
examples for hostess.aws.ec2
introduction

hostess.aws.ec2  is a collection of utilities for working with EC2 instances.

Instance  and Cluster  are its centerpiece classes. They are abstractions for,

respectively, single EC2 instances and groups of EC2 instances. By offering both

managed interaction with the EC2 API and a rich set of remote procedure call (RPC)

capabilities, they attempt to make distributed workflows as conceptually simple and

immediate as local ones.

requirements

1. You need appropriate AWS permissions to perform any actions that call the EC2 API.

You cannot, for example, use ls_instances()  without the ListInstances

permission, or Instance.start()  without the StartInstances permission for the

particular instance you are attempting to start. (A complete discussion of AWS

permissions management is beyond the scope of this document.)

By default, hostess  uses the 'default' profile from ~/.aws/credentials. This can be

modified in hostess.config.user_config  or by manually constructing a client

with hostess.aws.utilities.init_client  and passing it as the client
kwarg to an Instance  or Cluster  constructor.

If you are in a situation where you have SSH access to, but not AWS permissions for,

an EC2 instance you'd like to make hostess  RPCs on, you should ignore the fact

that it is an EC2 instance and simply use hostess.ssh.SSH , which underlies the

RPC capabilities of this module.

2. The RPC functionality offered by this module relies on SSH, so you need SSH

access to an instance to make RPCs on it. Specifically:

A. The inbound traffic rules of the instance's security group must permit SSH

access from your IP. (If you create a security group with hostess , it will set

this up automatically.)

B. hostess  supports only keyfile-based authentication, so you must have the

correct keyfile for the instance, and hostess  must be able to find it. If it

shares a filename with the key name known to AWS and is in your ~/.ssh
folder, hostess  will find it automatically. If this is not the case, you can

manually specify a path to the keyfile when constructing an Instance  or

Cluster . You can also change the default search paths in

hostess.config.user_config . (If you create a security group with



hostess.config.user_config . (If you create a security group with

hostess , it will also generate a compatible keyfile and save it into your

~/.ssh  folder.)

C. The instance must be running sshd  and configured to accept incoming

connections. You usually will not have to do anything special to set this up: the

default configuration of most stock AMIs, including the Ubuntu and Amazon

Linux images, is suitable.

Note: If you want to create remote workflows without relying on SSH connections,
we recommend looking at the hostess.station  framework.

caveat and warning

This tutorial will walk you through the creation of several EC2 instances and associated

EBS volumes. This will incur costs attached to your AWS credentials. If this tutorial is run

without modification, the total costs should be very small (approximately 13 cents).

However, if this is unacceptable to you or makes you uncomfortable, you should proceed

with caution or not at all. We (the authors of hostess ) disclaim responsibility. (See the

appendix for a breakdown of estimated costs.)

relationship to boto3

aws.ec2.Instance  is designed to be easier to use, more Pythonic, and more

powerful than boto3 's Instance  abstraction. However, it does not implement high-

level interfaces for the entirety of the EC2 API. Because it works partly by wrapping

portions of boto3 , however, every aws.ec2.Instance  also grants access to a

boto3 Instance  object with a shared AWS configuration. If you need access to

other parts of the EC2 API inside a hostess  workflow, you can access this object via

the aws.ec2.Instance.instance_  attribute.

1. launching instances

Instance  can be used both to work with existing instances and launch new ones. In

this section, we'll launch an instance to work with in subsequent sections. We should

discuss some preliminaries first.

IMPORTANT: hostess  performs no automated instance lifecycle management due to

its potential to cause process disruption and unintended data loss. If you want to stop or

terminate an instance, you must do so explicitly, using methods of the Instance
object, other interfaces to the EC2 API, shutdown commands on the instance itself, or

the EC2 web console. You may find it helpful or illuminating to have the EC2 web console

open in another browser tab while for reference while you work through this notebook.

1.1. instance configuration

launch templates



launch templates

Although it's not mandatory, the easiest and cleanest way to launch instances with

hostess  is to use an existing launch template and give Instance.launch()  the

name of the template. (On the backend, this is because the API requires a launch

template to launch an instance, and reusing the same launch template helps ensure

consistent behavior.) You can create a launch template using

aws.ec2.create_launch_template() , other interfaces to the EC2 API, or the EC2

web console.

[TODO: template parameter overrides are a planned feature. update this when

finished.]

If you don't do this, hostess  just creates a 'scratch' template to launch the instance

and deletes it immediately after launch (whether successful or failed).

defaults

The EC2 API requires explicit specification of a lot of parameters to launch an instance.

hostess  wants to make it easy to launch instances, so if you don't explicitly specify

some or all of these parameters, it populates them with sensible defaults. You can

override the following defaults in hostess.aws.config.user_config :

• instance_type (instance type, like 't3a.micro')

• volume_type (root EBS volume type, like 'gp3')

• volume_size (root EBS volume size in GB)

[TODO: complete description of valid options ]

A couple of default behaviors are worth special consideration:

• If you don't specify a security group, either in a launch template or the

'security_group_name' item of options , hostess  acts like the EC2 web

console's launch wizard and creates a new security group.

▪ These auto-generated security groups are named 'hostess-' followed by 10

random lowercase letters. They permit all outgoing traffic from their members,

and permit incoming traffic on:

◦ the standard SSH port (22) from your current IP

◦ any port from other AWS resources in the same security group.

▪ this also generates an SSH keyfile and saves it to your ~/.ssh folder. Its filename

is the same as the name of its associated security group.

▪ hostess  does not provide automated lifecycle management for these

security groups (this is because deleting security groups associated with

running instances is impossible, and deleting security groups associated with

stopped instances can make them unusable). This has the same issue as the

EC2 launch wizard: it can leave your account cluttered with old security groups,

which are harmless but unsightly. It can also leave your .ssh folder confusingly

# First, create a reusable launch template with a few non-default options.
# This creates a launch template in your AWS account, not just a local object.
from hostess.aws.ec2 import create_launch_template

response = create_launch_template(
template_name='kitty',
# a cheap burstable instance
instance_type='t3a.micro',
volume_size=9,
# gp3 volumes typically have better sustained performance, and hostess
# defaults to gp3. However, gp2 volumes tend to have better initial 
# startup and shutdown times, so they're better for a quick demo.
volume_type='gp2',
instance_name='kitty',
tags={'BillCode': 'Customer5', 'Project': 'ADMIN'}

)

# Note that you can't have multiple templates with the same name, so
# this cell will throw a `ClientError` `Exception` if you run it twice.

# If you happen to have run this cell previously and want to create a 



which are harmless but unsightly. It can also leave your .ssh folder confusingly

cluttered with keyfiles. It's better to reuse existing security groups.

• If you don't specify an Amazon Machine Image (AMI), either in a launch template or

in the 'image_id' item of options , hostess  uses the most recent Ubuntu Server

LTS AMI.

1.2. executing Instance.launch()

The hostess  defaults are permissive enough that you can make a new instance with

default configuration simply by calling Instance.launch()  with no arguments.

However, we'll show a preferred workflow here.

2. listing and finding instances

If you have ever used the awscli  command aws ec2 describe-instances  to try

to find an EC2 instance, you may have noticed that although its output is very complete,

it is extremely verbose, deeply nested, and hard to parse. Its filtering options are also

somewhat difficult to use. hostess 's ls_instances()  is a much more lightweight

alternative that is equally suitable for most use cases.

# new 'kitty' template with different settings, you'll need to delete
# the former template. This can be done with the following commands:

# >> from hostess.aws.ec2 import init_client
# >> init_client('ec2').delete_launch_template(LaunchTemplateName='kitty')

# Now launch an instance using the template. You can specify the 'kitty' 
# template in subsequent launches to create identically-configured instances 
# in the same security group.

from hostess.aws.ec2 import Instance

# We're passing `connect=True` here to make sure the instance is fully
# booted up before we send the stop instruction in the next section.
# If you send a stop instruction to a booting instance, it can take
# a really long time to stop.
kitty = Instance.launch(template='kitty', connect=True)

# If you simply call `ls_instances()` with no arguments, it will return a tuple
# of dicts giving essential information about all your running, pending, stopping,
# or stopped instances:
# name (if any); public ip (if any); instance id; state (running, 
# pending, stopped, terminated); private ip (if any), and keyname (if any). 
from hostess.aws.ec2 import ls_instances

instance_info = ls_instances()
instance_info[0:2]

# `ls_instances()` offers a variety of ways to filter your search.
# See the docstring for a full set of options. We'll just describe
# one here: `ls_instances()` understands arbitrary keyword arguments 
# as case-insensitive tag filters. For example, if you have a single 
# instance named 'kitty', you can find it with:
ls_instances(name='kitty')[0]

# This feature also supports optional regex matching. If you had a 
# set of instances named 'pipeline_1', 'pipeline_2', etc., then
# the following command would find them. If you don't (which is
# probably the case), then it will return an empty tuple.
ls_instances(name=r'pipeline_\d', tag_regex=True)



3. controlling instance state
Instance has several methods to control an instance's activation state:

• start()  boots the instance.

• stop()  shuts the instance down.

• restart()  shuts the instance down, waits for complete shutdown, and boots it

again.

• terminate()  terminates the instance. IMPORTANT WARNING: This permanently

and irrevocably deletes an instance and, unless it's specifically configured

otherwise, its root volume. hostess  trusts that you know what you're doing, so

terminate()  doesn't have any special guardrails. Instance.terminate()  is

like sudo rm -rf : don't even type it unless you really mean it!

notes:

• These methods don't do anything if the instance is already in (or transitioning to)

the requested state.

• start() , stop() , and restart()  will raise exceptions on terminated

instances.

• Instance()  also has wait_until_running() , wait_until_stopped() ,

and wait_until_terminated()  methods, which block until the instance

reaches the specified state.

# For the sake of demonstration in the next section, shut `kitty`'s
# EC2 instance down and delete `kitty` from the namespace. 
# Note that deleting the an `Instance` object like `kitty` does _not_ 
# terminate the actual EC2 instance associated with it; you need 
# to terminate the actual EC2 instance if you don't want it to hang 
# around in your account. (We'll discuss that more later.)
kitty.stop()
# Wait until the 'kitty' instance fully shuts down. May take a minute.
kitty.wait_until_stopped()
del kitty



4. connecting to an existing instance

Instance  can connect to an existing instance even more easily than it can launch a

new one.

The only required argument to the Instance  constructor is an identifier for the EC2

instance you'd like to work with. There are three acceptable types of identifier:

• a connectable IP address for the instance, like "102.31.4.129"
• the AWS instance identifier, like "i-0868ad3eeebe16cde"
• one of the dicts  returned by ls_instances()

Note: If you're connecting to an instance from another EC2 instance, pass
use_private_ip=True  to the Instance  constructor, and if you're using an IP

address as the identifier in this case, make sure it's the private IP.

# The EC2 instance named 'kitty' exists, but is stopped, and we no longer
# have an `Instance` object for it. We can find the EC2 instance and 
# make a new `Instance` for it by using `Instance` along with `ls_instances()`:
from hostess.aws.ec2 import Instance, ls_instances

kitty = Instance(ls_instances(name='kitty')[0])

# The string representation of an Instance gives its name (if any),
# its instance id, its instance type, its EC2 subnet, and its IP address
# (if it has one, which it generally won't if it's not running). 
print(kitty)
print()

# Instance also has a number of 'basic information' attributes, like:
print(

f"The instance is {kitty.state}, named '{kitty.name}', "
f"and has the following tags:\n\n{kitty.tags}"

)

# Let's boot `kitty` back up so we can use it.
# It can take a minute or two for an instance, especially a little 
# instance like this, to launch its SSH daemon after it boots. 
# `connect=True` makes `start()` block until you can establish an SSH
# connection to the instance; here, we're doing this to ensure
# that we'll be able to run commands in the next section.
kitty.start(connect=True)

# Now it's got an IP address again! Good kitty!
kitty



5. remote procedure calls

Instance  supports two main types of remote procedure calls (RPCs):

• shell commands

• Python function calls

5.1. shell commands

With Instance , you can run commands as if you were logged into the instance and

work with the output of those commands in Python. Instance  has three primary

methods for this. They are all highly configurable, and we don't discuss all their options

here. See the documentation for hostess.subutils.RunCommand  and

hostess.subutils.Viewer  for a full description of options.

• command()  runs a command in the remote user's default login shell. you can pass

a command as a literal string, or construct it from Python arguments (examples

below). By default it runs the command asynchronously and returns a

hostess.subutils.Viewer  object you can use to inspect or terminate the

process.

• con()  simulates the experience of typing a command into a console and looking

at its output. It blocks until the process exits and pretty-prints any output from the

process. the exception.

▪ This means that if you run a command that never exits, like 'while sleep 
1; do uptime; done' , con()  will block until it is interrupted or the

connection is severed.

▪ con()  prints "^C" on KeyboardInterrupt  rather than raising

• commands()  provides syntactic sugar for constructing list commands.

Note: hostess  only fully supports bash . Some functionality may not work in other
shells.

# Get the full UNIX name information for the instance.
# `hostess` interprets the `a=True` argument as a shell 
# switch; this is equivalent to `kitty.command('uname -a')`.
uname = kitty.command('uname', a=True)

# Because `Instance.command()` runs asynchronously by default,
# it's unlikely that you'll get any output in the microseconds
# it takes to get to this next line. You'll probably just see 
# that 'uname' is a `Viewer` for a running 'uname -a' process. 
uname

# The uname call will probably have completed by the time you
# execute this cell. If not, just run this cell again.
uname



# If you want a more streamlined way to look at the output of a command,
# try `Instance.con()`. This blocks until process exit and iteratively 
# pretty-prints its stdout and stderr (with stderr in red).
# It's intended to give the feel of running a command in a console.
# IMPORTANT: By default, in order to keep things nice and light, `con()` 
# does not return anything. If you need to use the results of the command 
# in subsequent code, pass `_return_viewer=True`.

# To pretty-print all active TCP connections, timestamped, twice:
kitty.con("date; ss -t ; sleep 1; date ; ss -t")

# If you would like to ensure that a command completes before you move on 
# to the next part of your code, but don't want it to be loud like `con()`,
# you can call the `.wait()` method of the returned Viewer object or pass 
# `_wait=True`.

# get size and usage information for all mounted filesystems
usage = kitty.command("df -h", _wait=True)
print(usage.stdout[0])

# You can access the stdout and stderr of commands you execute
# via the `.out` and `.err` attributes of returned Viewers.

# These are lists of strings. Each element of the lists is an 
# individual write to stdout/stderr by the remote process. 
# Simple commands that do a thing and exit will generally only have
# one element, because they return their output all at once.
# (This may not be true in cases in which the output is extremely
# large, due to SSH buffering, etc.)
print(f"{len(usage.out)} write(s) to stdout")

# This allows you to use the results of remote shell commands in code.
import re
import pandas as pd

# For example, reformat the contents of `usage.out` into a DataFrame:
rows = [

re.split(' +', line, maxsplit=5) 
for line in usage.out[0].splitlines()

]
pd.DataFrame(rows[1:], columns=rows[0])

# It also allows you to monitor the results of ongoing processes.
# A silly example:
kitty.command("echo 1 > numbers.txt", _wait=True)
tail = kitty.command("tail -f numbers.txt")
number = 1
while len(tail.out) < 5:

number += 1
kitty.command(f"echo {number} >> numbers.txt", _wait=True)
print(tail.out)



# It can sometimes be important to do manual cleanup of backgrounded RPCs. 
# The `tail` process that we executed in the previous scell is still
# running, even though we're done with it:
tail.running

# To you might want to kill it.
tail.kill()
tail.running

# `Instance.commands()` is an easy way to perform a sequence of commands
# without having to enter a monolithic string. A silly example:
kitty.commands(["cd /", "ls"], _wait=True)

# This can be used for serious sysadmin stuff. 
# A real-world example might look like this:
from itertools import chain

private_repos = ["sensitive_devops", "proprietary_algos", "company_secrets"]
update_commands = chain(

*[
(f"ssh-add .ssh/{repo}_deploy", f"cd {repo}", "git pull", "cd ~")
for repo in private_repos

]
)
update_result = kitty.commands(

["eval `ssh-agent`", *update_commands], op="and", _wait=True
)

# This won't actually work, of course, because these are just
# hypothetical keys and repos, but you get the idea.
print(f"The directories don't really exist:\n{update_result.err[0]}\n")

# Note that `op="and"` caused `hostess` to chain the long sequence of commands
# with `&&`, which is why `bash` didn't continue after `ssh-add` failed:
print(f"We tried to run\n{update_result.command}")



5.2. python function calls

Instance.call_python()  permits direct invocation of Python functions in any

installed interpreter.

interpreter selection and installation

call_python()  requires a Python interpreter on the remote host.

• By default, it uses the first python  on the shell $PATH (if any).

• You can explicitly specify the path to an interpreter by passing it as the

interpreter_path  argument.

• If you want to run code in a conda env, you can pass the name of the env as the

env  argument, and hostess  will find it for you.

The stock Ubuntu AWS image doesn't come with Python. We'd like to demonstrate the

special relationship between call_python()  and Conda, so we're going to install the

Miniforge distribution of Python. Instance  has a convenience method to do that for

you, too: install_conda() .

making function calls

call_python()  lets you directly call Python functions on an instance, from simple

math functions to top-level handlers for complex applications. A silly example:

# This might take a minute or two depending on internet weather.
installation = kitty.install_conda()
installation.wait()
print(installation.out[-1])

# If there were a problem, it might be useful to look at the
# stderr output, which is available in the `.err` attribute of 
# `installation`. Note that the miniforge installer writes a 
# bunch of stuff to stderr during normal operation, so not
# all of `installation.err` will be useful for debugging.
# >> print(installation.err[-1])



a note on performance

It is perfectly appropriate to call computationally inexpensive procedures with

call_python()  for utility, administration, and similar purposes.

However, if you're doing intense computation, call_python()  is best used to call

functions that act as entry points to larger pipelines, or at least perform larger units of

work. The preceding example is an exaggeratedly inefficient use of call_python() ; it

sends 24 separate instructions over the network and executes 24 separate Python

interpreter processes to add a few random numbers together. For simple operations like

this, the time required to make the remote calls and launch the interpreters far

outweighs the program run time itself.

Now, a less silly example: quickly turn 'kitty' into a simple web proxy.

from more_itertools import chunked

# roll 3d6 6 times
rolls = [

kitty.call_python(
"random", "randint", (1, 6), splat="*", env="base"

)
for die in range(18)

]
# the processes are running asynchronously; wait for them to complete
[r.wait() for r in rolls]
 
# chunk and sum the results
rolls = chunked([int(r.out[0]) for r in rolls], 3)
stats = [

kitty.call_python(None, "sum", roll, env="base") for roll in rolls
]
[s.wait() for s in stats]
[int(s.out[0]) for s in stats]



limitations of call_python()

• call_python()  is versatile but is not designed for passing enormous single

arguments. If you want to use call_python()  in applications that work with large

quantities of data, you'll be better off storing the data in files and calling functions

that accept their filenames as arguments.

• call_python()  does not currently implement automated serialization or

compression for return arguments. If you want to get serialized objects back from

the instance, you will need to ensure that the called function includes a serialization

step and then deserialize it yourself locally. This is likely to change in the near

future.

▪ Note: if you want to dynamically pass Python objects around in a supervised
way, consider looking at the hostess.station  framework.

# Write a simple script to retrieve web content.
fetch_script = """
import requests

def fetch_url(url):
    response = requests.get(url)
    response.raise_for_status()
    return response.text
"""
# Write the script to the instance. `literal_str=True` means:
# write `fetch_script` into `fetch.py` as a string instead
# of trying to interpret `fetch_script` as a path to a file.
kitty.put(fetch_script, "fetch.py", literal_str=True)

def fetch(url):
response = kitty.call_python(

"/home/ubuntu/fetch.py", "fetch_url", url, env="base", _wait=True
)
return ''.join(response.out)

from IPython.display import HTML

# Now you can read Shakespeare in relative privacy.
HTML(fetch("http://shakespeare.mit.edu/midsummer/midsummer.3.1.html"))



5.3: remote Jupyter Notebook access

Many Python programmers (including us) suffer from a deep attachment to Jupyter.

Firing off scripts is lovely, but sometimes you need to roll up your sleeves and dig

around in an interactive environment, and while shells are fine, cell persistence,

graphical capabilities, and ... well, we probably don't need to talk you into it.

On the other hand, setting up remote Jupyter servers can be a giant hassle, and if you

permit HTTP access to them, it's very hard to make them secure. Fortunately,

Instance  includes a streamlined method for launching a Jupyter server and tunneling

to it over SSH: Instance.notebook() . It's a Notebook there, but here, and just for

you.

# kitty doesn't have Jupyter, so we'll need to install it first.
# you should expect this to take 2-3 minutes depending on internet 
# weather. Jupyter Notebook has a lot of dependencies. You will
# see output from the `mamba` installation process while it is
# running, though, because of the magic of `con()`.

kitty.con(
"/home/ubuntu/miniforge3/bin/mamba create -y -n notebook notebook"

)



# There are no mandatory arguments to `Instance.notebook()`,
# although it'll only work that way if you have Jupyter 
# installed in a Python environment on your default $PATH.
# we'll show some useful options here for the sake of
# demonstration:

url, tunnel, tunnel_info, launch, stopper = kitty.notebook(
# what port would you like to use for the local end
# of the tunnel? it's useful to be able to change this 
# if you want to run multiple Instance-powered notebooks
# or have a lot of other port forwarding going on.
# also, if you shut down the Notebook but don't kill your local
# tunnel (see below) you won't be able to bind anything else
# to that port.
# automated tunnel closing is a planned feature, but it 
# won't be perfectly reliable in all cases.
# defaults to 22222.
local_port=12358,
# What port would you like the instance to launch 
# the Jupyter server on? defaults to 8888, the default 
# Jupyter port.
remote_port=10001,
# Optional name of a conda environment -- if not specified,
# just tries to run a jupyter executable from the $PATH.
env='notebook',
# What directory would you like Jupyter to use as 
# its root working directory? If not specified, defaults 
# to the remote user's home directory, so the value
# here is redundant and just for the sake of demonstration.
# this is useful because it's difficult to 'back out' from
# the directory Jupyter launches in, so you won't be
# able to access anything outside your home directory 
# tree by default.
working_directory='/home/ubuntu',
# set this to `True` to use JupyterLab instead of Notebook
lab=False

)

print(f"Click this URL to try kitty's Notebook:\n{url}")



tips for Instance.notebook()

notebook()  launches Jupyter daemonized. This means that if you lose your

connection for whatever reason, whatever Jupyter might have been doing on the

instance will not stop. You can even reestablish a tunnel to the instance and continue

working.

It also means that if you kill the launch process ( launch  in the example above), it won't

stop Jupyter in the way hitting CTRL-C does when you run it in an interactive session.

notebook() , however, returns a function that you can call to gracefully shut down

Jupyter ( stopper  in the example above). If something's gone very wrong with Jupyter

and this doesn't work, take the gloves off and run Instance.command('pkill 
jupyter-noteboo')  (not a typo) to kill all of them.

Also, if you want Jupyter to shut down when you disconnect, you can pass

kill_on_exit=True  to notebook() , although this isn't guaranteed to work if your

local Python process segfaults or something.

notebook()  also returns a Process object encapsulating the SSH tunnel, along with

metadata about the tunnel ( tunnel  and tunnel_info  in the example above). If

something goes wrong with the tunnel, inspecting these can be useful.

Finally, notebook()  returns a Viewer  for the process that actually launched Jupyter

( launch  in the example above). Examining this can be useful as a diagnostic for

Jupyter-level issues. Unless you pass kill_on_exit=True , killing this process won't

actually kill Jupyter; it'll just keep you from receiving its console output.

Note: Conventions for controlling Jupyter have changed with Notebook 7. We do not

guarantee backwards compatibility with earlier versions of Notebook.



5.4. managing SSH connections

• As you've seen, you normally don't have to manually establish an SSH connection to

an instance. It will happen automatically when you try to use Instance
functionality that requires a connection. However, the connect()  method can be

used to ensure that you can connect to the instance, or to 'prep' it so that there's

no connection delay on your first command when you get to that part of a program.

▪ This method does nothing if a connection is already open.

• You might also want to close an existing connection and open a new one -- for

example, if you lost track of a bunch of processes or the connection gets externally

disrupted in a weird way. you can do this with the reconnect()  method.

▪ This will immediately terminate all non-daemonized processes executed over

the exiting connection and close any established tunnels / forwarded ports.

▪ If no connection is currently open, reconnect()  is equivalent to

connect() .

• By default, EC2 uses a strict IP allowlist to gate incoming traffic to instances. This

provides good security practice that we recommend retaining, and hostess
mimics this behavior by default. However, this means that if your IP address

changes, you won't be able to connect to your instances anymore until you modify

their security group settings. This can be a big hassle if you're on a cell network,

using a VPN with IP hopping, or simply moving between networks.

Instance.rebase_ssh_ingress_ip()  can quickly solve this issue for you: it

modifies the security groups associated with an instance to permit SSH access from

your current IP.

▪ IMPORTANT: This method revokes all other ingress permissions. Do not use it

if you need an instance to be accessible to anyone or anything but you. This
behavior may change in the future.

• If you would like to establish an SSH tunnel on a specific port so that you can

access some service on the instance in another application, you can call

tunnel(local_port, remote_port) . For example, if you launched a Notebook

on the instance using the earlier cell, and then dropped connection for some reason,

you could reestablish the tunnel with Instance.tunnel(12358, 10001)  and go

back to whatever you were doing in Notebook. Same deal for anything from

PostgreSQL (5432) to DOOM (666).



6. clusters

6.1. launching a Cluster

On the backend, all on-demand EC2 instance launch requests are 'fleet requests' --

even if they're for a fleet of one. For this reason, we implemented

Instance.launch()  as a thin wrapper around Cluster.launch() , so you can just

refer to the earlier section on launching instances for a detailed description of most of

Cluster.launch() 's behavior. The only difference in the signature is that

Cluster.launch  requires a count  argument specifying the number of instances to

launch.

6.2. using an individual Instance  from a Cluster

Each of a Cluster 's instances  is an Instance  object. There's no difference

between these Instance  objects and any others -- they're not even aware they're

part of a Cluster . This means that if you like, you can simply work with them

individually. In some ways, Cluster  is just a list of Instance s, and you can even use

slice notation to access them individually:

6.3. running commands on an entire Cluster

Cluster  also lets you do things with all its Instances  at once. Its command() ,

commands() , con() , and call_python()  methods asynchronously call the

corresponding method of all its Instances  with the same arguments and return the

results to you in a list.

# Launch a Cluster (clowder?) of 4 kitties.
# Note that Cluster appends a number to each of 
# their names so that you can tell them apart.
from hostess.aws.ec2 import Cluster

kitties = Cluster.launch(count=4, template="kitty", connect=True)

# you could also use `kitty["kitty0"]`, or a kitty's `.ip` or `.instance_id`.
kitty0 = kitties[0]

print(kitty0)
kitty0.con('uname -a')

# `Cluster.command()` returns a list of `Viewers`:
kitties.command('uptime', _wait=True)



6.4 mapping commands across a Cluster

Sometimes, of course, you don't want to call the same exact command on all your

instances -- instead, you'd like to distribute a workload across them. While you can do

this by explicitly iterating over Cluster.instances , Cluster  also offers two

automated methods for asynchronously mapping arguments across its Instances  --

commandmap() , which calls Instance.command() , and pythonmap() , which calls

Instance.call_python() .

These have several legal calling conventions. Several silly examples follow; see the

documentation for more details.

Notes

• These examples use commandmap() , but pythonmap()  uses the same

conventions.

• By default, commandmap()  and pythonmap()  block until all tasks are complete

and return a list  of Viewers . If you pass wait=False , they instead return a

ServerPool  object designed for asynchronous interaction with large sets of

remote processes. We do not discuss it in detail in this tutorial.

# You can map sequences of args and kwargs. In this case, the first argument, `argseq`, 
# is a sequence of sequences of args, the second, `kwargseq`, is an optional sequence 
# of kwargs, which, if present, must be the same length as `argseq`.

# example with args:
kitties.commandmap(

[("echo", i) for i in range(len(kitties))]
)

# Example adding kwargs:
kitties.commandmap(

([("head", "/dev/urandom") for _ in range(len(kitties))]),
([{'c': (i + 1) * 2} for i in range(len(kitties))])

)

# You can also pass a single string or a single sequence
# of args if you want to pass the same args to all 
# instances.  
kitties.commandmap(

"head /dev/urandom",
[{'c': (i + 1) * 2} for i in range(len(kitties))]

)

# And you can do the same thing with a single mapping for `kwargseq`:
dirs = ("/opt", "/home", "/run", "/usr")
kitties.commandmap([("ls", d) for d in dirs], {'a': True})



6.5. creating a Cluster  from existing instances

Just like Instance , you don't have to launch new instances to create a Cluster .

The easiest way to do this is by using Cluster.from_descriptions() , which lets

you create a Cluster  from instance descriptors, including the output of

ls_instances() .

tips

• You don't have to do this with instances created from a single fleet request -- if you

have EC2 instances of different types, you can still use from_descriptions()  to

group them into a Cluster . They do, however, need to be in the same AWS

Region.

• Alternatively, if you've already created Instance  objects, you can construct a

Cluster  from them by passing them to the default class constructor, like:

cluster = Cluster(list_of_my_instance_objects) . Instances don't all

have to be in the same Region to create a Cluster  this way.

# `argseq` and `kwargseq` can be longer than your number of   
# of available instances: these methods automatically dispatch
# pending tasks as instances free up. In this example, tasks after
# the first four could be assigned to any instance, so if you run this 
# cell multiple times, you may see the instance names change.

# However, you will not see the numbers that the kitties `echo` 
# change: the order in which you pass arguments will always be 
# preserved in output.
import random
import re

naps = kitties.commandmap(
[(f"sleep {random.random()}; echo {i}",) for i in range(10)]

)
sleep_regex = r"sleep ([\d.]{4})"
for n in naps:

print(
f"{n.out[0]}: {kitties[n.host].name} slept for "
f"{re.search(sleep_regex, n.command).group(1)} seconds."

)



6.6. worked example: make 'browse' images of planetary data

Cluster  can be used to quickly compose distributed processing pipelines, from

simple to complex. Here's a very simple example of a pipeline that distributes data

download and rendering tasks across multiple EC2 instances.

Although this is a simple example, it's a good example of how to leverage distributed

resources; it utilizes I/O pipe size increase from multiple servers by parallelizing

downloads, and also minimizes transfer costs by returning only JPEG-compressed data

from the instances to you.

6.6.1. prepare the kitties

We'll use pdr  to read planetary data. Let's first set up a Python environment on all the

instances. Like Instance , Cluster  has an install_conda()  method, which we'll

follow up by creating a conda environment.

# Delete the `kitties` object from the namespace to ensure we're
# not using it. Just like `Instance`, deleting a `Cluster` objct
# doesn't do anything to the actual EC2 instances.
del kitties

# Now reassemble the clowder from an `ls_instances` call.
kitties = Cluster.from_descriptions(ls_instances(name='kitty'))
kitties

# Notice that now we have a bonus fifth kitty! It's the instance
# that we created at the start of this that's still hanging around.

install_commands = []
# Install miniforge 
install_commands.append(kitties.install_conda(_wait=True))
# create a Conda environment called 'pdr' that includes the `pdr` 
# and `requests` packages.
# This might take a few minutes depending on internet weather.
install_commands.append(

kitties.commands(
[

"/home/ubuntu/miniforge3/bin/mamba create -n pdr pdr -y",
"/home/ubuntu/miniforge3/bin/mamba install -n pdr requests -y"

],
op="and",
_wait=True

)
)

https://github.com/millionConcepts/pdr
https://github.com/millionConcepts/pdr
https://github.com/millionConcepts/pdr


6.6.2. write a product download and rendering script

This is a very, very simple pipeline -- we just download the data at a URL, open it with

pdr , and then use pdr  to dump it out as a JPEG. It's not hard to imagine how you

might make this much more complex and configurable, though...

6.6.3. map source images across kitties

Now, we'll point the kitties at some Mars images hosted by the Planetary Data System's

Imaging Node and let them do their thing.

# If you encounter any errors, take a look at the stderr output.
# You can do that like this:
# >> [print(f'{i.err[-1]}\n') for i in chain(*install_commands)]

# Note that the Miniforge install script writes to stderr during 
# normal operation, so most of its stderr output will not be useful
# for debugging.

script = """
def thumbnail_from_url(url):
    from pathlib import Path

    import pdr
    import requests

    # this loop lets us get the detached metadata files
    for ext in ("IMG", "LBL"):
        response = requests.get(url.replace("IMG", ext))
        response.raise_for_status()
        with open(Path(url).name.replace("IMG", ext), "wb") as stream:
            stream.write(response.content)
    data = pdr.read(Path(url).name)
    data.load("IMAGE")
    data.dump_browse()
    # pdr's standard browse filename pattern
    return f"{Path(url).stem}_IMAGE.jpg"
"""
# Write this script to all of the instances:
kitties.put(script, "fetch_and_render.py", literal_str=True)



6.7. Controlling Cluster  state

Cluster  lets you pass start , stop , and terminate  commands to all its

Instances  at once.

We'll terminate our instances at end of the notebook to clean things up, but first let's

talk about the extremely useful cost estimation capabilities of hostess .

folder = "https://pdsimage2.wr.usgs.gov/Missions/Mars_Science_Laboratory/MSLMHL_0006/DATA/RDR
files = (

"0547MH0002590000201525E01_DRLX.IMG",
"0547MH0002600000201524E01_DRLX.IMG",
"0547MH0002630000201527E01_DRLX.IMG",
"0547MH0002640000201526E01_DRLX.IMG",
"0547MH0003250050201529E01_DRLX.IMG",

)
args = ("fetch_and_render", "thumbnail_from_url")
# distribute URLs across instances
kwargseq = [

{'splat': '**', 'env': 'pdr', 'payload': {'url': f"{folder}{file}"}}
for file in files

]
results = kitties.pythonmap(args, kwargseq)

# Get the files as bytes...
# (don't display this list in Jupyter: too much binary gibberish!)
jpg_blobs = kitties.read([r.out[0] for r in results], "rb")

# ...and display one of them.
from io import BytesIO
from PIL import Image

# oh look! an oblong!
Image.open(BytesIO(jpg_blobs[0]))



7. cost estimation

There are a variety of costs associated with operating EC2 instances. The

Instance.price_per_hour()  method provides an easy way to estimate many --

although not all -- of these costs. Specifically, it provides estimates for:

• EBS timed storage

• EBS throughput and IOPS

• timed instance usage

The first time you run this method, it'll take a few seconds, because it's retrieving a large

price list from AWS. hostess  caches this list for a week, so subsequent runs will be

faster.

price_per_hour()  returns a dict  with keys "running" and "stopped". "Running"

provides an estimate of how much the instance will cost per hour when it's in the

running state; "stopped", an estimate of cost per hour in the stopped state. Prices are in

USD.

# kitty should cost about a cent per hour while running, and a 
# cent per 8 hours while stopped.
kitty.price_per_hour()

# `Cluster` also has a `price_per_hour()` method. These prices 
# should be exactly 5 times the price for kitty alone, because 
# all the kitties are identically configured:
kitties.price_per_hour()



7.1 limitations of price_per_hour()

price_per_hour()  doesn't take the following things into account, which can cause

its estimates to be low or high:

• Data out fees.

▪ if the instance transfers lots of data out to the open internet, including your

local computer, the estimate will be low.

• Savings plans or other cost reductions.

▪ If the instance is a spot instance, if you have a relevant capacity reservation, or

if you own a reserved instance of the appropriate type, the estimate will be

high.

▪ If your account and some or all of the resources you are using are eligible for

the AWS Free Tier, the estimate will be high.

• CPU credit charges for burstable instances in unlimited mode.

▪ If the instance type name begins with a 't' and you are frequently slamming its

CPUs, the estimate will be low.

• Timed storage fees for any snapshots or AMIs created from the instance's volumes.

8. cleanup

Now that we're done working with our kitties, we should let them go. If we merely

stopped the instances, then they would continue to incur costs of about $0.001 per hour

per instance due to fees for their EBS volumes (virtual storage drives), which is tiny but

not nothing. To stop them from incurring any costs, we must terminate them.

import time
# This is unpleasant but necessary.
kitties.terminate()
# Watch them go... (they might not all finish terminating in 40s)
for i in range(10):

kitties.update()
print([kitty.state for kitty in kitties])
time.sleep(4)



appendix: breakdown of estimated costs for this
Notebook

Running this Notebook as-is should incur approximately 13 cents in AWS costs.

• This estimate assumes that you take extended breaks in the middle of running this

Notebook, so that the first kitty Instance  runs for 4 hours total and the 4

instances launched in the kitties Cluster  run for 2 hours each.

• This Notebook uses burstable instances, but the processes it executes are not

CPU-intensive enough to incur CPU credit charges.

• EBS API call costs are negligible.

• All values in USD.

t3a.micro on-demand instance usage

0.0094 / hour * 1 instance * 2 hours = 0.0188
0.0094 / hour * 5 instances * 2 hours = 0.094

data out

2 MB @ 0.09 / GB = 0.00018

gp2 volume usage

9 GB @ $0.10 / GB-month * 2 hours / 730 hours/month = 0.0025 
45 GB @ $0.10 / GB-month * 2 hours / 730 hours/month = 0.012

TOTAL: ~0.127 USD


