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Overview

» Recent lab measurements of near-IR self continuum differ greatly

» Results in significant uncertainty with respect to amount of solar irradiance
absorbed

« MT_CKD (CKD) model: near-IR coefficients arise from
extrapolation of modeled line shape from IR behavior (known
from field obs)
> Recent study pushed the (field-) observed spectral region from ~900 to 2500 cm™!

» Uncertainty of new ‘extrapolated’ continuum coefficients (MT_CKD_2.6) in near-
IR remained high

 This study uses observations from a radiometer and solar FTS
(TCCON network) located at ARM SGP site to derive self
continuum coefficients in two near-IR window regions

» Result: Derived coefficients fairly close to MT_CKD 2.6
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Modeling the Self Continuum in Window Regions

Until fairly recently, only measurements used to constrain the CKD and MT_CKD self
continuum in window regions were at ~900 cm,
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Recent Adjustment to MT_CKD Self Continuum in 2500 cm-* Window
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MT CKD 2.4
Original
MT_CKD line
shape

MT_CKD_2.5
Adjustment
applied only in
2000-3000 cm™t
window

MT_CKD_2.6
(unreleased)
Adjustment
applied in all
near-IR windows
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MT_CKD Self Continuum and Measurements in 2500 cm-t Window

Continuum Coefficient (cm2/mol / cm’™)
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MT_CKD_2.6 in Near-IR Windows and Constraining Measurements
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neasurements
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Recent Laboratory Measurements in Near-IR Windows
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Continuum Coefficient (cm2/mol / cm™)
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== Impact of Higher Self Continuum on Absorbed Solar Flux

Environmental Research, Inc.
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0.015 downwelling flux at surface/5 tropics, SZA =07 4
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1 — MTCKD-MTCKD(C; modified) A ~liS Wiy 1a

flux at surface (W m = cm)
cumulative extra absorption (W m 2y

4200-5100 cm*  5800-7100 cm?t

Black curve is additional solar flux absorbed of Ptashnik et al. (2011) compared to
MT_CKD_2.5 for a tropical atmosphere (from Ptashnik et al. (2012)).
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1) Mergedsounding — profiles of T and moisture

2) Normal Incidence Multifilter Radiometer (NIMFR)

The NIMFR is considered the most accurate instrument at the
ARM SGP site for providing aerosol optical depths. Benefits
include long history, successful intercomparisons with other
instruments, and QC applied by ARM.

Measures direct-normal irradiance at nominal channel
wavelengths: 415, 500, 615, 673, 870, and 940 nm

3) Solar FTS from Total Column Carbon Observing Network (TCCON)

* Bruker IFS125HR
* Detectors

> InGaAS (3900-9000 cm™)
» Si (9000-15500 cm't)

« Resolution - 0.02 cmt!

from Toon et al. (2009)
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1) Choose stable cases: Use SGP NIMFR to identify days that have a period of stability wrt AOD.
Use ARM PWYV time series to make sure also stable wrt water vapor loading.
12 days (some with multiple periods) = 13 ‘cases’ = 5 summer cases (3-3.5 cm PWV)

2) Derive spectral total optical depths from FTS: (Langley method -- slope of log)

R/R, = exp (-m 1)
m is airmass factor, R is observed radiance, R, is the extraterrestrial radiance, and 1, is the total
vertical optical depth.

3) Run LBLRTM (without continuum) corresponding to FTS cases, get ODs from Langley method.
« Subtract LBLRTM ODs from FTS ODs, get representative value for each sufficiently
transparent 20 cm-? bin.

4) Derive spectral behavior of AODs from NIMFR OD and representative FTS ODs.
* Derive AOD(v) from AOD measurements in transparent regions between 8000-20000 cm-2.

5) Subtract spectral AOD from representative FTS ODs to obtain spectral self continuum ODs.

6) Determine spectral self continuum coefficients for each case. Median over all cases for each
spectral bin are final set of self continuum coefficients.
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Derive spectral total optical depths from FTS: (Langley method -- slope of log)

R/R, = exp (-m 1)
m is airmass factor, R is observed radiance, R, is the extraterrestrial radiance, and 1, is the total
vertical optical depth.

20120106 14.2-16.9 slope=-0.0268 err=0.00030 od(nimfr)=0.0302

v =~11,500 cm?
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1) Choose stable cases: Use SGP NIMFR to identify days that have a period of stability wrt AOD.
Use ARM PWYV time series to make sure also stable wrt water vapor loading.
12 days (some with multiple periods) = 13 ‘cases’ = 5 summer cases (3-3.5 cm PWV)

2) Derive spectral total optical depths from FTS: (Langley method -- slope of log)

R/R, = exp (-m 1)
m is airmass factor, R is observed radiance, R, is the extraterrestrial radiance, and 1, is the total
vertical optical depth.

3) Run LBLRTM (without continuum) corresponding to FTS cases, get ODs from Langley method.
« Subtract LBLRTM ODs from FTS ODs, get representative value for each sufficiently
transparent 20 cm-? bin.

4) Derive spectral behavior of AODs from NIMFR OD and representative FTS ODs.
« Derive AOD(v) from AOD measurements in transparent regions between 8000-20000 cm™,

5) Subtract spectral AOD from representative FTS ODs to obtain spectral self continuum ODs.

6) Determine spectral self continuum coefficients for each case. Median over all cases for each
spectral bin are final set of self continuum coefficients.
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Run LBLRTM (without continuum) corresponding to FTS cases, get ODs from Langley method.
» Subtract LBLRTM ODs from FTS ODs, get representative value for each sufficiently
transparent 20 cm-? bin.

Unexplained OD 201207181836-201207182348 (TCCON OD - LBLRTM OD (For & self off) - Angstrom-based TCCON AOD, Histo TCCON AOD 201207181836-201207182348, 8120-8140 cm”™ ', mode=0.08408, std90=0.00464
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1) Choose stable cases: Use SGP NIMFR to identify days that have a period of stability wrt AOD.
Use ARM PWYV time series to make sure also stable wrt water vapor loading.
12 days (some with multiple periods) = 13 ‘cases’ = 5 summer cases (3-3.5 cm PWV)

2) Derive spectral total optical depths from FTS: (Langley method -- slope of log)

R/R, = exp (-m 1)
m is airmass factor, R is observed radiance, R, is the extraterrestrial radiance, and 1, is the total
vertical optical depth.

3) Run LBLRTM (without continuum) corresponding to FTS cases, get ODs from Langley method.
« Subtract LBLRTM ODs from FTS ODs, get representative value for each sufficiently
transparent 20 cm-? bin.

4) Derive spectral behavior of AODs from NIMFR OD and representative FTS ODs.
« Derive AOD(v) from AOD measurements in transparent regions between 8000-20000 cm™,

5) Subtract spectral AOD from representative FTS ODs to obtain spectral self continuum ODs.

6) Determine spectral self continuum coefficients for each case. Median over all cases for each
spectral bin are final set of self continuum coefficients.
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Derive spectral behavior of AODs from NIMFR OD and
representative FTS ODs.
» Derive AOD(v) from AOD measurements in
transparent regions between 8000-20000 cm-1,

Generalized Angstrom relationship used (Molineaux
etal., 1998):

AOD(v) = AOD, [u+y (vo/V)] / [t + (v/v)7] | v

Mlawer et al., 13" HITRAN Conference, June 2014
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1) Choose stable cases: Use SGP NIMFR to identify days that have a period of stability wrt AOD.
Use ARM PWYV time series to make sure also stable wrt water vapor loading.
12 days (some with multiple periods) = 13 ‘cases’ = 5 summer cases (3-3.5 cm PWV)

2) Derive spectral total optical depths from FTS: (Langley method -- slope of log)

R/R, = exp (-m 1)
m is airmass factor, R is observed radiance, R, is the extraterrestrial radiance, and 1, is the total
vertical optical depth.

3) Run LBLRTM (without continuum) corresponding to FTS cases, get ODs from Langley method.
« Subtract LBLRTM ODs from FTS ODs, get representative value for each sufficiently
transparent 20 cm-? bin.

4) Derive spectral behavior of AODs from NIMFR OD and representative FTS ODs.
« Derive AOD(v) from AOD measurements in transparent regions between 8000-20000 cm™,

5) Subtract spectral AODs from representative FTS ODs to obtain spectral self continuum ODs.

6) Determine spectral self continuum coefficients for each case. Median over all cases for each
spectral bin are final set of self continuum coefficients.
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Subtract spectral AODs from representative FTS ODs to obtain spectral self continuum ODs.

Unexplained OD 201207181212-201207181748 (TCCON OD - LBLRTM OD (For & self off) — Angstrom-based TCCON AOD
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1) Choose stable cases: Use SGP NIMFR to identify days that have a period of stability wrt AOD.
Use ARM PWYV time series to make sure also stable wrt water vapor loading.
12 days (some with multiple periods) = 13 ‘cases’ = 5 summer cases (3-3.5 cm PWV)

2) Derive spectral total optical depths from FTS: (Langley method -- slope of log)

R/R, = exp (-m 1)
m is airmass factor, R is observed radiance, R, is the extraterrestrial radiance, and 1, is the total
vertical optical depth.

3) Run LBLRTM (without continuum) corresponding to FTS cases, get ODs from Langley method.
« Subtract LBLRTM ODs from FTS ODs, get representative value for each sufficiently
transparent 20 cm-? bin.

4) Derive spectral behavior of AODs from NIMFR OD and representative FTS ODs.
« Derive AOD(v) from AOD measurements in transparent regions between 8000-20000 cm™,

5) Subtract spectral AODs from representative FTS ODs to obtain spectral self continuum ODs.

6) Determine spectral self continuum coefficients for each case. Median over all cases for each
spectral bin are final set of self continuum coefficients.
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Determine spectral self continuum coefficients for each case. Median over all cases for each
spectral bin are final set of self continuum coefficients.
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Self Continuum Optical Depths in 5800-7100 cm-t Window
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Results in this region
are somewhat higher
than Mondelain et
al., a little lower than
MT_CKD_2.6 and
Bicknell et al., a lot
higher than
MT_CKD_2.5,and a
great deal lower than
Ptashnik et al..

The ratio of foreign
to self ODs is > 1 for
v > 6600 cmt,
possibly explaining
the flat behavior at
the high
wavenumber edge of

the window.
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* The self continuum coefficients in MT_CKD_2.6 are reasonably consistent with
those determined in this study
» coefficients from this study consistent with Mlawer et al. (2012) coefficients

 Uncertainty analysis still needed, especially systematic uncertainties
o NIMFR - 5-10% AOD
o Molineaux fit to AOD(v) — ~5-10% AOD
o Foreign continuum

* In 6200 cm* window, Mondelain et al. (2014) gives slightly lower coefficients than

Mondelain et al. (2013)
» significantly less temperature dependence than MT_CKD

 Future: Rederive MT_CKD line shape to reflect new self coefficients in all three
windows
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Combining NIMFR and Solar FTS Measurements to Obtain AOD(v)

Scaled Measurement

20120106

Hour

-

f + NIMFR_dirnormal_irr
3 + TCCON_867

To examine consistency of two
instruments, look at NIMFR and FTS
measurements at common wavelength,
867 nm.

Determine a scale factor during a well-
behaved period each day and multiply
that day’s time series of FTS data by
this scale factor.

For winter cases, the two instruments
track each other well, and therefore
will provide consistent optical depths.
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Combining NIMFR and Solar FTS Measurements to Obtain AOD(v)
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20120718 12.2-17.8 slope=-0.1468 err=0.00188 od(nimfr)=0.1281

For a summer case,
the FTS Langley plot
had a strange hook.
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Combining NIMFR and Solar FTS Measurements to Obtain AOD(v)
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20120720

RN —

+ NIMFR_dirnormal_irr
: - TCCON_867

Summer days looked
something like this
after applying the
scale factor from a
well-behaved period
during the day.

Scaled Measurement
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0.1

Guide to symbols on plot

(summer cases are numbers 14 and

h|gher) 1 201201021430-201201021542
2 201201021624—201201021906

3 201201021912-201201022124
4 201201022200-201201022300
5 201201061412-201201061654
6 201201101554-201201101724
7 201201101754-201201102006
8 201201102200-201201102300
9 201202061354-201202061548
10 201202061618-201202061800
11 201202261348-201202261554
12 201202262148-201202262312
13 201203291800-201203292312
14 201206181136-201206181712
15 201206181718-201206182354
16 201206231148-201206231612
17 201207051154-201207051624
18 201207061400-201207061654
19 201207062130-201207062348
20 201207181212-201207181748
21 201207181836-201207182348
22 201207201348-201207201654
23 201207201724-201207202148

0.09

0.08

TCCON radiance / NIMFR irradiance

0.07

12 14 16 18 20 22 24
hr

As a result of this issue, all FTS measurements for a day were scaled by the 867 nm NIMFR:FTS
ratio for a well-behaved part of that day.

For any spectral point, get FTS optical depth from slope of log (R/R,) vs. airmass relationship.
|
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H,O Continuum in 2500 cm™ window for high PWYV cases (over ocean)
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times a factorof 2 + 1.6 from Mlawer et al. (2012)
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Measurements

Bicknell et al, (2006)
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Shortwave Comparison of the MT_CKD Continuum with the
Fulghum and Tilleman measurement
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