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Abstract 

This paper aims to address the problem of prescribed-time formation bipartite containment for two-layered 

MASs (multi-agent systems). In this system, the leader layer engages in a purely cooperative relationship, while 

the follower layer engages in both cooperation and competition. Moreover, there exists a restraining 

relationship between the leader layer and corresponding follower layer. By introducing a time-varying function, 

this paper presents a novel prescribed-time distributed control protocol. The protocol is designed to drive all the 

leaders to form a formation within a specified time, while the followers simultaneously converge into the convex 

hulls formed by the states as well as the sign-inverted states of the leaders. Using Lyapunov stability theory, 

linear matrix inequality, the paper obtains the sufficient conditions for MASs to converge in a specified time and 

the stability about control algorithm is discussed in detail. Finally, a numerical simulation example is performed 

to verify the effectiveness of the presented theory.  
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1. Introduction 

In the last 20 years, multi-agent systems (MASs) have been studied by researchers given its broad 

applications, e.g. in security, spacecraft formation flying, search and rescue missions, among others [1-3]. The 

main research area of MASs is cooperative control, where the fundamental problems are consensus, formation 

and containment, collision avoidance, and the formation containment problem, among others. 

As mentioned above, formation containment control is a important research problem of MASs. The 

formation containment problem consists of a subset of agents, called followers, remaining within a space formed 

by another subset of agents, called leaders. For instance, a cluster of self-driving vehicles transitioning towards a 

specified zone. Among them, certain leading vehicles come outfitted with sensors. Their objective lies in 

identifying potentially dangerous obstacles and arranging themselves into a preferred layout. Meanwhile, 

following vehicles must maintain their position within the boundary defined by the leading vehicles. Dong et al. 

[4] combined formation control with containment control methods, driving all the leaders to form a formation, 

while the followers converge into the convex hull formed by the states of the leaders. Works related to the 

formation containment problem of homogeneous systems can be found in [5,6]. On the other hand, some works 

addressing the formation containment problem with heterogeneous systems can be found in [7,8]. Formation 

containment control problems for second-order MASs were studied in [9,10]. In the reference [11], formation 

containment protocols for general linear MASs were presented. Formation containment control has significant 

applications in domains such as autonomous unmanned systems, logistics, and the military [12,13]. It enables 

agents to accomplish tasks efficiently, enhancing safety and reliability.  

However, the aforementioned works does not discuss formation containment control under the framework 

of signed networks. In many real world scenarios such as social networks, trust networks, marketing or games, 

and biological systems, the relationships/interactions among individuals may be friendly/cooperative or 

hostile/antagonistic [14-18]. They can be represented as signed networks, which can be characterized by graphs 

that accommodate not just positive, but also negative adjacency weights. Studying MASs under signed networks 

is more practically meaningful.  
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Note that all the aforementioned works on formation containment control focus on analyses and 

applications of synchronization of single layer complex dynamical networks which may oversimplify some 

systems in the real world. In contrast to MASs with a single layer, the practical applications of layered MASs in 

real-world domains have garnered significant attention from researchers. The increased attention is caused by 

the potential advantages of layered MASs in modeling real-world networks, such as power grids and APP social 

networks. In aforementioned formation containment control studies, the follower be required to track the convex 

combination of all leaders' states, rather than the states of a particular leader. These mean that the follower's 

behavior and control inputs are influenced by the states of all leaders. However, this consideration of localized 

interactions between leaders and followers does not align with certain real-world scenarios. For example, in the 

multi-robot systems, the follower robot may need to closely follow a specific leader robot while disregarding the 

movements of other leader robots. Building upon these observations and the concept of consensus tracking. Wen 

et al.[15] introduced the notion of node-to-node consensus. Scholars have carried out theoretical research on 

MASs in two-layered networks [19,20]. In this framework, MASs are composed of two layers: a leader layer 

and a follower layer. Each layer consists of an equal number of agents, and during the evolution of the systems, 

certain agents in the follower layer are "pinned". The layered MASs can achieve the global objective of the 

networks by designing a local control strategy within each layer. This approach significantly reduces the 

complexity of the network model design. Therefore, it is meaningful to discuss the formation containment 

control problem of MASs in layered network. 

In practical applications, convergence time is a crucial factor when determining system performance. 

Progressive convergence refers to the gradual tendency of the states of agents to approach a certain target state 

over time. It may require an infinite amount of time to fully reach the target, which implies that the convergence 

speed of the system can be slow and even unpredictable. Finite-time convergence occurs when the agents attain 

the target state within a finite duration. This convergence property is more desirable in certain applications as it 

guarantees that the convergence time of the system is bounded, but it is dependent on the initial conditions. 

Fixed-time convergence denotes the agents achieving the target state within a fixed-time period, regardless of 

the initial system state. However, while existing fixed-time control methods are affected by parameters, and 

sometimes these parameters are unknown. In the past few years, many fruitful results have been obtained 

concerning fixed-time formation or containment of MASs [21-24]. Moreover, whether it is finite-time 

convergence or fixed-time convergence, it cannot guarantee that the system converges to a desired state at 

specified time. Therefore, these methods cannot be applied to some applications that have a high requirement of 

control accuracy and convergence speed. For example, consider an earthquake or other emergency situation that 

requires the rapid coordination of multiple unmanned aerial vehicles (UAVs) for searching disaster-stricken 

areas or delivering supplies. In such a scenario, the collaborative efforts of the team need to achieve specific 

dynamic behaviors within a given timeframe to ensure the successful completion of the mission. To address this 

shortcoming, a prescribed-time method has been proposed by scholars. For instance, in the reference [25], a 

novel distributed control method for achieving consensus and containment in MASs within a prescribed time 

frame has been developed. However, research on formation-containment control at a prescribed time is limited. 

The above observations inspire us to tackle the challenge of prescribed-time formation bipartite 

containment of two-layered MASs. This paper presents a novel prescribed-time distributed control method for 

formation bipartite containment of two-layered MASs in which not only the finite convergence time can be 

explicitly prespecified but also the control action is   smooth everywhere. Ultimately, the leaders are capable of 

shaping a formation within the specified time, while the followers achieve convergence within the convex hulls 

formed by the states as well as the sign-inverted states of the leaders at the same time.  

The rest parts of this paper have several sections, section 2 provides essential background information on 

graph theory and matrix theory, as well as the formulation of the model. The primary analytical findings are 

presented in Section 3. A numerical example illustrates the analytical results’ effectiveness in Section 4 and 

Section 5 presents the conclusions. 

2. Preliminaries and statement of problem 

2.1. Graph theory 

This paper investigates a type of MASs that is composed of two layers: a leader layer and a follower layer. 

Each layer contains n  agents. The leaders exclusively receive information from other leaders, whereas the 

followers can receive information from both other followers and leaders. 

Let ( , , )G V BL L

L =  represent the communication topology of the leaders, which is a directed non-negative 

graph with n  nodes. Here, 
1 2{ , , , }V =L L L L

nv v v= L  represents the node set, where the indices of nodes belong to 

{1,2, , }n = L ; {( , ) : 0}L

ijj i b =   represents the edge set, where 
ijb  denotes the weight of edge ( , )j i ; 
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[ ]B R n n

ijb =   is the adjacency matrix, where 0ijb  . The ( , , )G V AF F

F =  represent the communication 

topology of the followers, which is a symbolic graph with n  nodes, 
1 2{ , , , }V =F F F F

nv v v= L  represents the node 

set, {( , ) : 0}F

ijj i a =   represents the edge set, where 
ija  denotes the weight of edge ( , )j i . [ ]A R n n

ija =   is 

the adjacency matrix, where 0ija   indicates a positive connection (cooperation) between agent nodes i  and j , 

0ija   indicates a negative connection (competition) between agent nodes i  and j , and 0ija =  indicates no 

connection between agent nodes i  and j . Let the Laplacian matrices of graphs GL  and GF  be denoted as 

[ ] RL n n

L ijL l =   and [ ] RF n n

F ijL l =  , they are written as: 

1

n

L ikk
ij

ik

b
l

b

=


= 
−

  
, i j=  

, 1

n

ikF k
ij

ij

a
l

a

=


= 
−


 

, i j=  

, i j  , i j . 

Let 
jp  represent the weight assigned to the pinning edges connecting the leader j  and the follower j , 

1,2, ,j n= L . By relabeling the leader layer as a single agent 0, we can reconstruct a graph G  which its 

Laplacian matrix can be expressed as follows: 

0 0T

n
 

=  
−  

L
P

,  

where 
1[ , , ]T

np p= LP , FL p = + , 1{ , , }np diag p p= L . 

2.2. Some lemmas and definitions 

Definition 1 Error! Reference source not found.: If there exists a set of subsets { }VF

k
, 1,2,k l= L  in the node 

set VF
of the signed graph GF  that satisfies the conditions: 

1 2VF F F F

lv v v=   L  and ( ; , )F F

i jv v i j i j k =   , then it is said that 
1 2, , ,F F F

lv v vL  form a partition of the 

set VF
. 

Definition 2 Error! Reference source not found.: A signed graph GF  is said to be structurally balanced if it 

admits a bipartition of note
1

Fv  and 
2

Fv , satisfying 
1 2 VF F Fv v = and 

1 2

F Fv v = , such that 

0ija  , , ( {1,2})VF

qi j q  and 0ija  , VF

qi , 
3VF

qj − .  

A time-varying function is proposed as follows 

    
0

( ) ( )

1,

h

h

T

t T t t




= + −



 , 0 1[ , )t t t  (1)  

, 1[ , )t t  , 

where 1 0t t T= + , 2h   represents an arbitrary real number chosen by the user, and 0sT T   with sT  being 

the time period needed for signal processing/computing and information transmission/communication. Note that 

( 0)q q−  is monotonically decreasing on 0 1[ , )t t , 
0( ) 1qt − =  and 

1

lim ( ) 0q

t t
t−

−

→
= . In addition 

 

1
1

( )

0

h
h

t T




+


= 



&  , 0 1[ , )t t t  

 

(2)  

, 1[ , )t t  ,  

in this context, we utilize the right-hand derivative of ( )t  at 1t t=  as 1( )t& . 

Lemma 1 Error! Reference source not found.: Consider system ( ) ( , ( ))x t f t x t=& , let ( ( ), ) :V x t t W R R+ → be 

a continuously differentiable function and 
mW R be a domain containing the origin. If there exists a real 

constant 0b   such that  

(0, ) 0V t = and ( ( ), ) 0V x t t  in {0}W −   

2V bV V



= − −

&& in W   
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on 0[ , )t  , then the origin of system is prescribed-time stable with the prescribed time T . If mW R= , then the 

origin of system is globally prescribed-time stable with the prescribed time T . In addition, for 0 1[ , )t t t , it 

holds that  
2

0 0( ) exp( ( )) ( )V t b t t V t− − − ,  

and for 1[ , )t t  , it holds that ( ) 0V t  .  

Lemma 2 [25]: There exists a positive diagonal matrix 
1{ , , } m m

nQ diag q q = L R such that 

( ) 0TJ Q Q= +   .  

In which 1 , , nq qL are chosen as 
1[ , , ] ( ) 1T T

n nq q −= L . 

 

2.3 Problem statement 

We consider the whole 2n agents making up the two-layered MASs, the leader layer and the follower layer 

consist of n agents each, with the dynamics of the agents in the leader layer being characterized as follows: 

              ( ) ( )i xix t u t=& , 1, ,i n= L , (3)
 

where ( ) m

ix t R , ( ) m

xiu t R  denote the position and control input of the agents in the leader layer, 

respectively. 

The dynamics of the ith follower is given by  

( ) ( )i yiy t u t=& , 1, ,i n= L , (4)
 

where ( ) m

iy t R , ( ) m

yiu t R  denote the position and control input of the agents in the follower layer, 

respectively. 

In this paper, we are interested in investigating prescribed-time formation bipartite containment problem of 

MASs, which is defined as follows. 

Definition 3 [27]: If leaders can form a desired formation within a specified time T , while followers can enter 

the convex hulls formed by the states as well as the sign-inverted states of the leaders at the same time, then the 

MASs can realize prescribed-time formation bipartite containment control. In other words, both of the following 

conditions are satisfied. 

1) For any given expected formation vector R m

ih  , the leaders are said to achieve prescribed-time state 

formation if lim ( ) 0i i j j
t T

x h x h
→

− − − =  and ( ) 0,i i j jx h x h t T− − − =   . 

2) For MASs (3) and (4), the bipartite containment is achieved if all followers’ states ( )y t  converge to the 

convex hulls formed by the leaders’ state ( )x t  and the reverse leaders’ states ( )x t− . That is to say, the following 

conditions hold: 

 1lim ( ) ( ) ( ) ( ) 0m m
t T

y t I p I x t−

→
−   =  and 

1( ) ( ) ( ) ( ) 0,m my t I p I x t t T−−   =   . 

The definitions of the formation errors and the bipartite containment errors are provided as follows: 

      
1

[( ) ( )]
n

xi ij i i j jj
e a x h x h

=
= − − − . (5)

 

1
( ( ) ) ( ( ) )

n

yi ij ij i j i i i ij
e sign y y p sign p y x

=
= − + − a a . (6)

 

Let 
1[ , , ]T T T

y y yne e e= L , 
1{ , , }np diag p p= L , 1{ , , }nP diag p p= L . Then it holds 

( ) ( ) ( ) ( ) ( ) ( ) ( )y m m me t L I y t P I y t p I x t=  +  − 
 

(( ) ) ( ) ( ) ( )m mL P I y t p I x t= +  − 
 

( ) ( ) ( ) ( )m mI y t p I x t=  − 
 

1( )( ( ) ( ) ( ) ( ))m m mI y t I p I x t−=  −   . (11)
 

 

3. Control protocol design and stability analysis 

In this section, two control inputs will be independently raised in order to achieve the prescribed-time 

formation bipartite containment. 

Having completed the aforementioned preparation, we are now able to introduce the prescribed-time 

formation bipartite containment control protocol. The control protocols for leaders and followers are designed 

separately: 

https://doi.org/10.5281/zenodo.11123257
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( )xi x x xiu d c e



= − +

&
, 1, ,i n= L  (7)  

1( ) (( ) ) ( ( ))yi yi m i x x xiu d c e p I d c e
 

 

−= − + +   − +
& &

, 1, ,i n= L ,  (8)  

where , 0xd d   and , 0xc c   are design parameters. They can be expressed in the following concise format: 

( )x x x xu d c e



= − +

&
 (9)  

1( ) (( ) )( ( ) )y y m x x xu d c e p I d c e
 

 

−= − + +   − +
& &

, (10)  

where 
1[ , ]T T T m n

y y ynu u u = L R , 
1[ , ]T T T m n

x x xnu u u = L R . 

According to Definition1, the prescribed-time formation bipartite containment objective is achieved if ( )xe t  

and ( )ye t  converges to zero within the specified finite time T . We are now prepared to present the following 

result. 

Theorem 1: Consider system (3) and (4) under the control protocol (9) and (10) with
2[(1/ ( ( ))]Lxd  and 

max 1[(2 ( )) / ( ( ))]d Q J  , solved the prescribed-time formation bipartite containment problem within the 

prespecified finite time T  in that 
1

2 0 0( ) exp( ( )( )) ( )Lx x xe t d t t e t − − − , (12)  

1 1

0

max

( )
( ) exp( ( ))

2 ( )
y

d J
e t t t

Q






− − −  

           
1max

0

min

( )
( ) ( )

( )
m

Q
I e t

Q





−   , 

 

for all 0 1[ , )t t t . Furthermore, xu  and 
yu  remain constant at zero throughout 1[ , )t  , and the control input 

signals remain 
1C  smooth and uniformly bounded over the whole time interval 0[ , )t  .  

Proof:  The proof is divided into the following six steps. 

Step1: The formation is achieved within T  and xu  is smooth and uniformly bounded on 0 1[ , )t t . 

By selecting the Lyapunov function candidate as 

1
( ) ( )

2

T

x x xV e t e t= . (13)  

According to (5), we have 

( ) ( ) ( )Lx me t I x t= & &  

                    ( )( ( ) )L m x x xI d c e



=  − +

&
. 

(14)  

Taking the derivative of xV  gives 

T

x x xV e e=& & 

[( )( ( ) )]LT

x m x x xe I d c e



=  − +

&
 

[ ( )( )]LT

x x x m xe d c I e



= − + 

&
 

( ) ( )L LT T

x x m x x x m xd e I e c e I e



= −  − 

&
 

2 2( ) ( )L LT T

x x x x x xd e e c e e


 


 − −
&

 

22 ( ) 2Lx x xd V V





 − −
&

. 
(15)  

According to lemma1, we have from (15) that 
2 22

2 0 0( ) exp( 2 ( )( )) ( )Lx x xe t d t t e t − − −  (16)  
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on 0 1[ , )t t , which yields (12), and by utilizing the fact that 1 0− →  as
1t t−→ . ( ) 0xe t → as 

1t t−→ . It can be 

observed that the formation is accomplished within the predetermined time frame of T . 

By recalling that 10 1−   , 
1

1

0 1h
−

   and 2 00 exp( ( )( )) 1Lxd t t − −  , we have  

1

2 0 0( ) exp( ( )( )) ( )Lx xe t d t t e t L −

 − −   (17)  

   
1

1

2 0 0exp( ( )( )) ( )Lh
x x

h
e d t t e t L

T


 



−

 − − 
&

, (18)  

both of which result in 

x x x x xu d e c e



 +

&
 

(19)  

                 1

2 0 0exp( ( )( )) ( )Lx xd d t t e t − − −  

                

1
1

2 0 0exp( ( )( )) ( )Lh
x x

h
c d t t e t

T
 

−

+ − −  

0( ) ( )x x

h
d c e t L

T
 +   

on 0 1[ , )t t . From (19), it is evident that the control input is uniformly bounded on 0 1[ , )t t . 

By examining xu&  on 0 1[ , )t t , we get  

1 1
11

( )h h
x x x x x x

h h
u d c e c e

T T h
  

−

= − + −& & &  

(20)  

1 1 2
1

( )( )( )Lh h h
x x m x x x x x

h h h h
d c I d c e c e

T T T h T
  = +  + −  

1 2 2

2 2 2 1
( 2 ( ) )( )Lh h h

x x x x m x x x

h h h h
d d c c I e c e

T T T h T
  = + +  − , 

from which we see that both xu  and xu&  are continuous with respect to t  on 0 1[ , )t t , and therefore xu  is 

1C smooth with respect to t  on 0 1[ , )t t .  

Step 2: The formation is maintained and the control input xu  remains constant at zero throughout 1[ , )t  . We 

readily obtain  

2Lx x xV d V −& , 1[ , )t t  , (21)  

by recognizing ( )xe t  is continuous at 1t t= . Consequently, we have ( )xV t  is continuous at 1t t= , and therefore, 

 
1

1

1
( ) lim ( ) ( ) 0

2

T

x x x
t t

V t e t e t
−→

= = . (22)  

combining (21) and (22) yields 

10 ( ) ( ) 0x xV t V t  = . (23)  

That is ( ) 0xV t   on 1[ , )t t  . Thus ( ) 0x mne t  . From the definition of xu , we deduce that 0x mnu   on 

1[ , )t  . Taken together, these findings demonstrate that the formation is preserved, and the control input remains 

at zero throughout the duration of 1[ , )t   using the provided control law. 

Step 3: Now we simply need to confirm that xu  and xu&  exist and are continuous with respect to t  at 1t t= . 

It is clear that 
1

lim 0x mn
t t

u
−→

=  from the second inequality in (19) and 
1

1lim 0 ( )x mn x
t t

u u t
+→

= = , implying that xu  

exists and is continuous at 1t t= . Now we investigate each term of xu&  on the right hand of (20) to establish its 

existence and continuity at 1t t= . By utilizing the fact that 
1

1

0h
−

→ ,
2

1

0h
−

→  as 
1t t−→ , and 

xe L   on 

0 1[ , )t t  guaranteed by (16), it is obvious that 

( ) 0L m xI e →  (24)  

1 1
1

( ) ( ) 0L Lh h
m x m xI e I e  

−

   →  (25)  
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2 2
1

( ) ( ) 0L Lh h
m x m xI e I e  

−

   →  (26)  

2 2
1

0h h
x xe e  

−

 → , (27)  

as 
1t t−→ . By inserting (24)-(27) into (20), we obtain 0xu →& as

1t t−→ . Then we have  

1 1

lim 0 limx x
t t t t

u u
− +→ →

= =& &  (28)  

and therefore, 

1 1

lim 0 limx mn x
t t t t

u u
− +→ →

= = . (29)  

This implies that xu&  exists and is continuous at 1t t= . By observing that both xu  and xu&  exists and are 

continuous at 1t t= , based on the definitions of continuity and smoothness, we can therefore deduce that xu  is 

1C  smooth with respect to t  at 1t t= , and thus xu  is 
1C  smooth with respect to t  on 0[ , )t  . 

Step4: The bipartite containment is achieved within T  and the control input 
yu  is 

1C  smooth and uniformly 

bounded on 0 1[ , )t t . 

Choosing the Lyapunov function candidate as  

( )( ) ( )T

y y m yV e t Q I e t=  , (31)  

according to (11), we have  
1( ) ( )( ( ) ( ) ( ) ( ))y m m me t I y t I p I x t−=  −  & & &  

( )( ( ) )m yI d c e



=  − +

&
. 

   (32)  

We derive from lemma2 and (32) that  

2 ( )( ) ( )T

y y m yV e t Q I e t= & &   

2 ( )( )( )( ( ) )T

y m m ye t Q I I d c e



=   − +

&
 

 

( ) ( )[( ( ) ) ]T T

y m yd c e t Q Q I e



= − +  +  

&
 

 

( ) ( )( ) ( )T

y m yd c e t J I e t



= − + 

&
 

 

1 1( ) ( ) ( ) ( ) ( )T T

y y y yd J e t e c J e t e t


 


 − −
&

 
 

1 1

max max

( ) ( )

( ) ( )
y y

J J
d V c V

Q Q

 

  
 − −

&
 

 

1

max

( )
2

( )
y y

J
d V V

Q

 

 
 − −

&
. (33)  

According to lemma1, we get from (33) that  

2 1

0 0

max

( )
exp( ( )) ( )

( )
y y

J
V d t t V t

QJ






− − − , (34)  

this implies 

2 2
2 1 min

0 0

max max

( ) ( )
( ) exp( ( )) ( )

( ) ( )
y y

J Q
e t d t t e t

Q Q

 


 

− − −  , (35)  

and then  
1( ) ( ) ( ) ( )m my t I p I x t−−     

1 1( ) ( ) ( ) ( )m y m yI e t I e t− −=      

1 1

0

max

( )
exp( ( ))

2 ( )

J
d t t

Q






− − −  
 

https://doi.org/10.5281/zenodo.11123257


  

International Journal of Research (IJR) 

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 

 Vol. 11 Issue 05 
May 2024 

 

Received: 12 April 2024                                                                                                                                        30 
Revised: 24 April 2024 
Accepted: 6 May 2024 
Copyright  authors 2024 DOI: https://doi.org/10.5281/zenodo.11123257 

1min

0

max

( )
( ) ( )

( )
m y

Q
I e t

Q





−  , (36)  

which yield (30). From (36) we get 
1( ) ( ) ( ) ( ) 0m my t I p I x t−−   → as

1t t−→ , (37)  

that is, 1( ) ( ) ( ) ( )m my t I p I x t−→    as 
1t t−→ , bipartite containment is accomplished within the specified 

finite time T . 

Note that : { ( ) | : ,sup ( ) }tL z t z z t
+ + = →  RR R , By recalling that 

10 1−  , 1/ 10 1h −  , 1

0

max

( )
0 exp( ( )) 1

2 ( )

d J
t t

Q




 − −  , we then  

have 

1 1

0

max

( )
( ) exp( ( )

2 ( )
y

d J
e t t t

Q






− − −
1max

0

min

( )
( ) ( )

( )
m y

Q
I e t

Q





−    

      
1max

0

min

( )
( ) ( )

( )
y

Q
m e t L

Q





−

    . 
(38)  

1/ ( )h

y y

h
e e t

T





=

&
 

1/ 1 1

0

max

( )
exp( ( ))

2 ( )

h d Jh
m t t

T Q






− − −  

1max

0

min

( )
( ) ( )

( )
y

Q
e t

Q





−    

1max

0

min

( )
( ) ( )

( )
y

Qh
m e t L

T Q





−

    , 
(39)  

both of which yield  

( )y y y

h
u d e t c e

T




 +

&
 

  1(( ) )( ( )m x x xp I d c e L




−

+   − + 

g

 

(40)  

on 0 1[ , )t t . From (40), it is evident that the control input is uniformly bounded on 0 1[ , )t t . 

By analyzing 
yu  and 

yu& from (5), on 0 1[ , )t t , we get 

1( )( )( ( ) (( ) ) ( ))y m mu d c I y t p I x t




−= − +  −  
&

 

1(( ) )( ( ) )m x x xp I d c e




−+   − +
&

. 
(41)  

1/ 1/ 11
( ) ( ) ( )h h

y y y

h h
u d c e t c e t

T T h
  −= − + −& & &  

    1 1/(( ) )[( ( )( )Lh

m x x m

h
p I d c I

T
−+   − +   

1/ 2/1
( ( ) )]h h

x x x x x

h h
d c e c e

T T T
  − + −  

1/ 1/ 11
( )( )( ( ) ) ( )h h

m y y

h h
d c I d c e c e t

T T h


  



−= − +  − + −
&

&  

1 1/(( ) )[( ( )( )Lh

m x x m

h
p I d c I

T
−+   − +   

1/ 2/1
( ( ) )]h h

x x x x x

h h
d c e c e

T T T
  − + −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.5281/zenodo.11123257


  

International Journal of Research (IJR) 

  

e-ISSN: 2348-6848 
p-ISSN: 2348-795X 

 Vol. 11 Issue 05 
May 2024 

 

Received: 12 April 2024                                                                                                                                        31 
Revised: 24 April 2024 
Accepted: 6 May 2024 
Copyright  authors 2024 DOI: https://doi.org/10.5281/zenodo.11123257 

1/ 1/( )( ( )( )( )h h

m m

h h
d c d c I I

T T
 = − + − +    

1 2/1
( ( ) (( ) ) ( ))) ( )h

m m

h
y t p I x t c I

T T
− −   −    

1( ( ) ( ) ( ) ( ))m my t I p I x t− −    

1 1/(( ) )[( ( )( )Lh

m x x m

h
p I d c I

T
−+   − +   

1/( ( )(( ) ( ) ( ) )L Lh

x x m m

h
d c I x t I H

T
 − +  +   

2/1
(( ) ( ) ( ) ))]L Lh

x m m

h
c I x t I H

T T
−  +  . 

 

 

 

 

 

 

 

 

 

 

 

(42)  

 

From which we see that both 
yu  and 

yu& are continuous on 0 1[ , )t t . Since ( )x t  and ( )y t  are continuous with 

respect to t  according to (1) and (2). Therefore 
yu  is 1C  smooth with respect to t  on 0 1[ , )t t . 

Step 5: The bipartite containment is kept and the control input 
yu  remains zero over 1[ , )t  . 

Selecting the Lyapunov function candidate identical to the one used in (31). We readily obtain: 

1

1

max

( )
0, [ , )

( )
y y

d J
V V t t

Q




 −     

   2 12 ( ) 0, [ , )Lx x xV d V t t −    . 

(43)  

By noting that ( )x t  and ( )y t  are continuous at 1t t= , we then have ( )xV t and ( )yV t is continuous at 1t t= , and 

thus, 

1

1( ) lim ( ) 0y y
t t

V t V t
−→

= =  

1

1( ) lim ( ) 0x x
t t

V t V t
−→

= = , 
(44)  

both (43) and (44) yield 

1 10 ( ) ( ) 0, [ , )y yV t V t t t  =    

1 10 ( ) ( ) 0, [ , )x xV t V t t t  =   . 
(45)  

That is ( ) 0yV t   and ( ) 0xV t   on 1[ , )t  . Thus ( ) 0y mne t   and ( ) 0x mne t  , and then 0y mnu   on 1[ , )t  . All 

of these imply that the bipartite containment is kept and the control input 
yu  remains zero over 1[ , )t   with the 

control law (9). 

Step 6: We need to confirm the existence and continuity of  
yu  and 

yu&  respect to t  on 

1t t= .
1 1

1lim ( ) ( ) lim ( )y y y
t t t t

u t u t u t
− +→ →

= = , implying that 
yu  is exist and are continuous at 1t t= . 

Now we prove that 
yu& is exist and are continuous at 1t t= . Upon using the fact that 

1 0− → ,
1/ 1 0h − → , 

2/ 1 0h − → , as 
1t t−→ , we have 

1 1

1lim ( ) ( ) lim ( )y y y
t t t t

u t u t u t
− +→ →

= =& & & . Which means that yu  and 
yu&  exist and are 

continuous with respect to t  on 1t t= . We then concluded from the definition of continuousness and smoothness 

that 
yu  is 

1C  smooth with respect to t  over 0[ , )t  . 

 

4. Simulations 

To evaluate the proposed prescribed-time formation-bipartite containment control method, we perform 

simulations using a two-layered MAS with eight agents. The systems comprise four leaders and four followers.  
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1
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1

1
1 1 1 1

1
1

Leader layer

    Follower layer

 
Fig 1.Communication topology（the number around each edge represents its weight） 

According to the Fig 1 , the leadership communication topology among intelligent somite points is negative, 

and it only shows the cooperative relationship between them. On the other hand, the communication topology of 

the following points can be represented as a symbolic figure indicating both cooperative and competitive 

relationships between them. These relationships correspond to the adjacency matrix of points: 

0 1 0 0

1 0 1 1

1 0 0 1

1 0 1 0

0 1 0 0

1 0 1 1

1 0 0 1

0 0 1 0

B

A

 
 
 =
 
 
 

 
 

− − =
 −
 
 

 

There is a restraining relationship between the agent 1 and agent 4 in the leader layer and the agent 1 and 

agent 4 in the follower layer, which is represented as the Fig 1. Follower agent layer can be divided into two 

groups:  

 2

1 1,2v =  2

2 3,4v = .We have: {(1,2),(2,1),(3,1),(2,4),(3,4),(4,3),(2,3),(4,1)}L = , 

{(1,2),(2,1),(3,1),(2,4),(3,4),(4,3),(2,3)}F = , and it follows that L F  , while L  is not equal to F . 

The initial states of the eight followers in x-axis, y-axis is set randomly. We select the design parameters as 

2.5T = , 2.5h = , 0.05xc = , 2.5xd = , 0.03c = , 15d = . 

 
Fig 2. System response at x-axis. 
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Fig 3. The trajectory of each agent at t=0s 

 
Fig 4. The trajectory of each agent at t=0.198s 

 
Fig 5. The trajectory of each agent at t=0.998s 

 
Fig 6. The trajectory of each agent at t=2s 

 

The results of the formation bipartite containment control with the proposed control strategy are depicted in 

Fig 2-Fig 6, where Fig 2 is control input signal produced by (7) and (8), from the plot, we observe that the 

control input xu  and 
yu  of all the agents converge to zero within the specified finite time. Fig 3-Fig 6 is the 

drawing of agent in different time, within a specified time, the convex hull formed by leaders is indicated by 

solid lines. Follower 1 and 2 in the square formed by leaders, follower 3, and 4 into the square, which is formed 

by the symbolic opposite state of the leaders is marked by dotted lines. From Fig 6, it can be observed that the 

positions of the leaders maintain the desired regular square formation, and the positions of the followers remain 

within the convex hull formed by the leader positions in both the simulation and the experiment. Therefore, the 

specified time formation bipartite containment control is achieved. 

5. Conclusion 

This paper has investigated the formation bipartite containment of two-layered MASs. We presented a new 

prescribed-time distributed control method for the finite time control of two-layered MASs based on a time-

varying feedback gain. The resultant control was able to achieve formation bipartite containment within a finite 

time that can be uniformly predetermined without relying on initial conditions or other design parameters. 

Furthermore, the control was distributed and 
1C  smooth everywhere. The simulation and experimental results 

were presented to demonstrate the effectiveness of the obtained results. In the future, we planned to extend these 

results to two-layered MASs that were vulnerable to attacks. 
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