
examples for hostess.aws.s3

introduction

hostess.aws.s3 is a collection of utilities for working with S3 objects. Its centerpiece

is a class called Bucket , which offers a straightforward interface to a single S3 bucket.

capabilities

hostess.aws.s3 is designed as a streamlined alternative to boto3 's high-level S3

API. It is intended to make it easy to integrate S3 objects into Python workflows without

writing a lot of boilerplate. It makes read/write operations extremely simple, including

reads and writes from and to in-memory Python objects.

In addition to simple I/O operations, it offers special functionality for several types of

tasks that are frequently encountered when working with "big data" on S3, but are not

straightforward to execute with existing tools, specifically:

• building searchable indices of buckets containing many objects

• modifying object storage classes

• writing larger-than-memory or intermittently-streamed data to S3 objects

limitations

hostess.aws.s3 does not provide interfaces for S3 administrative operations,

including creating and deleting buckets or managing object and bucket permissions. If

you need to perform automated S3 admin tasks of this type, you will need to

supplement hostess with something such as boto3 , awscli , the AWS Web

Console. (hostess.aws does offer some generic utilities to make using boto3
easier.) hostess may expand its S3 administrative capabilities in the future.

requirements

1. If you have no valid AWS credentials, hostess.aws (like any other AWS interface)

will not function. By default, hostess uses the 'default' profile from ~/.aws/

credentials. This can be modified in hostess.config.user_config or by

manually constructing a boto3 session or client with init_session or

init_client from hostess.aws.utilities .

2. You need appropriate AWS permissions, both for the specific API call you're making

and the specific S3 resources you wish to access. You cannot, for instance, use

Bucket.ls() without the ListObjectsV2 permission, or Bucket.put() without

the PutObject permission.

A complete discussion of AWS credential and permissions management is beyond the

scope of this document. For overviews, please refer to AWS documentation on account

creation, credentials, and S3 permissions.

note and caveat

This tutorial will walk you through the creation of an s3 bucket using your available AWS

credentials and then put data into that bucket. This will start to incur costs attached to

your AWS credentials. If this tutorial is run without modification, then the total costs

should be approximately one fifth of a cent -- less than the electricity you are using to

run your computer. However, if this is unacceptable to you or makes you uncomfortable,

you should proceed with caution or not at all. We (the authors of hostess) disclaim

responsibility. (See the appendix for a breakdown of estimated costs.)

make an S3 bucket

This isn't a showcase of hostess 's capabilities -- it just uses boto3 and the Python

Standard Library -- but it's a necessary precursor to the subsequent examples. If you

have an existing empty bucket you'd like to use, you can skip this section, and if you've

already run through this section before, you can reuse the bucket you made.

AWS bucket names have to be unique within an AWS Partition (grouping of Regions), so

we'll make a bucket with a random name. If you'd like to reuse this bucket later, make

sure you note down or can easily look up the name (like in the AWS Web Console).

initialize a Bucket

Unless you require special configuration, it's extremely straightforward to initialize a

hostess Bucket : just pass the name of the bucket.

from random import randint
from hostess.aws.utilities import init_client

bucket_name = f"hostess-cats-{''.join(str(randint(0, 9)) for _ in range(9))}
response = init_client('s3').create_bucket(Bucket=bucket_name)
if response['ResponseMetadata']['HTTPStatusCode'] == 200:

print("We're ready to continue.")
print(f"The bucket name is {bucket_name}.")

else:
print("Something went wrong. Take a look at the response.")

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-policy-language-overview.html

read/write operations on buckets

There's not a lot you can do with an empty bucket, so let's take the only sensible step

and turn our bucket into a repository of cat pictures.

First, let's add a quick README file to the bucket to clarify our intent and demonstrate

Bucket 's basic I/O capabilities.

initialize a Bucket object associated with our shiny new S3 bucket
from hostess.aws.s3 import Bucket

bucket = Bucket(bucket_name)

Verify that it's empty. We'll discuss `Bucket.ls()` more later.
len(bucket.ls())==0

compose helpful documentation and write it to a local file

readme = """# cat picture repository
This bucket contains pictures of cats. Cats are
small predatory mammals often kept as pets. Users who are unfamiliar
with cats may wish to consult some
[basic reference material](https://en.wikipedia.org/wiki/Cat) before
browsing the bucket in order to avoid confusion.
"""

with open("DRAFT_README.md", "w") as stream:
stream.write(readme)

write the README to the bucket. The first two arguments of
`Bucket.put()` are a source and a destination. Here, we're using
a path to a local file (the file we just wrote) as the source.
The second argument is the object key you'd like to write your
data to. "README.md" seems fine in this case.
bucket.put("DRAFT_README.md", "README.md")

Now, load the README into memory and render it to make sure
our documentation made it to the bucket safely.
from IPython.display import Markdown

Bucket.read() reads an S3 object directly into a Python object,
by default a string. pass mode="rb" to read it as bytes instead.
If this command prints the text of our README as Markdown, then
the file has been successfully written to and read from the s3
bucket.
Markdown(bucket.read("README.md"))

download cat pictures

This isn't a special hostess feature, either, but we do need real content to put in our

bucket, so let's grab some cat pictures from the Cat as a Service API. This should take

about 20 seconds, depending on internet weather.

This will write the cat pictures to an in-memory array object catbytes , not to your

local filesystem.

Note: We don't recommend displaying the catbytes object in Jupyter; it'll be a lot of
binary gibberish.

from collections import defaultdict
from io import BytesIO
import requests
from hostess.utilities import mb

feline binary array
catbytes = []
number of cats per tag
cats_per_tag = 3
for adj in ("cute", "angry", "white", "black", "tabby"):

print(f"fetching pictures of {adj} cats...")
for i in range(cats_per_tag):

get data for a cat picture
resp = requests.get(f"https://cataas.com/cat/{adj}")
parse mimetype so we know the image format (jpeg, gif, &c)
ftype = resp.headers['Content-Type'].replace('image/', '')
save data & metadata in our list
catbytes.append(

{'data': resp.content, "prefix": adj, 'fn': f"cat_{i}.{ftype}"}
)
print(f"{i + 1}/{cats_per_tag}...", end="")

print("")
print("... done.")
integrity check
assert all(isinstance(c['data'], bytes) for c in catbytes)
print("All cat pictures are Python bytes objects,", end=" ")
summary info
print(

f"{mb(sum(len(c['data']) for c in catbytes))} MB total volume."
)

write cat pictures to the bucket

You saw a moment ago that hostess.aws.s3.Bucket can write local files to S3

objects. It can do the same with in-memory objects.

serial uploads

Bucket supports both serial and parallel forms of most basic I/O operations,

including put() . Passing a single source and destination, as follows, makes Bucket
operate in serial mode:

parallel uploads

Passing sequences of sources and destinations makes Bucket operate in parallel

mode. It performs the API calls in multiple threads and returns all the results in a list
(even if those results are None , like for put()). AWS encourages the use of this type

of 'horizontal scaling', so it's typically a good option if you know everything you need to

upload/download/etc. from the outset. This should be about twice as fast as the serial

operation in the previous cell:

a note on supported types

Bucket.put() supports bytes , str , StringIO , and BytesIO . If you want to

write a str , pass literal_str=True so that Bucket doesn't interpret it as the

path to a local file. All our cat pictures were already bytes , so we didn't need to do any

preprocessing.

a note on thread count

By default, Bucket uses 4 threads for auto-threaded operations. You can change this

by passing the n_threads argument to Bucket , or setting Bucket.n_threads
after initialization. Setting n_threads to None turns off auto-threading. A different

number may be better depending on network speed, latency, object size, etc.

%%time
put the cat pictures in the bucket one by one
for c in catbytes:

bucket.put(c['data'], f"{c['prefix']}/{c['fn']}")

%%time
'flattened' version of the for loop from the earlier cell
cat_data = [c['data'] for c in catbytes]
cat_keys = [f"{c['prefix']}/{c['fn']}" for c in catbytes]
results = bucket.put(cat_data, cat_keys)

https://docs.aws.amazon.com/whitepapers/latest/s3-optimizing-performance-best-practices/horizontal-scaling-and-request-parallelization-for-high-throughput.html
https://docs.aws.amazon.com/whitepapers/latest/s3-optimizing-performance-best-practices/horizontal-scaling-and-request-parallelization-for-high-throughput.html

indexing our cat pictures

Now that we've populated our bucket, we can build an index for it to ensure our uploads

worked as we expected and help users find the specific cat pics they need.

Bucket offers a wealth of options for exploring buckets, and one of its most powerful

features is its df() method. If you access it before populating a Bucket 's contents,

it immediately indexes the entirety of the bucket's contents, cache the results in

Bucket.index , and then returns them as a pandas DataFrame. Subsequent calls to

df() will use these cached contents rather than performing the full indexing process

again. (If you need to re-index, call Bucket.update_contents() first.)

CAUTION: don't call this casually on really, really, big buckets (containing e.g. millions of
objects or more), especially if you don't care about their entire contents -- it will take a
long time to run, and in the worst cases, can even create a larger-than-memory index.
See below for how to index buckets in a more controlled way.

reading cat pictures from the bucket

Now that we've got an index of cat pictures, we can easily download them in parallel,

either into memory or to disk. Let's try it both ways, first into memory.

a note on Bucket.get() 's signature

By default, Bucket.get() reads S3 objects into memory as Python BytesIO objects. If

you want that behavior, which we do here, you don't have to explicitly pass a list as the

second argument of get() to use it in parallel.

look at that wealth of content...
index = bucket.df()
index

for larger buckets, having immediate access to all of pandas's affordances
can be a lifesaver. say you wanted to know the total size of all the JPEGs
in the bucket:
jpeg_mb = mb(index.loc[index['Key'].str.endswith('jpeg'), 'Size'].sum())
print(f"There are {jpeg_mb} MB of cat JPEGs.")

read to in-memory objects
from random import choice
from PIL import Image

just grab the cat pictures, not the README
pic_keys = index.loc[index['Key'].str.contains('cat'), 'Key']
catbuffers = bucket.get(pic_keys)
the moment of truth for our round-trip operation...
print(f"We uploaded {len(catbytes)} files and got {len(catbuffers)} objects back."
Image.open(choice(catbuffers))

%%time

write the cat pics into a subfolder of your working directory
named 's3_cat_mirror.' `Bucket.get()` will automatically
create the necessary directory structure to mirror the
organization of the s3 bucket, treating object prefixes like
the names of directories. (See notes on terminology in the appendix.)
In this case, there will
end up being directories for each adjectival category of cat.
results = bucket.get(pic_keys, "cat_s3_mirror/" + pic_keys)

let's do a completeness check to make sure that we
actually got all of the cat pictures
from pathlib import Path
import pandas as pd
from hostess.directory import index_breadth_first, make_treeframe

we should have the same total set of pictures. let's compare names
and sizes.
local_index = pd.DataFrame(index_breadth_first("cat_s3_mirror"))
strip the local subdirectory name:
local_index['path'] = local_index['path'].str.replace('cat_s3_mirror/', '')
for _, local in local_index.iterrows():

don't care about directories
if local['directory'] is True:

continue
remote = index.loc[index['Key'].str.endswith(local['path'])]
assert len(remote) == 1, "missing? duplicates? not great."
remote = remote.iloc[0]
assert mb(remote['Size'], 3) == local['size']

print("everything matches!")

and we can do a direct visual comparison to make sure. this cell
and the next cell should display the same picture when you run them,
because they are attempting to open and display the same file
from your local file system and the remote s3 bucket.
Image.open(f"cat_s3_mirror/{local['path']}")

Image.open(bucket.get(local['path']))

cleanup

Now that we're done, let's go ahead and delete all the objects in the bucket, and the

bucket itself (you can't delete a bucket with anything in it).

delete all objects
_ = bucket.rm(bucket.df()['Key'])

is it empty?
bucket.update_contents()
assert len(bucket.df()) == 0

delete the bucket
response = init_client('s3').delete_bucket(Bucket=bucket_name)
if response['ResponseMetadata']['HTTPStatusCode'] == 204:

print("Cleanup complete. Bucket deleted.")
else:

print("Something went wrong. Take a look at the response.")

appendix

general s3 notes and vocab

Here are some useful notes about S3. These notes aren't specific to hostess . They're

statements about S3 in general.

S3 objects are designed to look a lot like files, S3 buckets are designed to look a lot like

filesystems, and in many cases, they can be used like files and filesystems. They aren't,

though, and we prefer to use precise vocabulary to emphasize the differences.

The full name of an S3 object is called its object key name or just key. This includes its

full 'path' in addition to its 'file name'. The components of the 'path' prior to the 'file

name' are called prefixes. Prefixes are loosely analogous to directories in a filesystem,

and interfaces often display them as if they were. However, prefixes are not actually

directories, and a key is not actually a path. Directories are a type of file, but prefixes are

just "a string of characters at the beginning of the object key name" that can be used to

help organize objects and permissions. They cannot be renamed/moved, given AWS

resource tags, or otherwise directly manipulated.

Similarly, unlike files, S3 objects also cannot be renamed / moved. "Moving" an S3

object always means making a complete copy of it with a different key and subsequently

deleting the original, even if the new copy is in the same "filesystem" (bucket). It is no

slower to copy an object from one bucket to another than to copy an object within the

same bucket (unless the buckets are in different AWS Regions).

Finally, unlike files, S3 objects are immutable. Although it is possible to read just a

portion of an S3 object, it is not possible to perform incremental writes to an S3 object.

Anything that looks like a tail-write to an S3 object actually overwrites the whole object

with a slightly modified copy of itself. This tends to be horribly inefficient. Multipart

uploads provide the closest approximation to 'real' tail-writes, and they don't actually

create accessible objects until they're completed.

a diagnostic tip

If you are having trouble accessing an S3 resource via hostess , you can quickly rule

out some basic possibilities by calling hostess.aws.utilities.whoami() . This

function performs an API call that is always available to any AWS account, even if an

administrator specifically tries to deny it (STS GetCallerIdentity). If it fails, either there is

something wrong with your account credentials, or some network issue is preventing

you from accessing an AWS API endpoint. If it doesn't, the problem is with access to the

resource or API action. Permissions might be wrong, the resource might not exist, it

might be in a different region than expected, or your network is specifically blocking

access to that resource.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html

hostess.aws.s3 's relationship to boto3 (advanced topic)

hostess.aws.s3 works primarily as a high-level interface to boto3 's low-level S3

API. Due to philosophical differences, it makes almost no use of the boto3 high-level

Bucket object, and should be considered a reimagining of that object rather than a

wrapper for it. hostess Buckets do not automatically instantiate or grant access to

boto3 Buckets . However, they do wrap boto3 client, resource, and session

objects. If users require access to portions of the S3 API not included in hostess , they

may reference these attributes of a hostess Bucket in order to perform API calls

using the same session/client/resource that underlies the methods of their hostess
Bucket . They may even use them to instantiate a similarly-configured boto3
Bucket , if they would like things to get confusing.

Bucket.df() column specification

• Key: object key (object)

• LastModified: last modified time (datetime64[ns, tzutc()])

• ETag: S3-generated object tag. Usually the md5 hash, but this is not guaranteed.

(object)

• Size: object size in bytes (int64)

• StorageClass: storage class, e.g. DEEP_ARCHIVE or STANDARD (object)

breakdown of estimated costs for this Notebook

Running this Notebook as-is should incur approximately a fifth of a cent in AWS costs.

• This estimate assumes that you take an extended break in the middle of running this

Notebook and retain the cat pictures in S3 for 4 hours.

• This Notebook also makes DELETE requests, but DELETEs are free. The same is

true of data transfer IN.

• Estimated 6 MB of cat pictures; the actual amount may vary by 1-3 MB.

• All values in USD.

S3 Standard timed storage

• 6 MB @ 0.023 / GB-month * 4 hours = 0.000000756

data out

• 20 MB @ 0.09 / GB = 0.0018

API requests

S3 Standard tier 1

https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/storage-classes/

TODO: update if we add additional ls() examples

• 31 PUT

• 2 LIST

• 33 total @ 0.005 / 1000 calls = 0.000165

S3 Standard tier 2

• 32 GET

• 32 total @ 0.0004 / 1000 calls = 0.0000128

TOTAL: ~0.002 USD

