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Dynamic Analysis of Viscoelastic Plates with
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Abstract—In this study, the dynamic analysis of viscoelastic
plates with variable thickness is examined. The solutions of dynamic
response of viscoelastic thin plates with variable thickness have been
obtained by using the functional analysis method in the conjunction
with the Gateaux differential. The four-node serendipity element with
four degrees of freedom such as deflection, bending, and twisting
moments at each node is used. Additionally, boundary condition
terms are included in the functional by using a systematic way. In
viscoelastic modeling, Three-parameter Kelvin solid model is
employed. The solutions obtained in the Laplace-Carson domain are
transformed to the real time domain by using MDOP, Dubner &
Abate, and Durbin inverse transform techniques. To test the
performance of the proposed mixed finite element formulation,
numerical examples are treated.
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1. INTRODUCTION

DOPTING elastic theory for the solution of load bearing

structural elements proves to be inconsistent with reality
due to the fact that real materials exhibit a mixture of elastic
and viscous properties. Therefore, viscoelastic theory appears
to be more suitable for describing and analyzing the behavior
of structural elements. There are many works in the literature
on the theory of viscoelasticity [1], [2].

Due to the mathematical complexity in the viscoelastic
constitutive relations, closed-form solutions are often not
possible and numerical solution techniques should be
performed. Among the computational methods used for
viscoelastic problems, the Finite Element Method is the most
common and versatile and it has been applied to static and
dynamic problems in structural mechanics. The application of
the Finite Element Method to viscoelastic problems has been
presented by a number of authors [3]-[5]. However, to the best
of our knowledge, there are very few published studies on the
analysis of viscoelastic plates [6]-[9].

In this study, the dynamic response of viscoelastic
Kirchhoff plates with variable thickness is examined by using
the mixed finite element method in the transformed Laplace-
Carson space. In order to construct a functional for
viscoelastic Kirchhoff plates of variable thickness, an efficient
systematic procedure based on the Gateaux differential
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method is employed. In this functional, there exists four
independent variables such as deflection (w), internal forces
(Mx, My and My,) in addition to the dynamic and geometric
boundary condition terms. In the solution of viscoelastic plate,
three-parameter solid model is considered. For transformation
of the solutions obtained in the Laplace-Carson domain to the
time domain, different numerical inverse transform techniques
are employed.

II. MIXED FINITE ELEMENT FORMULATION OF VISCOELASTIC
PLATES WITH VARIABLE THICKNESS

Considering a plate with the thickness h under distributed
lateral load q as shown in Fig. 1, the equilibrium equation of
the plate according to the linear theory of Kirchhoff-Love
takes the following form [10-11]:

2 2
aZMX oM, +26 M,,

o —— ©))
OX oy oxoy

+q=0

where My, My and My, are the moments depicted in the
positive sense in Fig. 1.

JEE S, g My
h s My
. / Qy
v
.-"rﬂ‘}'.\' \ 4
Oy
Fig. 1 Positive directions for internal forces
The flexural rigidity of the plate D is given by:
3
D __En )
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with E being the Young’s modulus and v being the Poisson’s
ratio of the plate. The bending moment and twisting moment
resultants related to the transverse displacement (w) of the
plate’s middle surface are given by:
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After the generalized stress-strain relationships for a
viscoelastic Kirchhoff plate is written using two operators
Ei*and E>*which are in the hereditary integral form [8], [12],
the field equations of viscoelastic thin plates become:
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In order to remove the time derivatives from the field
equations and boundary conditions, the Laplace-Carson
transform method is employed. After taking the Laplace-
Carson transform with respect to the time, field equations
become:
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and boundary conditions in symbolic form become
T-T=0
M+M =0 (6)
W'-W'=0
-WHW=0

Field equations in the Laplace-Carson space can be written
in operator form as:

Q=Ly-f 7)

where Q will be a potential operator in the Laplace-Carson
space, if the equality [13]:
<dQ(y-y).y*>=<dQ(y-y").y"> ®)

is satisfied. The <, > symbol indicates the inner product. After

International Scholarly and Scientific Research & Innovation 10(2) 2016

satisfying (8), the functional corresponding to the field
equations is given by [13]:

)

where s is a scalar quantity. Using (9), the explicit form of the
functional corresponding to the field equations of viscoelastic
Kirchhoff plates with variable thickness in the Laplace-Carson
space is given as:

In which the brackets with the subscripts ¢ and € represents
the dynamic and geometric boundary conditions, respectively.
The shape functions for the rectangular master element in Fig.
2 are:

(11)
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Fig. 2 Rectangular master element

The four variables of the functional given in (10) and the
thickness of the plate are expressed by the shape functions ;

in the element as:
W= 2 W (£ )
M, =2 M, ¥ (&)
(12)
M, = 2 M, ¥ (&)
My = 2 Moy, #(E )
h = Z hlﬁy‘(g ’77)

and then inserting these approximations into the functional
and simplifying with respect to nodal variables, the element
matrix can be obtained explicitly.
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The numerical solutions obtained in the Laplace-Carson
space are transformed to the real time space using different
numerical inverse Laplace transform techniques as MDOP,
Dubner & Abate, and Durbin. For more information of
Laplace inversion process, the reader is referred to the
literature [14]-[17].

III. NUMERICAL EXAMPLES

In this section, three numerical examples are treated in
order to test the performance of the proposed mixed finite
element formulation for the dynamic analysis of viscoelastic
Kirchhoff plates with variable thickness. Three-parameter
solid model as illustrated in Fig. 3 is employed in the
solutions.

F
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Fig. 3 Three-parameter Kelvin solid model

The material properties are assumed to be:
Ei=98 MPa,
n=0.245 MPa.s,
E>=24.5 MPa,
e v=03
Hence, the relaxation modulus of the model is given as:
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Due to the symmetry, the computations are carried out for a
quarter of the simply supported plate (as in Fig. 4) by using
4x4 mesh size. Geometrical properties of the plate with
variable thickness are a=b=4m.

(13)

Fig. 4 Symmetry property of simply supported plate

The dynamic behavior of viscoelastic plate is obtained for
two different uniformly varying thickness problems.
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A. Thickness of the plate is constant along y axis and
uniformly varying along x axis as illustrated in Fig. 5 (a).

B. Thickness of the plate is uniformly increasing from
supports to the center of the plate as illustrated in Fig. 5
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Fig. 5 Plate with variable thickness

For the numerical inversion, the results are obtained when
the time increment dt =T/N =0.2 and aT= 5. The time
variations of loads considered in numerical examples are
illustrated in Fig. 6.

q(Pa) q(P3) q(Pa)
AL N
4 t(s) . t(s) . t(s)
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® D lsive Load) (Triangular Impulsive Load)  (Right Triangular Impulsive Load)
Fig. 6 Time histories of loads
Example 1:

A simply supported viscoelastic plate with uniformly
increasing thickness from supports to center of the plate along
x and y axes subjected to rectangular impulsive load (Type I)
for t;=10 s is considered. At the center of the plate, the
thickness hinx=hm,=2h. and at the supports h=0.1 m.
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Fig. 7 Dynamic behavior of the displacement at the center of the plate
with varying thickness
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The central displacement variation with time is illustrated in
Fig. 7 by using Dubner & Abate’s and Durbin’s inverse
transform techniques. The material density p is assumed as
200 kg/m?. The dynamic behavior of viscoelastic plate will
eventually disappear with time.

Example 2:

In this example, a simply supported viscoelastic plate with
uniformly increasing thickness from supports to center of the
plate along x and y axes under the triangular impulsive load
(Type II) for ;=10 s is considered. At the center of the plate,
the thickness hmx=hmy=2h. and at the supports h=0.1 m. The
material density p is assumed as 200 kg/m®. For the numerical
inversion, MDOP, Dubner & Abate’s, and Durbin’s inverse
transform methods are employed.

In dynamic problems, Durbin’s and Dubner & Abate’s
inverse transform methods give better results when compared
to the MDOP. Therefore, the time-dependent central
displacement and bending moment values are presented for
Dubner & Abate and Durbin inverse transform methods as
illustrated in Fig. 8.
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Fig. 8 Dynamic behavior of the displacement and bending moment at
the center of the plate with varying thickness

Example 3:

In this example, the time-dependent central displacement of
simply supported viscoelastic Kirchhoff plates with constant
thickness along y-axis and uniformly varying thickness along
x-axis are considered. For the analysis, right triangular
impulsive load (Type III) for t;=10 sec is employed. The effect
of the central thickness of the plate on the amplitude of the
displacement values and frequency are considered for the
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center thickness of the plate along x axis, hmx=2hmy=2h. and
hp=3hmy=3h. where h.=0.1 m. For the numerical inversion,
Durbin’s inverse transform method is employed.

The material density p is assumed as 200 kg/m? for dynamic
analysis. The effect of the central thickness of the plate on the
amplitude of the displacement values and frequency are shown
in Fig. 9. As expected, frequency increases with increasing
thickness.
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------ hmx=2hmy=2he
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Time (s)

Fig. 9 Effect of thickness on the frequency and displacement

IV. CONCLUSION

In this study, the dynamic response of viscoelastic thin
plates with variable thickness is investigated. For the analysis,
mixed finite element formulation based on the Gateaux
differential is used. Derived functional has four independent
variables in addition to the dynamic and geometric boundary
conditions. In order to remove the time derivatives from
governing equations and boundary conditions, the Laplace-
Carson transformation is used. For numerical inversion from
the Laplace-Carson domain to the time domain, transform
methods such as MDOP, Dubner & Abate, and Durbin are
employed. The performance of the proposed mixed finite
element formulation is tested through various dynamic
example problems. It is observed that results are quite
reasonable.
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