
v240504.0

hostess-station documentation

The stationmodule of hostess implements a distributed task execution andmonitoring
framework. It is a data flow and process orchestrator that is beefier andmore tightly integrated

than command-line scripts but muchmore lightweight than enterprise-scale options like Apache

Airflow or dagster.

Note: many of the capitalized words refer to protocol buffer message types (see below). These are
generally handled at a high level of abstraction using functions from hostess.station.proto_utils and
hostess.station.messages, like dict2msg(), pack_obj(), and make_instruction().

Delegate

ADelegate is a worker/manager object that can perform tasks and gather data for a Station. By

default, Delegates do not do anything but send periodic “heartbeats” to their Station. In order to

allow aDelegate to perform tasks or gather data, youmust attach “elements” – Actors and/or

Sensors.

DelegateMain Loop-

When aDelegate initializes itself, it launches a “main” thread, then also launches any attached

Sensors (see below) in their own threads. Themain thread loops until signaled, performing the

following tasks in order:

1. checks if its Sensors have reported actionable events; if so, it pops each of these events off

the actionable event queue and sends them to the Station (as PythonObjects embedded in

the info field of an Update).

2. checks on the status of its running actions (Actor.executemethods launched in separate

threads). If any have crashed or completed, it gathers their results andmetadata and sends

an Update containing an ActionReport to the Station for each such action.

3. cleans up any completed futures in its ‘threads’ dictionary (generally successful or failed

actions)

4. sends a “heartbeat” to the Station if scheduled

5. checks to see if it added Instructions to its queue during any prior communications with

the Station; acknowledges and acts on them if so.

Note: Delegate lockout
Although the structure of themain loop should generally prevent race conditions and

inappropriate execution, out of an abundance of caution, when communicating with the Station or

shutting down, the Delegate “locks” itself. The Delegate skips the following tasks when “locked”:

https://github.com/MillionConcepts/hostess/


v240504.0

actionable event checks, action status checks, thread cleanup, scheduled updates, and acting on

received Instructions.

Communicating with Station

Delegates use the hostess.station.talkie.stsend() function, a one-shot communication utility that

automatically encodesmessages as hostess comms, to send Updates to their Station. The content

of these Updates may range from “checking in as scheduled” to “here’s your 100GB file”, but they

always include at least basic time and node identification information.

Delegates do not themselves maintain a listening socket. Instead, the Stationmay choose to use

any Report as an opportunity to reply with an Instruction. If the Station has no Instructions for the

reporting node, it will reply with a simple acknowledgement string instead. A Delegate adds any

Instruction it receives to its instruction_queue list and attempts to interpret it when it next

reaches that step of its main loop.

Interpreting Instructions

Delegates interpret instructions differently depending on the Instructionmessage’s type field (see

InstructionType in station.proto). Delegates can currently recognize four types of instructions:

● “do”: The Delegate will check for an Action in this Instruction and attempt tomatch it

against its Actors. If there is no Action or if it doesn’t match the Delegate’s Actors, it will

inform the Station that it does not understand the request.

● “config”: The Delegate will look for ConfigParams in this Instruction and attempt tomodify

its interface tomatch the requested configuration.

● “stop”, “kill” (same behavior at present): The Delegate will attempt to gracefully shut down.

Termination

If the Delegate receives a shutdown instruction or themain thread encounters an unrecoverable

exception, it:

● locks itself

● sets its state to ‘shutdown’ or ‘crashed’ as appropriate

● sends a kill signal to its main loop

● logs that it is beginning shutdown

● detaches itself from its Actors

● attempts to shut down all its Sensors

● clears its queues

● attempts to send an exit report to its Station

● logs its shutdown (and any failures in the shutdown process) locally

● If flagged as the owner of its own process and running inside a launch_node() wrapper, the

wrapper will then attempt to terminate the process (with sys.exit())



v240504.0

Station

A Station is a manager object that collects Updates from and sends Instructions to Delegates. Like

a Delegate, it does very little by default: it accepts, records, and acknowledges Updates from its

Delegates. Attaching Actors to a Station will allow it to respond to changes in system state with

useful Instructions. The hostess.station.actors.InstructionFromInfo Actor is an example of a

general-purpose utility actor for Stations. You can configure it with rules that will allow the Station

to selectively build Instructions for a Delegate when it receives specific Info in an Update.

Stations cannot currently work with Sensors.

Initialization andMain Loop

On initialization, a Station launches a TCPTalk server (see below) in multiple threads. It uses this

server to listen for messages fromDelegates and send replies back. It also launches its ownmain

loop in a separate thread.

At present, most of the “action” in Station happens asynchronously, triggered by the ackcheck()

callback, so at present, themain loop doesn’t domuch. On each iteration of the loop, the Station

checks to see if any of its server’s threads have crashed, and attempts to relaunch them if so. It also

checks its inbox, and if it’s too full, it dumps older messages.

Responding to Updates

When a Station receives amessage from aDelegate, it attempts to interpret it as a hostess comm.

If it can’t, it sends an “error” response (not fully implemented) to the sender. If the comm contains

an ActionReport on a completed task, it logs it and checks to see if any of its Actors canmake

Instructions in response to it (like for multi-step pipelinemanagement, supplementary database

inserts, etc.) Similarly, if it receives Info, it checks to see if any of its Actors canwork with that Info.

Then, if it has any Instructions queued in that Delegate’s outbox (simply keyed byDelegate name),

it formats one as a comm and sends it in response to the Update. Shutdownmessages take top

priority, followed by configmessages, followed by any others. If it doesn’t have any Instructions for

the Delegate, it replies with a simple acknowledgement packet.

Important notes about Instruction responses:
● A new Instruction can be generatedwithin the response cycle; i.e, a Stationmay reply

with an Instruction based on the information it just received.
● At present, a Delegate can only understand one Instruction per exchange. This means

that if a Station hasmany queued Instructions for a Delegate, it will have towait for
subsequent heartbeats or completion reports or infomessages or whatever to send
them all. This is probably ok.

Termination

Station termination works a lot like Delegate termination, except that it also:



v240504.0

● attempts to send shutdown Instructions to all its associated Delegates, andwaits for up to

30 seconds to receive exit reports and ensure successful shutdown

● waits for up to 30 seconds for threads in any locally-running Delegates to complete (to

ensure that the process will be able to successfully exit)

● shuts down its TCPTalk server andwaits for those threads to complete

Actors and Sensors

Actors

Actors allowNodes to do things. They aremodular, and new Actors can be freely attached to aNode
after initialization (using the .add_elementmethod). All Actor subclasses implement two core
methods:match and execute.

● match looks at an instruction and returns True if it looks like the instruction is intended for
the Actor – andwell-formed – and raises an exception if it does not. This may be any type

of exception, although there is a special exception calledNoMatch that can be used tomark
it explicitly.

● execute does stuff.What stuff depends on the Actor.

Actors may expose an “interface” consisting of configurable properties. Thesemay be used to

modify an Actor’s behavior in a variety of ways. For example, the FileWriter class has two interface

properties: “file” and “mode”. Setting “file” changes the file an instance of that class writes to when

it executes; setting “mode” changes themode it writes in (“a”, “wb”, etc.) Properties in an Actor’s

interface attribute propagate up in a “flattened” fashion to the associated Node. This makes it

straightforward to send complete configuration instructions to Nodes. For instance, if a Node has

an attached FileWriter named “write”, the Nodewill inherit properties “write_file” and

“write_mode”.

Actors are not intended to be self-managed, i.e., they do not by default have internal

constantly-running threads. Every execution of an Actor is directly commanded by a Node. These

individual executions run in individual threads in the Node’s ThreadPoolExecutor, although they

may themselves launch other threads or processes when appropriate (like a FunctionCall actor

instructed to launch a daemon in a forked process).

Actors have an important abstract subclass: DispatchActor. This is a type of Actor intended to be

attached to Stations to help them construct Instructions for Delegates. It includes a pick() method

that can be configured to allow it tomark a specific Delegate or group of Delegates as valid targets

for an Instruction.

Sensors

Sensors are partly-autonomous objects designed tomonitor events and receive external data. For

instance, a Sensor might tail a log file to watch for changes or periodically query a URL. Like Actors,



v240504.0

they can also expose a configurable interface, and it propagates to its parent Delegate in the same

way.

Each Sensor subclass has a checker() method that defines what it senses and how. Delegates

launch each of their attached Sensors in individual threads; these threads loop forever, calling the

Sensor’s checker method each time.

A Sensor is a little bit like a sub-Node in that it has Actors of its own. These are primarily intended

to filter irrelevant events and send reportable ones back to the Delegate to be reported to its

Station, but they can also be used for things that do not need to propagate through the Station’s

network, like cleanup tasks or supplementary logging. Sensors, however, are not full Nodes; they

are not capable of managing threads or communicating with the Station. This alsomeans that a

Sensor cannot possess Sensors of its own.

TCP server (hostess.talkie.TCPTalk)

This is the lowest-level communication object directly managed by hostess, not counting

individual messages. Everything below this is Python’s OS-specific raw socket protocol layer.

TCPTalk is a multithreaded TCP server with swappable decoders and receipt callbacks. By default

the decoder is read_comm, which decodesmessages as hostess comms. Station uses the

swappable receipt callback feature to attach a Stationmethod to the server, allowing it to spool

messages to and from the Station’s inbox and outboxes.

When you launch a TCPTalk instance, it creates a socket.socket object and binds it in listeningmode
to the specified host and port. It then launches a “selector” thread and a configurable number of

“i/o” threads. All these threads run (andmust run) in the same process, because they communicate

with one another via shared Python objects. A single thread can do the job inmany cases, but more

threads is useful if you are expecting a high volume of incomingmessages, especially small ones.

The default is 4.

These communicationmethods include a signals dictionary. As each thread loops, it checks the

signals dictionary. If there’s any value other than None at the key corresponding to the thread’s

name, the thread quits; i.e., their main loops look like: “while self.signals.get(name) is None: ...” This
can bemanually modified but is also exposed in the TCPTalk.sig(name) (one thread) and

TCPTalk.kill() (all threads + the socket) methods.

The selector thread attaches a basic accept-connection callback (TCPTalk._accept()) to the socket

using functionality from the selectors module. Then, it loops forever, checking to see if the selector

has queued that or any other actionable event (others would be attached by i/o threads). If it has, it

spools the events to i/o threads using the TCPTalk.queues object, which is just a dictionary whose



v240504.0

keys correspond to i/o thread names andwhose values are lists of tasks for the individual threads.

This is all the selector thread does.

The i/o threads loop forever checking for queued events from the selector thread. The expected

outcome is that each incoming connection will hit, in order, the _accept, _read, and _ack callbacks.

However, these callbacks will usually not all be handled by the same thread. The i/o threads also

append each callback as a dictionary to the server’s events list.
● _accept() simply accepts the incoming connection / establishes peering.
● _read() reads data from the peered socket and decodes it inline using the TCPTalk instance’s

decoder() attribute (by default read_comm(), which decodes Hostess comms). It then

places the decodedmessage, along withmetadata, into the server’s data list.

● _ack() acknowledges receipt of message and sends data back to the peer; by default, it
sends a simple acknowledgementmessage, but if the TCPTalk instance has its ackcheck
attribute set, it will call that function inline to see if additional data is available to return to

the peer. Station implements its send-from-outbox functionality by binding the ackcheck()

to a Station’s TCPTalk server.

General Notes

● all “threads” are Threading.thread objects managed using ThreadPoolExecutors from

concurrent.futures. This strategy is highly performant for the kinds of I/O-bound tasks

involved in inter-Delegate/Station communication andmuchmoremaintainable than

asyncio. However, if you anticipate that a single Delegatemay simultaneously execute

multiple CPU-bound tasks, it is preferable to ensure that their Actors execute them in

separate processes. Straightforward functionality exists for this in the FunctionCall actor.

● no autocompiler currently exists for the proto file. If youmake changes to station.proto,

youmust recompile before the package will be able to use them, e.g.: “protoc -I hostess

--python_out=hostess hostess/station/proto/station.proto”

Hostess Comms

Hostess comms are the application-layer protocol Stations andDelegates use to communicate

with one another. They are designed for use with the TCP interface-layer protocol, whichmeans

they are easy to use both locally and over networks.

Packet Format

The lowest level of the hostess comm format – a simple header and footer protocol that help

recipients understand, decode, and verify intra-hostess TCP streams. The header format is:

● bytes 0-7: HOSTESS_SOH string (b”\01hostess”)

● byte 8: code for message body type (0: none, i.e., raw binary blob; 1: Update protobuf

Message; 2: Instruction protobufMessage). In normal usage, most commswill either

containMessages or serve as simple acknowledgement packets.



v240504.0

● bytes 9-12: total length of comm, including header and footer, in bytes (does not support

comms larger than 2^32 bytes)

The footer format is:

● bytes 0-7: HOSTESS_EOM string (b”\03hostess”)

Protocol BufferMessages

Major categories:

● Instructions, sent by Stations to Delegates

● Updates, sent by Delegates to Stations

● PythonObjects, packed Python objects with attached deserialization information; can be

embedded inmany other messages

● Actions, specifications for actions embedded in Instructions

● ConfigParams, configuration specifications embedded in Instructions

● TaskReports, information about a completed or failed task embedded in Updates

Please refer to hostess/station/proto/station.proto for a complete specification of the Protocol

Buffer messages.

Note that in most cases you should not have to directly construct protobufMessages, because the

hostess.station.proto_utils and hostess.station.messagesmodules contain many high-level

abstractions for this. For instance, many of theseMessages utilize enums for efficiency. It can in

some cases be irritating to get the value, rather than key, back out of a protobuf enum field in

Python. hostess.station.proto_utils.enum() offers an easy workaround for this.

The hostess.station.messages.Mailbox and hostess.station.messages.Msg classes offer a

higher-level interface to viewing andworking withMessages. The Station’s inbox and outboxes are

Mailboxes that automatically display and formatMessages as easier-to-work-with Python objects.

Class Hierarchy

● hostess.station.bases.AttrConsumer

○ hostess.station.bases.Matcher (abstract)
■ hostess.station.bases.Sensor (abstract)

● various concrete subclasses

■ hostess.station.bases.Node (abstract)
● hostess.station.delegates.Delegate

○ hostess.station.delegates.HeadlessDelegate

● hostess.station.station.Station

● hostess.station.bases.Actor (abstract)
○ hostess.station.bases.DispatchActor(abstract)

■ various concrete subclasses

○ various concrete subclasses



v240504.0

● hostess.station.messages.Msg

● hostess.station.messages.Mailbox (container for Msg but not in inheritance relation)


