *.tif format first and then import them as new terrain in RAS Mapper.

- Developing a Terrain Model for use in 2D Modeling and Results Mapping:
 - The final "Terrain.hdf" can be made up of multiple "*.tif" images having different spatial resolutions. Use the up and down arrow buttons to set the priority of the grid layers. If one grid has more detail (finer resolution) than others, the user will want to give it a higher priority for creating the combined Terrain Layer.
 - Highlights the projection of the uploaded the terrain data. If they have the projection similar to the one assigned as general reference system then it would reported as (Same as Project) which is the case for current example.
 - 3. This allows the user learn about the cell size (spatial resolution) of the raster image. The unit is based upon what that is set at the beginning of model set-up. Here it is in English unit.

New Terrain Layer										
Set SRS	2	3								
Input Terrain Files										
+ Filename	Projection	Cell Size	Rounding Info							
Terrain 50.baldeagledem tif	(Same as Project)	36.504512049933	1/32 i							
Terrain 50.dtm_20ft.tif	Terrain50.dtm_20ft.tif (Same as Project) 20 1/32 i									
Output Terrain File										
Rounding (Precision): None Create	Stitches									
Filename: C:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D_test\Terrain\Terrain.hdf 5										
		C	Cancel							

- 4. Set "Rounding (Precision)" as "None" in order to keep the terrain vertical resolution as it is.
- 5. Once the Create button is pressed, RAS Mapper will convert the grids into the GeoTIFF (*.tif) file format.

- Developing a Terrain Model for use in 2D Modeling and Results Mapping:
- Once the GeoTIFF files are created, RAS Mapper also creates a *.hdf file and a *.vrt file.
- The *.hdf (Hierarchical Data Format) file contains information on how the multiple GeoTIFF files are stitched together. The *.vrt (Virtual Raster Translator) file is an XML file that contains information about all of the raster files (*.tif).
- The user can drag and drop the *.vrt file onto an ArcGIS project and it will then know about all of the raster files that make up the terrain layer. Additionally, they will have the same scale and color ramp when they are plotted.

Note: After a Terrain data set is created, the user will be able to display this terrain layer as a background image in the HEC-RAS geometry editor. Terrain layers, and any other Map Layers developed in RAS Mapper are available for display in the HEC-RAS Geometry editor.

- Using Cross Section Data to Modify/Improve the Terrain Model:
- One of the major problems in hydraulic modeling is that terrain data does not often include the actual terrain underneath the water surface in the channel region.
- Mapper can now be used to create a terrain model of the channel region from the HEC- RAS cross sections and the Cross Section Interpolation Surface.

Importing Existing 1D Geometry Data

• Using Cross Section Data to Modify/Improve the Terrain Model:

Importing Existing 1D Geometry Data

- One of the major problems in hydraulic modeling is that terrain data does not often include the actual terrain underneath the water surface in the channel region.
- Mapper can now be used to create a terrain model of the channel region from the HEC- RAS cross sections and the Cross Section Interpolation Surface.

🔨 Geometric Data	Import Geometry Data								
File Edit Options View Tables Tools GIS Tools Help	Intro. River Reach Stream Lines	Cross Sections and IB N	odes Storage Areas/2	2D Flow Areas a	nd Connections				
New Geometry Data real SA/20 Areal 20 Areal 20 Areal Pump RS BC Lines BreakLines Mannin Station									
Open Geometry Data	In	tro River Read	h Stream Lines	Cross Se	ctions and IB N	Nodes Storage	Areas/2D F	low Areas and	Connections
Save Geometry Data	The import d					a 10 10			
Save Geometry Data As	now can be in	e river reach stre	am lines found i	n the file of	generated wi	nie reading it are	listed belo	w. Check the r	eaches you want to import,
Rename Geometry Title	various tabs t	y existing su cam	nines are merge	u. (Arang	je of reaches o	an be checked/u	incheckeu v	iui ule space u	
Delete Geometry Data	options have	Terre out Elle	Terra est Tile	Taurant	Townson to A co	Trees out the	Trunch	Townshi	Mayor Mada
Copy to Clipboard	-	Import File	Import File	Invert	Import As	Import As	Import	Import	Merge Mode
Print		River	Reach	#Points	River	Reach	Status	Stream Lines	
Impact Geometry Data		1 Bald Eagle	Loc Hav	591	Bald Eagle	Loc Hav	new	M	Replace
LISACE Survey Data Format	Current R	RAS project units: US O	ustomary Units						
Exit Geometry Data Editor HEC-RAS Format	Im	port data as: 🛛 🔍 US	Customary units						
HEC-2 Format		C SI	(metric) units						
Area UNET Geometry Format		Import data will n	ot be converted on impo	ort.					
EDFlow HEC Stream Alignment									
Area Mike 11 Cross Sections									
CSV (Comma Seperated Value) Format									
GML Format									
- 00000 (7.30km km									
	l								
					Previous Next	Finished - Import	Data Cano	el	
			_	_					

• Using Cross Section Data to Modify/Improve the Terrain Model:

Importing Existing 1D Geometry Data

- One of the major problems in hydraulic modeling is that terrain data does not often include the actual terrain underneath the water surface in the channel region.
- Mapper can now be used to create a terrain model of the channel region from the HEC- RAS cross sections and the Cross Section Interpolation Surface.

V. Constatio Pate			- Investor	Data								
Tile Edit Ontinge View Tables 7	Taala CIC Taala Ulak		Import Ge	ometry Data								
rile cuit Options view Tables	malseuspanal spanal spanal	Dunn I no I	L.Intro Ri	iver Reach Stream Lines	Cross Sections a	and IB Nodes S	corage Areas	s/2D Flow Areas and Connections				
New Geometry Data	BC Lines BreakLines Mann n	Station RS	2.									
Open Geometry Data	Hegions Hegions			In	troRiver.	Reach Stre	am Lines	Cross Sections and I	IB Nodes Storad	e Areas/2D	Flow Areas and	Connections
Save Geometry Data				The import d					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Charle the sec	
Save Geometry Data As		Intro River Rea	th Stream Lines	oss Sections and IB No	des Storage	Areas/2D Elou	Areas an	d Connections		6	ow. Check the re	eaches you want to import, a
Rename Geometry Title		-Node Types in T	able		in and in the second se			a connectoria (with the space b	oar)
Delete Geometry Data		Cross Sect	ions (XS) 🔽 Brid	dges and Culverts (BR)	(Culv) 🔽 I	Inline Structure	s (IS)	 Lateral Structures (LS) 				
Comute Clinboard										t	Import	Merge Mode
Diat		Import River:	(All Rivers)	Import As:		# RS =	189 # Ne	w = 189 # Import = 189			Stream Lines	
Print		Import Reach:		Import As:				Check New	Check Existing	Reset	V	Replace
Import Geometry Data	GIS Format		The imp	orted RS can be edited	l here, change	the import Riv	er and Rea	ach names on the previous tal	Ď			
Exit Geometry Data Editor	USACE Survey Data For	Import File	Import File	Import File	Import As	Import	Import					
	HEC-RAS Format	River	Reach	RS	RS	Status	Data					
Storage	HEC-2 Format	1 Bald Eagle	Loc Hav	138154.4	138154.4	new						
Area	UNET Geometry Format	2 Bald Eagle	Loc Hav	137690.8	137690.8	new						
2DFlow	HEC Stream Alignment	3 Baid Eagle	Loc Hav	13/32/.0	13/32/.0	new						
Area	Mike 11 Cross Sections	5 Bald Eagle	Loc Hav	136202.3	136202.3	new						
	CSV/Commo Senerator	6 Bald Eagle	Loc Hay	135591.4	135591.4	new	<u> </u>					
SA/2D Area Conn	CSV (Comma Seperated	7 Bald Eagle	Loc Hav	135068.7	135068.7	new	N N					
	GML Format	8 Bald Eagle	Loc Hav	134487.2	134487.2	new	<u> </u>			_		
		9 Bald Eagle	Loc Hav	133881.0	133881.0	new	V					
		10 Bald Eagle	Loc Hav	133446.1	133446.1	new	V					
		11 Bald Eagle	Loc Hav	132973.6	132973.6	new						
		12 Bald Fagle	Loc Hav	132363.8	132363.8	new				•		
		S	elect Cross Section Pr	roperties to Import		Match Impo	rt File RS to	o Existing Geometry RS				
		Node Names		Ineffective Areas		Matching To	lerance	.01 Match to Existing				
		Descriptions		Blocked Obstructions						ar	ncel	
		Picture Refere	ences	XS Lids		Round Selec	ted RS					
		GIS Cut Lines	ian Data	Ice Data Ration Currups		2 decimal p	aces	▼ Round				
		Reach Length		Skew Angle		- Generate R	S Based on	main channel lengths				
		Manning's n V	alues	Fixed Sediment Elevat	ion	(only availa	ble when l	poking at a single reach)				
		Bank Stations	V	HTab Parameters		Starting R	S Value:	2 decimal place 🔻				
		Contraction E	xpansion Coef 🛛 🗖	Pilot Channel Paramet	ers	Creater	C in miles	Create DS in feat				
		Levees				Create	to in miles	Create RS In feet				

- Using Cross Section Data to Modify/Improve the Terrain Model:
- One of the major problems in hydraulic modeling is that terrain data does not often include the actual terrain underneath the water surface in the channel region.
- Mapper can now be used to create a terrain model of the channel region from the HEC- RAS cross sections and the Cross Section Interpolation Surface.

- Using Cross Section Data to Modify/Improve the Terrain Model:
- One of the major problems in hydraulic modeling is that terrain data does not often include the actual terrain underneath the water surface in the channel region.
- Mapper can now be used to create a terrain model of the channel region from the HEC- RAS cross sections and the Cross Section Interpolation Surface.

- Using Cross Section Data to Modify/Improve the Terrain Model:
- From HEC-RAS Mapper, turn on the Geometry layer for the geometry data to be used in creating the channel terrain model.
- Once the geometry layers are completed, the channel terrain model is created by right clicking on the Geometry layer and selecting Export Layer, then Create Terrain GeoTIFF from XS's (channel only).

- Using Cross Section Data to Modify/Improve the Terrain Model:
- From HEC-RAS Mapper, turn on the Geometry layer for the geometry data to be used in creating the channel terrain model.
- Once the geometry layers are completed, the channel terrain model is created by right clicking on the Geometry layer and selecting Export Layer, then Create Terrain GeoTIFF from XS's (channel only).

• Using Cross Section Data to Modify/Improve the Terrain Model:

cross sections.

- From HEC-RAS Mapper, turn on the Geometry layer for the geometry data to be used in creating the channel terrain model.
- Once the geometry layers are completed, the channel terrain model is created by right clicking on the Geometry layer and selecting Export Layer, then Create Terrain GeoTIFF from XS's (channel only).

- Using Cross Section Data to Modify/Improve the Terrain Model:
- From HEC-RAS Mapper, turn on the Geometry layer for the geometry data to be used in creating the channel terrain model.
- Once the geometry layers are completed, the channel terrain model is created by right clicking on the Geometry layer and selecting Export Layer, then Create Terrain GeoTIFF from XS's (channel only).

- Using Cross Section Data to Modify/Improve the Terrain Model:
- Let's create combined Channel and Overbank terrains

- Using Cross Section Data to Modify/Improve the Terrain Model:
- Let's create combined Channel and Overbank terrains

Objectives of This Workshop

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- Required geophysical and flow information for setting up HEC-2. RAS 2D models
- **3.** Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- 4. Overview of how to execute a combined 1D/2D unsteady flow model in HEC-RAS
- 5. Overview of how to demonstrate the result of a combined 1D/2D unsteady flow model in HEC-RAS and RAS Mapper output capabilities

- Development of 2D computational mesh:
- The user will most likely select a nominal grid resolution to use (e.g. 200 x 200 ft cells), and the automated tools within HEC-RAS will build the computational mesh.
- After the initial mesh is built, the user can refine the grid with break lines and the mesh editing tools.
- A background true color image of the natural topography (e.g. Google map) is really helpful in better delineating 2D Computational mesh boundaries.

🔚 HEC-RAS 5.0.3		
File Edit Run View Options GIS Tools Help		
▆▤⊻ёェ₂逾ᄬ╬ѯ≱≵ѯӟ҉ҩ	😻 🗠 🖳 🖩 💼 📽 🛤 As Mapper File Tools Help	
Project: Bald Eagle Creek Example Dam Break Study Ic:\\2D Unsteady Flow H	Hydraulics \BaldEagleCrkMulti2D \Bal	b
Plan:	Geometries Arrow BaldEsgleCreek_Geom_Test	
Geometry: Bald Eagle Multi 2D Areas c:\\2D Unsteady Flow H	Tydraulics \BaldEagleCrkMulti2D \Bal	
Steady Flow:	- XS - XS Interpolation Surfaces	
Unsteady Flow: 1972 Flood Event - 2D Leve Structure c:\\2D Unsteady Flow H	Tydraulics \BaldEagleCrkMulti2D \Bal	
Description : The United States Army Corps of Engineers has granted access to the information in	this model for instructional	
,	Google Satellite Wms	
	- I Terrain50_Org20#Combined	
RAS Mapper		
File Tools Help		
Selected Layer: BaldEagleCreek_Geom_1est		
BaldEagleCreek_Geom_Test		
XS Interpolation Surfaces	, I I I I I I I I I I I I I I I I	
Storage Areas		
ArcGIS USA Topo Majs		
Results		
Terrains Add map data layers	2	
Terrait Add Web Imagery layer		a second a second s
Add new Land Cover layer @ ArcGIS World Terrain Base		
Add existing Land Cover layer 🚳 ArcGIS World Topo Map	= •	
Bing Satellite		
Google Hybrid		
Goode Map		
Google Tarain Streets Wa	ter	
Google Terrain		
MapQuestOpenAerial		
MapQuestOpenStreets	Messages Views Profile Lines	
NASA USDA NAIP Infared		
OpenStreetMaps	•	
Reprojection Resample Method: nea		
	OK Close at	

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Development of 2D computational mesh:
- The user will most likely select a nominal grid resolution to use (e.g. 200 x 200 ft cells), and the automated tools within HEC-RAS will build the computational mesh.
- After the initial mesh is built, the user can refine the grid with break lines and the mesh editing tools.
- A background true color image of the natural topography (e.g. Google map) is really helpful in better delineating 2D Computational mesh boundaries.

- Development of 2D computational mesh:
- The user must add a 2D flow area polygon to represent the boundary of the 2D area using the 2D flow area drawing tool in the Geometric Data editor (just as the user would create a Storage Area).
- Additionally, the user may want to bring in a shapefile that represents the protected area, if they are working with a leveed system.
- The boundary between a 1D river reach and a 2D flow area should be high ground that separates the two. For levees and roadways this is obviously the centerline of the levee and the roadway.

You will be prompted to specify a name for the 2D flow area HEC-RAS Enter the name for the new 2D Flow Area (16 Characters Max).

NOTE: A 2D flow area must be drawn within the limits of the terrain model area being used for the study.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Development of 2D computational mesh:
- The user must add a 2D flow area polygon to represent the boundary of the 2D area using the 2D flow area drawing tool in the Geometric Data editor (just as the user would create a Storage Area).
- Additionally, the user may want to bring in a shapefile that represents the protected area, if they are working with a leveed system.
- The boundary between a 1D river reach and a 2D flow area should be high ground that separates the two. For levees and roadways this is obviously the centerline of the levee and the roadway.

- Adding breaklines inside 2D flow areas:
- Before the computational mesh is created the user may want to add break lines to enforce the mesh
 generation tools to align the computational cell faces along the break lines.
- Break lines should be added to any location that is a barrier to flow, or controls flow/direction.
- Break lines can also be added after the main computational mesh is formed, and the mesh can be regenerate just around that break line.

- Adding breaklines inside 2D flow areas:
- Before the computational mesh is created the user may want to add break lines to enforce the mesh generation tools to align the computational cell faces along the break lines.
- Break lines should be added to any location that is a barrier to flow, or controls flow/direction.
- Break lines can also be added after the main computational mesh is formed, and the mesh can be regenerate just around that break line.

Breaklines can be imported from:

- <u>Shapefiles</u>
- Drawing by hand
- Pasting detailed coordinates for an existing breakline into the breakline coordinates table
- Now this also will be observable as a layer at Geometry Editor window.
- The outline color and line thickness can be modified. Double clicking the "Lock_Haven_CenterLine" will open up a new window where user can adjust the outline view of the line.

- Adding *breaklines* inside 2D flow areas:
- Before the computational mesh is created the user may want to add break lines to enforce the mesh generation tools to align the computational cell faces along the break lines.
- Break lines should be added to any location that is a barrier to flow, or controls flow/direction.
- Break lines can also be added after the main computational mesh is formed, and the mesh can be regenerate just around that break line.

• Adding *breaklines* inside 2D flow areas:

RAS Manne

- Before the computational mesh is created the user may want to add break lines to enforce the mesh
 generation tools to align the computational cell faces along the break lines.
- Break lines should be added to any location that is a barrier to flow, or controls flow/direction.
- Break lines can also be added after the main computational mesh is formed, and the mesh can be regenerate just around that break line.

File Tools Help		
l 🗠 🖑 🌒		
Coconstries BaldEagleCreek_Geom_Test VRvers VRvers Sank Lines XS Interpolation Surfaces Storage Areas D 2D Flow Areas	Lest ▶ Shapefiles ↓ test ▶ Shapefiles BE ♥ Date modified Type Size	Breaklines can be imported from: • Shapefiles • Drawing by band
C Geometric Data - BaldEagleCreek_Geom_Test2		
Internet Edit code Edit code	Pot WS extents for Profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Control of the profile: Image: Contrenteprofil	 Pasting detailed coordinates for an existing breakline into the breakline coordinates table Image: State of the state of t

- Adding *breaklines* inside 2D flow areas:
- Before the computational mesh is created the user may want to add break lines to enforce the mesh
 generation tools to align the computational cell faces along the break lines.
- Break lines should be added to any location that is a barrier to flow, or controls flow/direction.
- Break lines can also be added after the main computational mesh is formed, and the mesh can be regenerate just around that break line.

Breaklines can be imported from:

- Shapefiles
- Drawing by hand
- Pasting detailed coordinates for an existing breakline into the breakline coordinates table

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Adding *breaklines* inside 2D flow areas:
- Before the computational mesh is created the user may want to add break lines to enforce the mesh generation tools to align the computational cell faces along the break lines.
- Break lines should be added to any location that is a barrier to flow, or controls flow/direction.
- Break lines can also be added after the main computational mesh is formed, and the mesh can be regenerate just around that break line.

Breaklines can be imported from:

- Shapefiles
- Drawing by hand
- Pasting detailed coordinates for an existing breakline into the breakline coordinates table

Once a break line is drawn the software will ask you to enter a name for the break line.

- Adding *breaklines* inside 2D flow areas:
- Before the computational mesh is created the user may want to add break lines to enforce the mesh
 generation tools to align the computational cell faces along the break lines.
- Break lines should be added to any location that is a barrier to flow, or controls flow/direction.
- Break lines can also be added after the main computational mesh is formed, and the mesh can be regenerate just around that break line.

Breaklines can be imported from:

- Shapefiles
- Drawing by hand
- Pasting detailed coordinates for an existing breakline into the breakline coordinates table

HEC-RAS				
Enter Breakline Cell Spacing				
Minimum (blank for mesh spacing) Maximum (blank for mesh spacing)	250 250			
OK Cancel D	efaults Help			

- Adding *breaklines* inside 2D flow areas:
- Before the computational mesh is created the user may want to add break lines to enforce the mesh generation tools to align the computational cell faces along the break lines.
- Break lines should be added to any location that is a barrier to flow, or controls flow/direction.
- Break lines can also be added after the main computational mesh is formed, and the mesh can be regenerate just around that break line.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating the 2D Computational Mesh:
- After all the break lines have been added, the computational mesh can be generated. Keep in mind the user can also add additional break lines after the mesh has been generated, and the computational mesh can be refined around an individual break line at any time.
- The 2D flow area defines the boundary for which 2D computations will occur.

- Cell Center: this is where the water surface elevation is computed for the cell. The cell center does not necessarily correspond to the exact cell centroid.
- Cell Face: Faces are generally straight lines, but they can also be multi-point lines, such as the outer boundary of the 2D flow area.
- Cell Face Points: are the ends of the cell faces. The Face Point (FP) numbers for the outer boundary of the 2D flow area are used to hook the 2D flow area to a 1D elements and boundary conditions.

- Creating the 2D Computational Mesh:
- The 2D Flow Area editor allows the user to select a nominal grid size for the initial generation of the 2D flow area computational mesh.
- The 2D flow area defines the boundary for which 2D computations will occur.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating the 2D Computational Mesh:
- For example, if the user enters Spacing DX = 250, and Spacing DY = 250, they will get a computational mesh that has grids that are 250 x 250 everywhere, except around break lines and the outer boundary.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating the 2D Computational Mesh:
- Since the user can enter break lines, the mesh generation tools will automatically try to "snap" the cell faces to the breaklines. The cells formed around break lines may not always have cell faces that are aligned perfectly with the break lines.

• Creating the 2D Computational Mesh:

Pump Station

<12.99

K Geometric Data - BaldEagleCreek_Geom_Test2

Junct.

Cross Section

Brdg/Cuk

Inline

Structur

Latera

2D Flow Area

ĎĩĦ

Pump Station

> HTab Param.

View Picture

1Ô1

File Edit Options View Tables Tools GIS Tools Help

SA/2D Area SA/2D Area 2D Area 2D Area Conn BC Lines BreakLines Mann n Regions

 Since the user can enter break lines, the mesh generation tools will automatically try to "snap" the cell faces to the breaklines. The cells formed around break lines may not always have cell faces that are aligned perfectly with the break lines.

Plot WS extents for Profile

2D Flow Areas

2D Flow Area: 2DFlowArea_Test

Connections and References to this 2D Flow Area

🔶 ... (none)

The user can view these points by pressing the View/Edit Computational Point's button, which brings the points up in a table. The user can cut and paste these into a spreadsheet, or edit them directly if desired (It is not envisioned that anyone will edit the points in this table or Excel, but the option is available).

23

355263.8750365

355503.0303049

355374.2382449

355589 7761908

355504.0039183

355716 1483992

355660 5971519

355849 2432670

355868 8569173

356006 5311284

355926 4824789

356175.2468007

356194.7289412

2048999.369421.

2049072.203188

2048747.822127.

2048874.484646.

2048533.492123.

2048665.759728.

2048321.305230.

2048485.355964.

2048139.514795.

2048348 191127

2048065.592481.

2048090.418116.

2047895.198078.

18619

18620

18621

18622

18623

18624

18625

18626

18627

18628

18629

18630

18632

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating the 2D Computational Mesh:
- Since the user can enter break lines, the mesh generation tools will automatically try to "snap" the cell faces to the breaklines. The cells formed around break lines may not always have cell faces that are aligned perfectly with the break lines.

	Land Cover to Manning's n (2D Flow Areas Only)
🔨 Geometric Data - BaldEagleCreek_Geom_Test2	Set Manning's n to Override Default Land Cover Values
File Edit Options View Tables Tools GISTools Help Tools River Istorage 20/1/w Isozoneralsozoneral 20/1/20 20/1/20 1000 0000 0000 0000000000	Selected Area Edit Options
Reach Prea Prea Cosh BC Lines BreakLines Mannin Station No Cosh Cosh Cosh Cosh Cosh Cosh Cosh Cos	Add Constant Multiply Factor Set Values Replace
	Land Cover Layer Geometry Overrides (Blank for Default Values)
	Name Default Mann n Base Mann n (blank for default)
Section	1 0.06
Brdg/Culv	
Shuoture 2D Flow	
Lateral Structure 2D Flow	
Conne	
Sorage Area	Associated Layer: Not yet associated with this Geometry
2DFlw free	OK (Cancel)
SAZOARES	
Purp	
This field is used to enter a lefault	Ianning's n Value: 0.06 2D Flow Area Computation Points
Hīab Param	Land Cover to Manning's n
default Manning's n values that 📓	
will be used for the cell faces in Cell Volum	e Filter Tol(ft):
Face Prof	ile Filter Tol(ft): 0.01 Generate Computation Points on Regular Interval with All Breaklines
🔹 🚺 the 2D flow area.	a-Elev Filter Tol(ft): 0.01 Enforce Selected Breaklines (and internal Connections)
This must be re-sheeled anos a	vevance Tol Ratio: 0.02
Inis must be re-checked once a	View/Edit Computation Points
land cover laver is created and large Force	Mesh Recomputation OK Cancel
associated with the 2D geometry.	The second s
	19/12/09/52, 3/3383.20

- Assessing the 2D Computational Mesh:
- The computational mesh will control the movement of water through the 2D flow area.
- The computational cell faces control the flow movement from cell to cell.
- One water surface elevation is calculated for each grid cell center at each time step.

Within HEC-RAS, the underlying terrain and the computational mesh are preprocessed in order to develop detailed elevation– volume relationships for each cell, and also detailed hydraulic property curves for each cell face (elevation vs. wetted perimeter, area, and roughness).

- Where the water surface slope is flat and not changing rapidly, larger grid cell sizes are appropriate.
- Steeper slopes, and localized areas will require smaller grid cells to capture those changes.

- Assessing the 2D Computational Mesh:
- The computational mesh will control the movement of water through the 2D flow area.
- The computational cell faces control the flow movement from cell to cell.
- One water surface elevation is calculated for each grid cell center at each time step.

HEC-RAS allows the user to enter a new break line on top of an existing mesh and then regenerate the mesh around that break line, without changing the computational points of the mesh in other areas.

The user can draw a new break line, then left click on the break line and select the option **"Enforce Break line in 2D Flow Area"**. Once this option is selected, new cells will be generated around the break line with cell faces that are aligned along the break line.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Assessing the 2D Computational Mesh:
- The user can control the size/spacing of cells along the break line.
- The option "Edit Break Line Cell Spacing" allows the user to enter a minimum and maximum cell spacing to be used when forming cells along that break line. The minimum cell spacing is used directly along the break line.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Assessing the 2D Computational Mesh:
- After entering the break line cell spacing the user must select the "Enforce Break line in 2D Flow Area" option to enforce the new association of cell spacing.
- When creating a mesh around a break line, it may be desirable or even necessary to use smaller cells than the nominal cell size used in other areas of the mesh.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Assessing the 2D Computational Mesh:
- Cells around the break lines and the 2D flow area boundary will typically be irregular in shape, in order to conform to the user specified break lines and boundary polygon.
- The mesh generation tools utilize the irregular boundary, as well as try to ensure that no cell is smaller in area than the nominal cell size.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Assessing the 2D Computational Mesh:
- Cells around the break lines and the 2D flow area boundary will typically be irregular in shape, in order to conform to the user specified break lines and boundary polygon.
- The mesh generation tools utilize the irregular boundary, as well as try to ensure that no cell is smaller in area than the nominal cell size.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Assessing the 2D Computational Mesh:
- Cells around the break lines and the 2D flow area boundary will typically be irregular in shape, in order to conform to the user specified break lines and boundary polygon.
- The mesh generation tools utilize the irregular boundary, as well as try to ensure that no cell is smaller in area than the nominal cell size.

- Assessing the 2D Computational Mesh:
- Computational cells used within the HEC-RAS 2D code cannot have two faces that are collinear (i.e. they cannot form a straight line).
- The problem of "Cell with Collinear Faces" generally caused by placing two or more break lines parallel to each other, and close together, such that the creation of cells along one break line can create problems with cells along the other break line. (like the left figure below)
- Where two cells meet (at a face point), the outside angle formed by the two faces must be greater than 180 degrees.
 Parallel Breaklines

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating a Spatially Varied Manning's Roughness Layer:
- A spatially varying land cover data set can be created in RAS Mapper, and then associated with a specific geometry data set.
- There are two types of land cover layers which can be applied in HEC-RAS 2D: 1. user defined polygons (shapefile) where user can override specific roughness values to a particular area, 2. Classified gridded layer (e.g. National Landcover Dataset layers).
- **NOTE:** User's must have a land cover data set in order utilize spatially varying Manning's n values within 2D Flow Areas, and to also utilize the capability of specifying User define Manning's n Regions.
- **RAS Mapper** allows the user to use multiple land use data files and types, to create a single land use coverage layer in HEC-RAS.
- **RAS Mapper** ingests the various land use data types and creates a combined land-use coverage (Layer) and stores it as a **GeoTIFF file**.

User-defined polygon (shapefile) as landcover layers

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating a Spatially Varied Manning's Roughness Layer:
- A spatially varying land cover data set can be created in RAS Mapper, and then associated with a specific geometry data set.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating a Spatially Varied Manning's Roughness Layer:
- A spatially varying land cover data set can be created in RAS Mapper, and then associated with a specific geometry data set.

The **"Input Files"** section is for selecting the grid and shapefiles to be used as input, as **•** well as setting their priority.

🚼 RA	5 Mapper	Land Cover Layer
RA' File	Mapper Tools Help Set Projection for Project Web Imagery New Terrain Add_Map Lavers New Land Cover Import NLD Manage Results Maps Render Mode Options Show Legend Show Profile Line Distance Browse for Land Cover Files We bladEagleCrkMulti2D_test > LandCover fearch LandCover<th>Land Cover Layer Import Extents: Geometries Import Extents: Geometries Import Extents: Geometries Output File RAS Identifier ID Mann. N</th>	Land Cover Layer Import Extents: Geometries Import Extents: Geometries Import Extents: Geometries Output File RAS Identifier ID Mann. N
	Computer Computer LandUse File name: LandUse LandUse LandUse LandUse LandUse LandUse LandUse LandUs	Output ID Standards: Output ID Standards: I Cell Size: 10 feet Filename: C:\\LandCover.hdf Image: Cancel Image: Create Cancel Image: Cancel
	rie name: LandUse	71
- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating a Spatially Varied Manning's Roughness Layer:
- A spatially varying land cover data set can be created in RAS Mapper, and then associated with a specific geometry data set.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating a Spatially Varied Manning's Roughness Layer:
- A spatially varying land cover data set can be created in RAS Mapper, and then associated with a specific geometry data set.

The Output File section is used to show what HEC-RAS will use for the Land Cover Identifiers, their numeric ID, and optionally a user < entered Manning's n value for each Land Cover type

- Creating a Spatially Varied Manning's Roughness Layer:
- A spatially varying land cover data set can be created in RAS Mapper, and then associated with a specific geometry data set.

Once the user has created a Land Cover layer in the *.tif file format, then they need to associate that data layer with the geometry file(s) they want to use it with.

- Creating a Spatially Varied Manning's Roughness Layer:
- A spatially varying land cover data set can be created in RAS Mapper, and then associated with a specific geometry data set.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating a Spatially Varied Manning's Roughness Layer:
- Once a Land Cover layer is associated with a geometry file, the user can then build a table of Land Cover versus Manning's n values, which can then be used in defining roughness values for 2D flow areas.
- This Land Cover versus roughness table is developed from within the HEC-RAS geometric data editor for a specific geometry file.

🦂 Geometric Data - BaldEagleCre	eek_Geom_Test2		Land Cover to Manning's n (2D Flow Area	as Only)			
File Edit Options View Ta	ibles Tools GIS Tools Help			Set M	1anning's n to Override Default Land Cover Values		
Tools River Storage 20 Reach Area 6	Manning's n or k values (Horizontally varied)	Description :	Selected Area Edit Options				
Editors	Reach Lengths		Add Constant Multiply Factor	Set Values	Replace		
Junct. 😥 📂	Contraction\Expansion Coefficients (Steady Flow)		Land Cover Layer		Geometry Overrides (I	Blank for Default Values)	
	Contraction\Expansion Coefficients (Unsteady Flow)	Contraction of the local distribution of the	Name	Default Mann n	Base Mann n (bla	nk for default)	
Cross	Minor Losses	and the second se	1 barren land rock/sand/clay	0.04			0.04
- Section	Bank Stations		2 cultivated crops	0.06			0.04
Brdg/Culv	Levees	Physical Contract	4 developed, high intensity	0.1			0.04
	Ice Cover	and the second second	5 developed, low intensity	0.1			0.04
Inline	Names		6 developed, medium intensity	0.08			0.04
Structure	Dicture File Associations		7 emergent herbaceous wetland	0.08			0.04
Lateral	Ficture file Associations	and the second	8 evergreen forest	0.12			0.04
Structure	Ineffective Flow Areas		10 mixed forest	0.045			
	Blocked Obstructions		11 open water	0.035			
Storage Area	Bridge Width Table		12 pasture/hay	0.06			
	Weir and Gate Coeff Table		13 shrub/scrub	0.08			
2DFlow Area	HTab Internal Boundaries Table		14 woody wetlands	0.12			
	Linear Routing Coefficients		Associated Layer: C:\\Documents\HEC D	ata\HEC-RAS\Exam	ple Projects - Training\2D Unsteady Flow Hydraulics\	BaldEagleCrkMulti2D_test\LandCover\L	andCover.tif
SA/2D Area	Priessmann's Slot on Lidded XS's		,		·····,·····,····,·····,		L Creat L
						OK	
Pump	Manning's n by Land Cover				↑		
Station							
HTab Param							
View View							

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating a Spatially Varied Manning's Roughness Layer:
- In addition to defining Manning's n values by Land Cover, the user has the option to create their own 2D flow area Manning's n value regions.
- These regions are user defined polygons that can be used to override the base Manning's n values within that polygon. They can also be used to calibrate a model.
- The user defined 2D flow area "Manning's n Regions" are defined in the Geometric data editor, and apply only to that geometry file.

- This Manning's n by Land Cover table will be used during the 2D flow area pre- processing stage (i.e. the process where the software creates the cell and cell face table properties).
- In order to get these Manning's n values into the 2D flow area property tables, the 2D flow area Hydraulic Property tables <u>must be recomputed</u>.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating Hydraulic Property Tables for the 2D Cells and Cell Faces:
- Once a terrain model is created, and optionally a Manning's n by Land Cover table, then the following steps are required to create the hydraulic property tables for the 2D cells and cell faces, which are used in the 2D hydraulic computations:

	Dunning the 2D Coord	rio Dronzocco						
V	Running the 2D Geome	ric Preproces	sor		🚼 RAS M	lapper		
					File 1	Tools	Help	
					Selected L	Layer: Lai	ndCover	🔓 🕁 🗶 ж 🦻
						eome		
						Bal	Manage Geometry Asso	ciations
inage Geo	ometry Associations					V Rive	ers	17. A
	,					Ban	ik Lines	and the second
Туре	RAS Geometry Layers	Terrain		Land Cover	_			
Geometry	Bald Eagle Multi 2D Areas	Terrain50	-	LandUse	-	_		
Geometry	1D-2D Dam Break Model Refined Grid	Terrain50	•	LandUse	-			
Geometry	U.S 2D - D.S 1D No Dam	Terrain50	-	LandUse	-			
Geometry	2D to 2D Connection	Terrain50	-	LandUse	-			
Geometry	SA to 2D Connection	Terrain50	-	LandUse				
Geometry	Single 2D Area - Internal Dam Structure	Terrain50	-	(None)				
Geometry	SA to 2D Flow Area	Terrain50	-	(None)				
Geometry	SA to 2D Flow Area - Detailed	Terrain50	-	(None)	•			
Results	PMF Multi 2D		-	(None)			←	
Results	1D-2D Refined Grid		-	(None)				
Results	2D to 1D No Dam		-	(None)				
Results	2D to 2D Run		-	(None)				
Results	SA to 2D Dam Break		-	(None)				
Results	Single 2D		-	(None)				
Results	2D Levee Struc		-	(None)				
Results	SA-2D Det Brch		-	(None)				
Results	SA-2D Det FEQ		-	(None)				

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating Hydraulic Property Tables for the 2D Cells and Cell Faces:
- Once a terrain model is created, and optionally a Manning's n by Land Cover table, then the following steps are required to create the hydraulic property tables for the 2D cells and cell faces, which are used in the 2D hydraulic computations:
 - Associating a Terrain Layer with a Geometry File
 - 2D Cell and Cell Face Geometric Preprocessor
 - Running the 2D Geometric Preprocessor

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating Hydraulic Property Tables for the 2D Cells and Cell Faces:
- Once a terrain model is created, and optionally a Manning's n by Land Cover table, then the following steps are required to create the hydraulic property tables for the 2D cells and cell faces, which are used in the 2D hydraulic computations:
 - Associating a Terrain Layer with a Geometry File
 - 2D Cell and Cell Face Geometric Preprocessor
 - Running the 2D Geometric Preprocessor

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating Hydraulic Property Tables for the 2D Cells and Cell Faces:
- Once a terrain model is created, and optionally a Manning's n by Land Cover table, then the following steps are required to create the hydraulic property tables for the 2D cells and cell faces, which are used in the 2D hydraulic computations:
 - Associating a Terrain Layer with a Geometry File
 - 2D Cell and Cell Face Geometric Preprocessor
 - Running the 2D Geometric Preprocessor

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating Hydraulic Property Tables for the 2D Cells and Cell Faces:
- Once a terrain model is created, and optionally a Manning's n by Land Cover table, then the following steps are required to create the hydraulic property tables for the 2D cells and cell faces, which are used in the 2D hydraulic computations:
 - Associating a Terrain Layer with a Geometry File
 - 2D Cell and Cell Face Geometric Preprocessor
 - Running the 2D Geometric Preprocessor

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- Creating Hydraulic Property Tables for the 2D Cells and Cell Faces:
- Once a terrain model is created, and optionally a Manning's n by Land Cover table, then the following steps are required to create the hydraulic property tables for the 2D cells and cell faces, which are used in the 2D hydraulic computations:
 - Associating a Terrain Layer with a Geometry File
 - 2D Cell and Cell Face Geometric Preprocessor
 - <u>Running the 2D Geometric Preprocessor</u>

- External 2D flow area Boundary Conditions:
- In addition to connecting a 2D flow area to 1D River Reaches and Storage Areas, there are five types of external boundary conditions that can be linked directly to the 2D flow areas:
 - Flow Hydrograph
 - Stage Hydrograph
 - Normal Depth
 - Rating Curve
 - Precipitation

- The Normal Depth and Rating Curve boundary conditions can only be used at locations where flow will leave a 2D flow area.
- The **Flow** and **Stage Hydrograph** boundary conditions can be used for putting flow into or taking flow out of a 2D flow area.
- For a **Flow Hydrograph**, positive flow values will send flow into a 2D flow area, and negative flow values will take flow out of a 2D area.
- For the **Stage Hydrograph**, stages higher than the ground/water surface in a 2D flow area will send flow in, and stages lower than the water surface in the 2D flow area will send flow out.
- If a cell is dry and the Stage boundary condition is lower than the 2D flow area cell minimum elevation, then no flow will transfer.
- The Precipitation boundary condition can be applied directly to any 2D flow area as a time series of rainfall excesses

- Overview of how to set-up a combined 1D/2D unsteady flow model 3. in HEC-RAS
- External 2D flow area Boundary Conditions:
- In addition to connecting a 2D flow area to 1D River Reaches and Storage Areas, there are five types of external boundary conditions that can be linked directly to the 2D flow areas:
 - ✓ Flow Hydrograph
 - Stage Hydrograph
 - Normal Depth
 - **Rating Curve**
 - Precipitation

- External 2D flow area Boundary Conditions:
- In addition to connecting a 2D flow area to 1D River Reaches and Storage Areas, there are five types of external boundary conditions that can be linked directly to the 2D flow areas:

- External 2D flow area Boundary Conditions:
- In addition to connecting a 2D flow area to 1D River Reaches and Storage Areas, there are five types of external boundary conditions that can be linked directly to the 2D flow areas:

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- External 2D flow area Boundary Conditions:
- Once all of the 2D flow area boundary conditions have been identified (drawn with the "SA/2D Area BC Lines" tool), the boundary condition type and the boundary condition data are entered within the "Unsteady Flow Data" editor.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- External 2D flow area Boundary Conditions:
- Once all of the 2D flow area boundary conditions have been identified (drawn with the "SA/2D Area BC Lines" tool), the boundary condition type and the boundary condition data are entered within the "Unsteady Flow Data" editor.

Chisteady How Data Cuito	•	Internal	Flow Hydrograph			
			SA: E	BaldEagleCr BCLine: Upstream I	inflow	
ی. Unsteady Flow Data - Single 2D Are			C Read from DSS before simulation		Select DSS file and Path	
File Options Help			File:			
Boundary Conditions Initial Condition	Ap	oply Data	Path:			
Stage Hydrograph Flow Hydrograph Stream Bo T,S, Gate Openings Elev Controlled Gate	Condition Types Stage/Flow Hydr. Rating Cu Uniform Lateral Inflow Groundwater I Navigation Dams IB Stage/F	rve	Enter Table Select/Enter the Data's Starting Time G Use Simulation Time: Date Fixed Start Time: Date	Reference	Data time interval: 1 Hour	_
Rules Precipitation			No. Ordinates Interpolate Missing	Values Del Row Ins	Row	
Add Boundar	y Condition Location			Hydrograph Data		
Add RS Add SA/2D Flow Area	Add SA Connection Add Pump Sta	ation	Date	Simulation Time	Flow	
Select Location in table the	n select Boundary Condition Type			(hours)	(cfs)	
River Reach RS	Boundary Condition		1 01Jan1999 1200	00:00	1000.	_
			2 01Jan 1999 1300	01:00	3000.	_
Storage/2D Flow Areas	Boundary Condition		3 01Jan1999 1400	02:00	6500.	_
1 BaldEagleCr BCLine: Upstream Inflow	Flow Hydrograph		4 01Jan1999 1500	03:00	8000.	
2 BaldEagleCr BCLine: DSNormalDepth	Normal Depth		5 01Jan 1999 1600	04:00	9500.	_
3 BaldEagleCr BCLine: DS2NormalD	Normal Depth	· · ·	6 01Jan1999 1/00	05:00	11000.	
			7 01Jan1999 1800	08:00	12500.	-
SA Connections	Boundary Condition		0 013a11999 1900	07:00	15500	
1 Sayers Dam	1.5. Gate Openings		10 011ap1999 2100	08:00	17000	
			10 013an1999 2200	10:00	18500.	
<u> </u>			12 01 Jan 1999 2300	11:00	20000.	
• • • • • • • • • • • • • • • • • • • •	· / · / · · · · · · ·	• • • • •	13 01Jan 1999 2400	12:00	22000.	
• • • • • • • • • • • • • • • • • • •			Time Step Adjustment Options ("Critic	al" boundary conditions)		
	•/		Monitor this hydrograph for adjus	tments to computational time st	ten	
· · · · · · · · · · · · · · · · · ·		• • • •	Max Change in Flow (without cha	anging time step):		
		• • • •	Min Flow: Multiplier:	EG Slope for distri	buting flow along BC Line: 0.0005	
		• • • •	,	Plot Dat		ncel
		$\cdot \cdot \cdot /$				
		$\cdot \cdot \cdot$				
Upstream inflow		• •/ Do	wnstream Boundary	Line	89	
		\neg				

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- External 2D flow area Boundary Conditions:
- Once all of the 2D flow area boundary conditions have been identified (drawn with the "SA/2D Area BC Lines" tool), the boundary condition type and the boundary condition data are entered within the "Unsteady Flow Data" editor.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- External 2D flow area Boundary Conditions:
- Once all of the 2D flow area boundary conditions have been identified (drawn with the "SA/2D Area BC Lines" tool), the boundary condition type and the boundary condition data are entered within the "Unsteady Flow Data" editor.

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- 2D Flow Area Initial Conditions:
- 2D flow areas can:
 - ✓ start completely dry
 - ✓ be set to a single water surface elevation
 - set by using a Restart File from a previous run
 - they can be established using the 2D Initial Conditions Ramp up Time option at the beginning of the run.
 - Nothing needs to be done to start a 2D flow area in a dry condition, this is the default option.
 - The model starts with the initial conditions, it then holds all of the boundary conditions constant, based on their value at the beginning of the simulation, and then it runs a series of time steps with the constant inflow.
 - This allows the model to settle down to water surface elevations and flows that are consistent with the unsteady flow equations being applied.

م. Un	steady Flow Data -	Single 2D Area			[
File	Options Help					
Bou	ndary Conditions	nitial Conditions				Apply Data
Init	tial Flow Distribution I	Method				
0	Use a Restart File	Filename:				@
œ	Enter Initial flow dis	tribution (Optional -	leave blank	to use boundary o	ondtions)	-
					·····,	
_	Add RS					
		User spec	ified fixed flo	ws (Optional)		<u>1</u>
	River	Reach	RS	Initial Flow		
	1			1000		
	Initial Elevation of	Storage Areas/2D F	low Areas (C	ptional)	Import Min SA	Elevation(s)
Ē	Keep initial elevatio	ons constant during	warmup	2		
	Storage Area/2D F	low Area		Initial Elevation		
	1 BaldEagleCr					

- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- 2D Flow Area Initial Conditions:
- 2D flow areas can:
 - start completely dry
 - be set to a single water surface elevation
 - ✓ set by using a **Restart File** from a previous run
 - they can be established using the 2D Initial Conditions Ramp up Time option at the beginning of the run.
 - A **Restart File** can be used to establish initial conditions for an entire HEC-RAS model.
 - If a previous run has been made, and the option to write out a **Restart File** was used, then a Restart File can be used as the initial conditions for a subsequent run.
- For 2D modeling, the **Restart File** will contain a water surface elevation for every cell in the model.
- **Restart files** can be generated using either of the 2D equation sets (full Saint Venant or Diffusion Wave), and can be used to start a model with a different equation set

لم, Unsteady Flow Analysis	X						
File Options Help							
Plan : Single 2D Area - Internal Da	am Structure Short ID Single 2D						
Geometry File :	Single 2D Area - Internal Dam Structure						
Unsteady Flow File :	Single 2D Area						
Programs to Run Geometry Preprocessor Unsteady Flow Simulation Sediment Post Processor Floodplain Mapping Simulation Time Window	Plan Description : In this example a single 2D flow area is used to model the entire system, including the Dam. The computational mesh was modyfied in the area of the dam to align the cell faces along the top of the dam. A SA/2D Connection was added inside of the 2D flow area to represent the Dam, including the top of dam, overflow spillway, and low flow gates. This internal hydraulic structure will control flow						
Starting Date: 01JA Ending Date: 04JA	N1999 Starting Time: 1200 N1999 Ending Time: 1200						
Computation Settings Computation Interval: 30 Second Hydrograph Output Interval: 1 Minute Mapping Output Interval: 10 Minute Detailed Output Interval: 1 Hour Computation Level Output							
DSS Output Filename: C:\Users\shahab\Documents\HEC Data\HEC-RAS\Example Project:							
1 Storage Area Connection with breach data. 1 set to breach.							
	Compute						

File Edit R

Project:

Unsteady F

Plan: Geometry: Steady Flov

- 2D Flow Area Initial Conditions:
- 2D flow areas can:
 - start completely dry
 - be set to a single water surface elevation
 - ✓ set by using a Restart File from a previous run
 - they can be established using the 2D Initial Conditions Ramp up Time option at the beginning of the run.

· · · · · · · · · · · · · · · · · · ·
HEC-RAS - Set Output Control Options
Restart File Options Detailed Log Output Computation Level Output Options HDF5 Write Parameters Write Initial Condition file(s) during simulation First file time Hours from begining of simulation: Fixed Reference: Date: Filename: BaldEagleDamBrk.p03.DDMMMYYYY hhmm.rst
Second and additional restart files written: Hours between writes (blank for none):
[OK] Cancel

n View	Options	GIS Tools Help		
Steady	Flow Analysi	5		inss II
Unstea	dy Flow Anal	ysis		
Sedime	ent Analysis .		C:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D	BaldEagleDamBrk.prj
Water	Quality Analy	sis	C:\\2D Unsteady flow Hydraulics\BaldEagleCrkMulti2D	BaldEagleDamBrk.g09
Hydrau	ulic Design Fu	nctions		
Run M	ultiple Plans		C:\\2D Unsteady flow Hydraulics\BaldEagleCrkMulti2D	BaldEagleDamBrk.u13
Run R4	AS-MODFLOV	V Coupled Model	access to the information in this model for instructional	Customary Units
	لم, Unst	eady Flow Analysis		×
	File C	ptions Help		
	Plan	Stage and Flow O	utput Locations	5
		Flow Distribution	Locations	
		Flow Roughness	Factors	
		Seasonal Roughn	ess Factors	-
	Pro	Automated Roug	hness Calibration	d to model the
-				putational
		Unsteady Encroad	iments	to align the cell
		Ungaged Lateral I	n'lows	int the Dam,
		Dam (Inline Struc	ture) Breach	and low flow
	Sim	Levee (Lateral Str	ucture) Breach	
	Sta	A Connection P	reach	
	En	SA Connection Bi	cacit	
		Mixed Flow Optio	ins	
	Cor	Time Slicing		1 Minute 🔻
	Map	Calculation Ontio	ups and Tolerances	1 Hour 🔻
		Output Options	and references in	,
	DSS	Existion Slave Ma	the d for Cross Sections	mple Projects 😅
		Friction Slope Me	thod for Cross Sections	
		Friction Slope Me	thod for Bridges	
	1 St	Initial Backwater	Flow Optimizations	
		Sediment Compu	tation Options and Tolerances	
1	L	Sediment Output	Options)
_				

File Edit

Project:

Insteady I

Plan: Geometry:

- 2D Flow Area Initial Conditions:
- 2D flow areas can:
 - start completely dry
 - be set to a single water surface elevation
 - set by using a Restart File from a previous run
 - <u>they can be established using the 2D Initial</u> <u>Conditions Ramp up Time option at the</u> <u>beginning of the run.</u>

IEC-RAS Unsteady Computation Options and Tolerances								
General (1D Options) 2D Flow Options 1D/2D Options								
Lies Cariolis Effects (anly when using the momentum equation)								
Number of cores to	use in 2D computations							
Number of cores to	use in 2D computations:							
1	Parameter	(Default)	BaldE	agleCr			
1 Theta (0.6-1.0):			1		1			
2 Theta Warmup ().6-1.0):		1		1			
3 Water Surface To	lerance [max=0.2](ft)		0.01		0.01			
4 Volume Tolerance	(ft)		0.01		0.01			
5 Maximum Iteratio	ns		20		20			
6 Equation Set			Diffusion Wave		Diffusion Wave			
7 Initial Conditions	Time (hrs)				20			
8 Initial Conditions	Ramp Up Fraction (0-1)		0.5		0.1			
9 Number of Time S	lices (Integer Value)		1		1			
10 Eddy Viscosity Tra	ansverse Mixing Coefficient				0			
11 Boundary Condition	on Volume Check							
12 Latitude for Corio	lis (-90 to 90)							
				OK	Cancel Defaults			
						_		

View	Ontion		ools	Halp					
View	Options		oois	пер	1		. Is also four four form		- 1 Set Set
Steady	Flow Ana	lvsis				<u> </u>			iss Juni
Sedim	ent Analys	is				C:\\2D Unsteady	low Hydraulics\BaldEagleCrkMulti2	D\Bald	lEagleDamBrk.prj 🗀
Water	Quality Ar	nalysis			H	C:\\2D Unsteady	low Hydraulics\BaldEagleCrkMulti2	D\Bald	IEagleDamBrk.p03
Hydra	ulic Design	n Functi	ons		H	C: ((2D Unsteady)		Dypaid	EagleDambrk.g09
Run M	ultiple Pla	ns			t i	C:\\2D Unsteady I	low Hydraulics\BaldEagleCrkMulti2	D\Bald	lEagleDamBrk.u13
Run R/	AS-MODF	LOW Co	upled I	Model	aco	cess to the informati	on in this model for instructional	÷	US Customary Units
	, b., Ui	nstead	ly Flo	w Analysis					— ×
	File	Opti	ons	Help					
	Plan		Stag	e and Flow O	ut	put Locations			
			Flow	Distribution	Lo	cations			
			Flow	Roughness F	Fac	tors			<u> </u>
			Seas	onal Roughne		Eactors			
	Pro		Auto	mated Rough	hess Calibration				
								d to model the	
			Unst	eady Encroac	:hr	ments		to align the cell	
			Ung	aged Lateral I	Inflows				onnection was int the Dam,
			Dam	(Inline Struct	tur	re) Breach			and low flow
	Cim		Leve	e (Lateral Stru	udt	ture) Breach			cond or now
	Sta		SA C	Connection Br		ch			
	En	•	JAC	John ection bi	1	CH			
	Cor		Mixe	ed Flow Optio	ns				
	Con		Tim	e Slicing					1 Minute 💌
	Map	Г	Calc	ulation Optio	ns	and Tolerand	es		1 Hour 🔻
		L	Out	out Options					
	DSS		Frict	ion Slope Met	the	od for Cross S	ections		mple Project: 🗃
			Frict	ion Slone Met	th	od for Bridges			
	1.04		Initio	al Backwater F	Ele	w Ontimizativ			
	150		incla	ar backwater r	10	w optimizatio	/15		
			Sedi	ment Compu	tat	tion Options a	and Tolerances		
			Sedi	ment Output	0	ptions)

If a 2D area has external boundary conditions (flow hydrographs or stage hydrographs) then the 2D flow area "Initial **Condition Ramp Up Time"** must be turned on to get flow through the 2D area in order to establish its initial conditions before the start of the simulation (or even before the start of the overall model warm-up time).

File Edit R

Project:

Steady Flo Unsteady I Description

Plan: Geometry:

- 2D Flow Area Initial Conditions:
- 2D flow areas can:
 - start completely dry
 - be set to a single water surface elevation
 - set by using a Restart File from a previous run
 - <u>they can be established using the 2D Initial</u> <u>Conditions Ramp up Time option at the</u> <u>beginning of the run.</u>

HEC-RAS Unsteady Computation Options and Tolerances								
General (1D Options) 2D Flow Options 1D/2D Options								
Use Coriolis Effects (only when using the momentum equation) Number of cores to use in 2D computations: 10 cores								
Parameter	(Default)	BaldEagleCr						
1 Theta (0.6-1.0):	1	1						
2 Theta Warmup (0.6-1.0):	1	1						
3 Water Surface Tolerance [max=0.2](ft)	0.01	0.01						
4 Volume Tolerance (ft)	0.01	0.01						
5 Maximum Iterations	20	20						
6 Equation Set	Diffusion Wave	Diffusion Wave						
7 Initial Conditions Time (hrs)		20						
8 Initial Conditions Ramp Up Fraction (0-1)	• 0.5	0.1						
9 Number of Time Slices (Integer Value)	1	1						
10 Eddy Viscosity Transverse Mixing Coefficient		0						
11 Boundary Condition Volume Check								
12 Latitude for Coriolis (-90 to 90)								
		OK Cancel Defaults						

0.3			- • •
n View Options GI	Tools Help		-1 -1
Steady Flow Analysis .			DSS
Sediment Analysis	C:\\2D Unste	ady Flow Hydraulics\BaldEagleCrkMulti2D\	BaldEagleDamBrk.prj 🗀
Water Quality Analysis	(2D Unste	ady flow Hydraulics\BaldEagleCrkMulti2D\ adv. flow Hydraulics\BaldEagleCrkMulti2D\	BaldEagleDamBrk.p03
Hydraulic Design Fund	tions	ady now myaradics (palacagican Marazo (balazagiebambi kigos
Run Multiple Plans	C:\\2D Unste	ady flow Hydraulics\BaldEagleCrkMulti2D\	BaldEagleDamBrk.u13
Run RAS-MODFLOW	oupled Model	rmation in this model for instructional	US Customary Units
b. Unstei	dy Flow Analysis		×
File Op	ions Help		
Plan	Stage and Flow Output Locati	ons	
1 1011	Flow Distribution Locations		
	Flow Roughness Factors		<u> </u>
	Concerned Bauerbased a Factors		•
	Seasonal Roughness Factors		
Pro	Automated Roughness Calibra	ition	d to model the
	Unsteady Encroachments		to align the cell
	Ungaged Lateral Inflows		onnection was
			int the Dam, and low flow
	Dam (Inline Structure) Breach		control flow
Sim	Levee (Lateral Structure) Bread	h	
Sta 🗸	SA Connection Breach		
En	Mined Flow Ontions		
Cor	Wixed Flow Options		
Cor	Time Slicing		1 Minute 💌
Map	Calculation Options and Toler	ances	1 Hour 💌
	Output Options		
DSS	Friction Slope Method for Cro	ss Sections	imple Project: 🗃
	Eriction Slope Method for Brid	ner	
	Triction Stope Wethod for Brid	yes	
1 Sti	Initial Backwater Flow Optimiz	ations	
	Sediment Computation Optio	ns and Tolerances	
	Sediment Output Options)

 Additionally, the user must enter what fraction of that time is used for ramping the 2D boundary conditions up from zero to their first value (i.e. a stage or a flow coming in).

Objectives of This Workshop

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- 2. Required geophysical and flow information for setting up HEC-RAS 2D models
- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- 4. Overview of how to execute a combined 1D/2D unsteady flow model in HEC-RAS
- Overview of how to demonstrate the result of a combined 1D/2D unsteady flow model in HEC-RAS and RAS Mapper output capabilities

- Running a combined 1D/2D unsteady flow model in HEC-RAS is no different than running a standalone 1D unsteady flow model.
- HEC-RAS has the ability to perform two-dimensional unsteady flow routing with either the Full Saint Venant equations (with added terms for turbulence modeling and Coriolis effects) or the Diffusion wave equations.
- Within HEC-RAS the Diffusion Wave equations are set as the default, however, the user should always test if the full Saint Venant Equations are need for their specific application.
- <u>A general approach is to use the Diffusion wave equations while developing the model and getting</u> <u>all the problems worked out</u>
- Once the model is in good working order, then make a second HEC-RAS Plan and switch the computational method to the Full Momentum equation option
- Full Momentum will generally require a smaller computation interval than the Diffusion wave method to run in a stable manner. If there are significant differences between the two runs, the user should assume the Full Momentum (Saint Venant equations) answer is more accurate
- There are some obvious situations that the Full Momentum equation set should always be used:
 - ✓ Highly Dynamic Flood Waves (e.g. dam breaching or flash flood analysis)
 - ✓ Abrupt Contractions and Expansions (e.g. In areas of very abrupt contractions and expansions)
 - ✓ **Tidally Influenced Conditions** (e.g. modeling a bay, estuary, or a river that is tidally influenced)
 - ✓ General Wave Propagation Modeling (e.g. wave run-up on a wall or around an objects)
 - ✓ Super Elevation around Bends (a tight bend in either a natural or designed channel, and you want to see if there is any super elevation of the water surface on the outside of the bend)
 - To compute a detailed velocity distribution at or near a hydraulic structure (e.g through a bridges and around the abutments and piers; through a gate or culvert; etc.)

- Selecting an Appropriate Grid Size and Computational Time Step
- Assigning an appropriate mesh cell size (or sizes) and computational time step (ΔT) is very important to getting accurate answers with 2D flow areas.
- It is very important to understand the way the computational mesh is representing the underlying terrain in order to make a good decision on how many cells, and of what size, will be necessary to model the terrain and the event accurately.
- The HEC-RAS cell faces are detailed cross sections, which get processed into detailed elevation versus area, wetted perimeter, and roughness.
- The key to making a good computational mesh in HEC-RAS is ensuring that the faces of the cells capture the high point of barriers to the flow.
- A single water surface elevation is computed in the center of each cell. So the larger the cell size, the further apart are the computed values of the water surface, and thus the slope of the water surface is averaged over longer distances (in two dimensions)

- If the water surface slope will vary rapidly, smaller cell sizes must be used in that area to capture the changing water surface and its slope.
- HEC-RAS allows the user to vary the cell size and shape at all locations in the model.
- It is also recommended to align grid cells along the main channel by means of adding **Breaklines**.

250 ft. X 250 ft. mesh grid laid over the 20 ft. X 20 ft. terrain model

- Selecting an Appropriate Grid Size and Computational Time Step
- The cell size must be adequate to describe the water surface slope and changes in the water surface slope.
- If the water surface slope does not change rapidly, larger cell sizes can be used to accurately compute the water surface elevation and slope. If the water surface slope changes rapidly, then smaller cell sizes need to be used to have enough computation points to describe the changing water surface
- While cell sizes (and shapes) can vary, transitioning from larger to smaller cell sizes should be done gradually to improve computational accuracy.

С

V

 ΔT

ΔX

- Picking an adequate time step is a function of the cell size and the velocity of the flow moving though those cells.
- Users should always test the consistency of their computational mesh and selected time step. The consistency principle requires a reduction of both the space (grid) and time steps in order to guarantee convergence of a solution.

- Performing the computation
 - make a Plan by selecting the geometry that contains the combined 1D and 2D data
 - select an unsteady-flow file for the event to run, and give the Plan a Title and a Short ID
 - 3. recheck the association of the terrain model and landcover layer
 - The post processor option provides additional (and detailed) output for 1D areas and it is only applicable for 1D data sets and mixed 1D/2D data sets.
 - 5. If this option is turned on, after the program has completed the unsteady flow computations and the post processing, the last thing it will do is run a separate process called "ComputeFloodMaps.exe" in order to generate a depth grid (stored to disk) of the maximum inundation that occurred at all locations in the model. This option is not required for flood mapping.

HEC-RAS 5.0.3		
File Edit Run V	iew Options GIS Tools Help	
😂 🔲 🔂 😽	eady Flow Analysis	Ĩ
Project: Ur	steady Flow Analysis C:\\2D Unsteady Flow Hydraulics\BaldEagleCrkMulti2D\BaldEagleDamBrk.prj	3
Plan:	diment Analysis C:\\2D Unsteady How Hydraulics\BaldEagleCrkMulti2D\BaldEagleDamBrk.p03	ī
Geometry: Wa	ater Quality Analysis C:\\2D Unsteady low Hydraulics\BaldEagleCrkMulti2D\BaldEagleDamBrk.g09	
Steady Flow: Hy	/draulic Design Functions	
Unsteady Flo Ru	n Multiple Plans	
Description : Ru	In RAS-MODFLOW Coupled Model access to the information in this model for instructional 🖕 🛄 US Customary Units	
	لم Unsteady Flow Analysis	ŋ
	File Options Help	
	Plan : Single 2D Area - Internal Dam Structure Short ID Single 2D	
	Geometry File : Single 2D Area - Internal Dam Structure	1
	Unsteady Flow File : Single 2D Area	1
	Plan Description :	
	Programs to Run In this example a single 2D flow area is used to model the	1
	Geometry Preprocessor entire system, including the Dam. The computational	1
	I Unsteady Flow Simulation I mesh was modyfied in the area of the dam to align the cell	
	added inside of the 2D flow area to represent the Dam,	
	including the top of dam, overflow spillway, and low flow	
	gates. This internal hydraulic structure will control flow	
	Smulation Time Window	1
	Starting Date: 01JAN1999 Starting Time: 1200	
	Ending Date: 04JAN1999 Ending Time: 1200	
		1
	Computation Settings	1
	Computation Interval: 30 Second	
	Mapping Output Interval: 10 Minute 💌 Detailed Output Interval: 1 Hour 💌	
	Computation Level Output	
	DES Output Filenames CUM sers/shattab/Documents/HEC Data/HEC PAS/Example Projects C	
	bis ouput Hename; je. psers priarab potuments y include y include y complete Hojeca	
	[Mixed Flow Regime (see menu: "Options/Mixed Flow Options")	
	1 Storage Area Connection with bready data 1 set to breach	ř.
	Compute	I

In general, this option will most likely not be used when running HEC-RAS in standalone mode.

- Performing the computation
 - make a Plan by selecting the geometry that contains the combined 1D and 2D data
 - select an unsteady-flow file for the event to run, and give the Plan a Title and a Short ID
 - recheck the association of the terrain model and landcover layer
 - The post processor option provides additional (and detailed) output for 1D areas and it is only applicable for 1D data sets and mixed 1D/2D data sets.
 - 5. If this option is turned on, after the program has completed the unsteady flow computations and the post processing, the last thing it will do is process separate called run а "ComputeFloodMaps.exe" in order to generate a depth grid (stored to disk) of the maximum inundation that occurred at all locations in the model. This option is not required for flood mapping.

		outere		Short ID	JSingle 2D	
Geometry File :		Single 2D Area - Internal Dam Structure				
Unsteady Flow File :		Single 2D Area				
	Pla	n Descript	ion :			
Geometry Preprocess Unsteady Flow Simula Sediment Post Processor Floodplain Mapping	tion m fa ac ga	this exam ntire system esh was m ces along dded inside duding the ates. This	ple a sing m, includi odyfied ii the top o of the 2 top of d internal h	gle 2D flow ar ing the Dam. In the area of of the dam. A D flow area t am, overflow hydraulic stru	ea is used The compu- the dam to SA/2D Co o represen spillway, a cture will co	to model the utational a align the ce nnection wa it the Dam, and low flow ontrol flow
Simulation Time Window – Starting Date: Ending Date:	01JAN1 04JAN1	999 💷 999 📰		Starting Time Ending Time:	: 1200 1200	
Computation Settings Computation Interval: Mapping Output Interval:	30 Seco	ond 💌	Hydrog Detaile	graph Output d Output Inte	Interval: erval:	1 Minute
Computation Level Ou	Itput	_				
DSS Output Filename:	:\Users\sh	ahab\Docu	inents∖H	EC Data\HEC	-RAS\Exan	nple Projects
Mixed Flow Regime (se	ee menu: '	Options/M	ined Flov	Options")	
i mixed flow regime (or						

- Setting **Computation**, **Hydrograph**, and **Mapping Output Intervals** (to be applied in **RAS Mapper**).
- Computation Interval < Hydrograph and Mapping Output Intervals

- Computation Progress, Numerical Stability, and Volume Accounting
 - As the Unsteady flow simulation runs, information is provided as to the progress of the run, how many iterations the 1D and 2D components are using to solve a particular time step, and numerical stability messages are written to the Computational Messages window.
 - If any 1D or 2D element (cross section, storage area, or 2D cell) is not solved to within the pre-defined numerical tolerance during a time step, a message will be written to the message window. This message will provide information as to which cross section, storage area, or 2D cell had the greatest amount of numerical error for that time step.

🚰 HEC-RAS Finished Computations	
Write Geometry Information	
Layer: Complete	
Geometry Processor	
River: RS:	
Reach: Node Type:	
IB Curve:	
Unsteady Flow Simulation	
Simulation:	
Time: 72.0000 04JAN1999 12:00:00 Iteration (1D):	Iteration (2D): 0
Unsteady Flow Computations	
Computation Messages	
Writing Geometry	
Computing 2D Flow Area 'BaldEagleCr' tables: Property tables do not exist.	
2D Flow Area 'BaldEagleCr' tables complete 33.67 sec	
Completed writing Geometry	
Geometric Preprocessor HEC-RAS 5.0.3 September 2016	
Finished Processing Geometry	
Writing Event Conditions	
Event Conditions Complete	
Performing Unsteady Flow Simulation HEC-RAS 5.0.3 September 2016	
renorming onsteady from simulation free fors slots september 2010	
Custom Read/Flags	
Finished Unsteady Flow Simulation	
Writing Results to DSS	E
1D Post Process Skipped (simulation is all 2D)	
Computations Summary	
Computation Task Time(hbimmise)	
Competing Geometry 34	
Preprocessing Geometry(64) <1	
Unsteady Flow Computations(64) 14:02	
Complete Process 14:37	
	T
	[minimum]
Pause Take Snapshot of Results	Close

Objectives of This Workshop

- 1. Introduction to HEC-RAS 2D and two dimensional modeling advantages relative to 1D models
- 2. Required geophysical and flow information for setting up HEC-RAS 2D models
- 3. Overview of how to set-up a combined 1D/2D unsteady flow model in HEC-RAS
- 4. Overview of how to execute a combined 1D/2D unsteady flow model in HEC-RAS
- 5. <u>Overview of how to demonstrate the result of a combined</u> <u>1D/2D unsteady flow model in HEC-RAS and RAS Mapper</u> <u>output capabilities</u>

- Overview of how to demonstrate the result of a combined 1D/2D 5. unsteady flow model in HEC-RAS and RAS Mapper output capabilities
- Once the user has completed an unsteady-flow run of the 1D/2D model, results can be viewed within **RAS Mapper**

RAS Mapper

Results

V Terrains

5. Overview of how to demonstrate the result of a combined 1D/2D unsteady flow model in HEC-RAS and RAS Mapper output capabilities

RAS Mapper has the following capabilities:

- Develop terrain models for use in 2D modeling and visualizing 1D/2D model results. Terrain models can be developed from one or more terrain tiles, and these tiles can have different grid resolutions.
- Develop Land Cover Layers for use in defining Manning's n values for 2D flow areas.
- Various types of map layer results can be generated (shapfiles and rasters)
- Computed model results can be displayed dynamically on the fly, or they can be written to a static (stored to disk) map layer/depth grid.
- Computed model results can be animated (dynamic mapping) or shown for a specific instance in time.
- Time series plots and tables can be displayed for 1D and 2D output directly from RAS Mapper, at any location where there is a map layer result.

- 1. Navigation tools
- 2. "Measure Distance" tool; produce terrain XS profile
- 3. "Static Velocity Arrows" and "Particles Tracing"
- 4. Animation tools; "Max" and "Min" will set cell values to their reported minimum and maximum values

5. Overview of how to demonstrate the result of a combined 1D/2D unsteady flow model in HEC-RAS and RAS Mapper output capabilities

RAS Mapper has the following capabilities:

- Develop terrain models for use in 2D modeling and visualizing 1D/2D model results. Terrain models can be developed from one or more terrain tiles, and these tiles can have different grid resolutions.
- Develop Land Cover Layers for use in defining Manning's n values for 2D flow areas.
- Various types of map layer results can be generated (shapfiles and rasters)
- Computed model results can be displayed dynamically on the fly, or they can be written to a static (stored to disk) map layer/depth grid.
- Computed model results can be animated (dynamic mapping) or shown for a specific instance in time.
- Time series plots and tables can be displayed for 1D and 2D output directly from RAS Mapper, at any location where there is a map layer result.

1. Navigation tools

2. "Measure Distance" tool; produce terrain XS profile

- 3. "Static Velocity Arrows" and "Particles Tracing"
- 4. Animation tools; "Max" and "Min" will set cell values to their reported minimum and maximum values
RAS Mapper has the following capabilities:

- Develop terrain models for use in 2D modeling and visualizing 1D/2D model results. Terrain models can be developed from one or more terrain tiles, and these tiles can have different grid resolutions.
- Develop Land Cover Layers for use in defining Manning's n values for 2D flow areas.
- Various types of map layer results can be generated (shapfiles and rasters)
- Computed model results can be displayed dynamically on the fly, or they can be written to a static (stored to disk) map layer/depth grid.
- Computed model results can be animated (dynamic mapping) or shown for a specific instance in time.
- Time series plots and tables can be displayed for 1D and 2D output directly from RAS Mapper, at any location where there is a map layer result.

- 2. "Measure Distance" tool; produce terrain XS profile
- 3. "Static Velocity Arrows" and "Particles Tracing"
- 4. Animation tools; "Max" and "Min" will set cell values to their reported minimum and maximum values

Creating Static (Stored) Maps

- this editor will allow the user to create new map layers (Add New Map), as well as generate stored maps to a file
- Only the map layers that are turned on will be available to plot.

Results Map Parameters: Map

Output Mode

- Layers generated to be used 1. and visualized only within RAS Mapper platform
- 2. Saving Layers (Raster or Shapefiles) generated from computed maps and layers to a local disk.

Velocity

Shear Stress

Arrival Time

Recession

Stream Power

Duration

Wet Cells

i- 🗸

RAS Results Information

Zoom to Layer

Remove Layer

Profile Lines

🖳 RASMapper Plot

Plot Table

Depth

Profile Lines

RASMapper Plot

Plot Table

- • •

Terrain Profile on 'Garys Profile

Profile Lines

RASMapper Plot

Plot Table

Flow along 'Garys Profile

Profile Lines

RASMapper Plot

620

Plot Table

Water Surface Elevation on 'Garys Profile'

Profile Lines

Thank You 🕲

References:

- HEC-RAS 5.0 User's Manual
- HEC-RAS 5.0 2D Modeling User's Manual
- The RAS Solution, http://hecrasmodel.blogspot.com/

of Engineers®