Evwon MAnpo@opikedv B

Aélomiotia AOyLOULKOU
MaOnpoto oo Tt ALooTNULKEC ATTOOTOAEC

Xapnc lewpytov (MSc, PhD)

https://www.epe.org.gr https://www.hiu.gr

‘Evwon NMAnpodopikwv EAAASOC

2 TOYOL:

o [pitoc “kaboAkdc” popéag EKTIPOTOTNONE TTUXLOUY WV
[TAnpoyoplkic.

@ AppodLoc popéag EKTPOTOTNOTG ETLOLYYEARLALTLV
[TAnpoypopLkic.

o Appoéddiog emiotnpovikdg “oupfouleutikde” popéac yla TO
Anuoocio.

@ Apwydc tng EBviktic Unpraknie Ltpatnyiknc & Moudelog tng
X QOPOLC.

2,

R

"‘\.\-
o

Topeic TapépPaonc

Mool siva oL kOpLol Topeic TapepuPdoewv tne EMNE;

®©E6 000000000

EOQvikn) Unprok Ltpatnyiky & Owkovoplio
Epyaoiakd (TTE), Anuooiog & 18iwtikdg Topéag
MNoudeia (A, B,)

‘Epevva & Teyvoroyia

‘Epya & vmnpeoiec TT1E

Acpdleloe cvoTnudtwy & dedopévwv
Avolktd cvothuata & mpdTuTa

Xpnon EA/AAK

[TvevpaTikd Sikol@pLorto

Kodikog Agovtoloyiag (TIE)

Kowwvikn pépipuvee (ICT4D)

5

2

Harris Georgiou (MSC, PhD) — https://github.com/xgeorgio/info

* R&D: Associate post-doc researcher and lecturer with the
University Athens (NKUA) and University of Piraeus (UniPi)

* Consultant in Medical Imaging, Machine Learning, Data
Analytics, Signal Processing, Process Optimization, Dynamic
Systems, Complexity & Emergent A.l., Game Theory

* HRTA member since 2009, LEAR / scientific advisor

* HRTA field operator (USAR, scuba diver)

* Wilderness first aid, paediatric (child/infant)

* Humanitarian aid & disaster relief in Ghana, Lesvos, Piraeus

* Support of unaccomp. minors, teacher in community schools

* Streetwork training, psychological first aid & victim support

* 2+4 books, 170+ scientific papers/articles (and 5 marathons)

Ertilokomnnon — Nnyeg

* [eplexopeva:

T eival n «Aflomiotio AoylopikoU» kot n Ataodaiion Motdotntag AoylopikoU (SQA).
Mati ot peBodoloyiec dtaodpaiiong moldtnTag AOYLOULIKOU Elval amopaitnTed.
MéBodol kot PETPLKEC OTLC SLadopec PATELS avATTTUENC AOYLOLLLKOU.

Mepika mapadeiypata anod Tov mpayUatiko KOOUO — ALOOTNMLKEC OTTIOOTOAEG.

* Mnyéc:

ISO/IEC 9126 Software Quality Model (1993), ISO/IEC 25010 Software Quality Model
(2011).

G. Schulmeyer, J. McManus, “Software Quality Handbook”, Prentice Hall (1998).

IEEE Std 730 (2002), IEEE Standard for Software Quality Assurance Plans, IEEE Computer
Society / Software Engineering Standards Committee.

Rosenberg, L.H.; Gallo, A.M., Jr., “Software quality assurance engineering at NASA”, Proc.
IEEE Aerospace Conf. 2002, Vol.5.

Software Quality Assurance (SQA): What is it?

What is “quality”?

IEEE Glossary: “Degree to which a system, component, or process meets
(1) specified requirements, and (2) customer or user needs or
expectations.”

ISO: “The totality of features and characteristics of a product or service
that bear on its ability to satisfy specified or implied needs.”

“Requirements” = needs / “Specifications” = design framework

“Expectation management”: Some may not be fully implemented due to
technological, budget or time constraints.

SQA: The three constraints

Software

Quality
Assurance

Full Content

SQA: How do we achieve it?

Work within a disciplined, methodological approach
“Engineering” is predictable and repeatable
Adopt a formal Quality Management System (QMS)

— Process documentation

— Best Practices & Guidelines

— Formal design tools (user stories, UML, ...)

— Formal systems (ISO 9001, CMMI, ...)
Continuous Improvement

— Audit / review processes

— Software Metrics

— Software Maintenance

Quality Management Systems

QMS define the “proper” way to do SE work
— usually focus on the “what” rather than the “how”
— adequately flexible and adaptable (see: ISO)
— applicable in a wide range of contexts (not only SE)

QMS = Procedures + Documentation + Guidelines
— Procedures: defined mostly at top-level
— Documentation: mandatory for audit & traceability
— Guidelines: mostly recommendations (“should have”)

In the real world, QMS are a mix of best practice & common sense
Most of the times, they are implemented partially or “almost” followed

Capability Maturity Model Integration (CMMI)

Characteristics of the Maturity levels

Focus on process
improvement

Level 4 Processes measured
I I; Quantitatively Managed| and controlled

Processes characterized for the

Level 3 organization and is proactive.
Defi ned (Projects tailor their processes from

organization's standards)

Processes characterized for projects
and is often reactive.

Processes unpredictable,
poorly controlled and reactive

10 Source: https://en.wikipedia.org/wiki/Capability Maturity Model Integration

https://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration

Software Process Improvement (SPI)

Leurm‘”g
Propose
Future Analyze
i i i and
Process Improvement Enterprise Integration Actions

4 Z _ A Validate
The Goal is Improved Quality and Customer Satisfaction

Implement
— A B Solution
Set Build Charter = : 4

Stimulus for Change Context | Sponsorship Infrastructure

Initiating Refine

Solution
Process Improvement

* SEl's IDEAL Model

* Six Sigma Stages Characterize

* PM Process Interaction Current and Pilot/Test
Desired ‘ Solution
States

L)

A

[~

(&
Create

Solution
Develop
Recommendation:

—
—§
oS
7))
.
=
=

Plan

Actions
Priorities Develop

Approach

Establishind
11

Source: http://www.itcssolutions.com/ITConsulting/procMng.aspx

http://www.itcssolutions.com/ITConsulting/procMng.aspx

12

Software Quality (ISO-CMMI)

* Quality Criteria:
— correctness
— efficiency
— flexibility
— integrity
— interoperability
— maintainability
— portability
— reliability
— reusability
— testability
— usability

* Some examples:

ISO 9001
CMM

* CMU SEl, 5 levels
SPICE

e Developing a standard for
software process assessment

* |SO joint committee, Europe,
Australia

IEEE 1074, IEEE 12207

13

Six main quality characteristics (ISO 9126)

Are the required
unctions available in
the zoftware?

Howeasy iz to transfer
the =oftware to ancother
ensdronment?

Functionali
ity Howereliahle isthe

zoftware?

Portability Reliabilrty

Maintainability U=ability

Iz the =oftware
easytouze?

Howeasy iz to
modify the software?

Howy efficient is the
zoftware?

Source: https://www.win.tue.nl/~wstomv/edu/2ip30/references/9126ref.html

https://www.win.tue.nl/~wstomv/edu/2ip30/references/9126ref.html

14

Six main quality characteristics (ISO 9126)

Functionality

- Suitability
- Accuracy »
‘ - Interoperability - Adaptability
- Maturity - Security - Install ability
- Fault tolerance - Compliance - Co-existence
- Recoverability - Replace ability
- Compliance - Compliance
Reliability Portability
Usability Maintainability
- Understandability - Analyzable
- Learn ability - Changeability
- Operable - Time behavior - Stability
- Attractiveness - Resource utilization - Testability
- Compliance - Compliance - Compliance

Efficiency

Source: https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/

https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/
https://rickrainerludwig.wordpress.com/2013/12/16/software-quality-charateristics-in-iso-9126/

15

Code
— Static
— Dynamic

Programmer productivity

Design

Testing
Maintainability

Management
— Cost
= Duration, time
— Staffing

Software Metrics

Code Metrics

¢ Estimate number of bugs left in code.

- From static analysis of code

- From dynamic execution

Estimate future failure times: operational reliability

16

Software Metrics

* Product vs. process

e Most metrics are indirect:

« No way to measure property directly or
» Final product does not yet exist

* For predicting, need a model of relationship of predicted variable
with other measurable variables.

e Three assumptions (Kitchenham)
1. We can accurately measure some property of software or process.

2. Arelationship exists between what we can measure and
what we want to know.

3. This relationship is understood, has been validated, and can be
expressed in terms of a formula or model.

* Few metrics have been demonstrated to be predictable or related
to product or process attributes.

17

Software Requirements Metrics
e Fairly primitive and predictive power limited.

e Function Points

— Count number of inputs and output, user interactions, external
interfaces, files used.

— Assess each for complexity and multiply by a weighting factor.

— Used to predict size or cost and to assess project productivity.

e Number of requirements errors found (to assess quality)

e Change request frequency
— To assess stability of requirements.

— Frequency should decrease over time. If not, requirements
analysis may not have been done properly.

18

Software Design Metrics
« Number of parameters

— Tries to capture coupling between modules.

— Understanding modules with large number of parameters will
require more time and effort (assumption).

— Modifying modules with large number of parameters likely to have
side effects on other modules.

¢ Number of modules.

 Number of modules called (estimating complexity of maintenance).
Fan-in: number of modules that call a particular module.
Fan-out: how many other modules it calls.

— High fan-in means many modules depend on this module.
- High fan-out means module depends on many other modules.

Makes understanding harder and maintenance more time-consuming.

19

Software Design Metrics

e Cohesion metric

« Construct flow graph for module.
- Each vertex is an executable statement.
- For each node, record variables referenced in statement.

« Determine how many independent paths of the module go through
the different statements.

- If a module has high cohesion, most of variables will be used by
statements in most paths.

- Highest cohesion is when all the independent paths use all the
variables in the module.

20

Programmer Effort Metrics

Because software intangible, not possible to measure directly.

If poor quality software produced quickly, may appear to be more
productive than if produce reliable and easy to maintain software
(measure only over software development phase).

— More does not always mean better.

— May ultimately involve increased system maintenance costs.

Common measures:
— Lines of source code written per programmer month.

— Obiject instructions produced per programmer month.
— Pages of documentation written per programmer month.

— Test cases written and executed per programmer month.

Programmer Effort Metrics (cont.)

» Take total number of source code lines delivered and divide by
total time required to complete project.

— What is a source line of code? (declarations? comments? macros?)

— How treat source lines containing more than a single statement?

— More productive when use assembly language? (the more expressive
the language, the lower the apparent productivity)

— All tasks subsumed under coding task although coding time represents
small part of time needed to complete a project.

* Use number of object instructions generated.
— More objective.

— Difficult to estimate until code actually produced.

- Amount of object code generated dependent on high-level
language programming style.
21

22

Programmer Effort Metrics (cont.)

¢ Using pages of documentation penalizes writers who take time to
express themselves clearly and concisely.

So difficult to give average figure. LOC metrics
» For large, embedded system may be as low as 30 lines/programmer-month.

« Simple business systems may be 600 lines.

* Studies show great variability in individual productivity. Best are
twenty times more productive than worst.

- “What about visual programming?” (e.g. Web apps)
- “What about non-programming effort?” (e.g. data analytics)
- “What about maintaining a codebase?” (few changes in LOC)

Static Code Analysis — Problems...

* Size is best predictor of inherent faults remaining
at start of program test.

* One study has shown that besides size, 3 significant
additional factors:

D 't ch h 1. Specification change activity, measured in pages of
oesn't change as program changes. specification changes per k lines of code.

High correlation with program size. 2. Average programmer skill, measured in years.

No real intuitive reason for many of metrics. 3. Thoroughness of design documentation, measured
in pages of developed (new plus modified) design

Ignores many factors: e.g., computing environment, documents per K lines of code.

application area, particular algorithms implemented,
characteristics of users, ability of programmers,.

* Very easy to get around. Programmers may introduce

23

more obscure complexity in order to minimize
properties measured by particular complexity metric.

Bug estimations using Dynamic Analysis

* What does an estimate of remaining errors mean?

Interested in performance of program, not in how
* Estimate number remaining from number found. many bugs it contains.

- Failure count models . . _ _
* Most requirements written in terms of operational

- Error seeding models reliability, not number of bugs.

e Assumptions:
* Alternative is to estimate failure rates or future

- Seeded faults equivalent to inherent faults in interfailure times.

difficulty of detection.

99
- A direct relationship between characteristics and e 1 e o0 i S
- o SO s
number of exposed and undiscovered faults. BB
o b 3.13067ews
. 'F‘>(.-:.»-°3.«,£JJ il Yoot gL

= Unreliability of system will be directly proportional R = > re e i 1

to number of faults that remain. wen Pl e G haat)

. S4 ’zl-\ *o ARSI (8 3

- A constant rate of fault detection. e e T

rhgon D..*,}‘GT *:?:‘:}.;“LL c-{ 5«1 L..n‘ {ounl.
24 e ol o .

Dynamic Analysis: Stochastic models

2400} Sample Interfailure Times Data
2200+
2000k 3 30 113 81 115 9 2 91 112 15
138 50 77 24 108 88 670 120 26 114
1800 325 55 242 68 422 180 10 1146 600 15
1600 | 36 4 0 8 227 65 176 58 457 300
1400k 97 263 452 255 197 193 6 79 816 1351
148 21 233 134 357 193 236 31 369 748
1200+ 0 232 330 385 1222 543 10 16 529 379
1000+ 44 129 810 290 300 529 281 160 828 1011
445 206 1755 1064 1783 860 983 707 33 868
800} 724 2323 2030 1461 843 12 261 1800 865 1435
600t 30 143 109 0 3110 1247 943 700 875 245
720 1897 447 386 446 122 990 948 1082 22

400+
200F

75 482 5509 100 10 1071 371 790 6150 3321
1045 648 5485 1160 1864 4116

40 &0 60 70 80 90 100 110 120 130

¢ Different models can give varying results for the same
data; there is no way to know a priori which model
will provide the best results in a given situation.

« “The nature of the software engineering process is too
poorly understood to provide a basis for selecting a
particular model."

26

Software Management Metrics

» Techniques for software cost estimation

1. Algorithmic cost modeling:

— Model developed using historical cost information that
relates some software metric (usually lines of code) to
project cost.

— Estimate made of metric and then model predicts effort required.

— The most scientific approach but not necessarily the most
accurate.

2. Expert judgement

3. Estimation by analogy: useful when other projects in same
domain have been completed.

27

Software Management Metrics (cont.)

4. Parkinson’s Law: Work expands to fill the time available.

— Cost is determined by available resources

— If software has to be developed in 12 months and you have
5 people available, then effort required is estimated to be 60
person months.

5. Pricing to win: estimated effort based on customer’s budget.

6. Top-down estimation: cost estimate made by considering overall
function and how functionality provided by interacting sub-functions.
Made on basis of logical function rather than the components
implementing that function.

7. Bottom-up function: cost of each component estimated and then
added to produce final cost estimate.

28

Software Reliability

Software Reliability: The probability that a program
will perform its specified function for a stated time
under specified conditions.

* EXxecute program until "failure” occurs, the underlying
error found and removed (in zero time), and resume
execution.

* Use a probability distribution function for the interfailure
time (assumed to be a random variable) to predict future
times to failure.

* Examining the nature of the sequence of elapsed times
from one failure to the next.

* Assumes occurrence of software failures is a stochastic
process.

29

Software reviews, walkthroughs, inspections

(ive Status

defect
- (Give context

Review Walkthrough | Inspection
What Present idea | Technical Formal

or proposal presentation of | review by

work peers

Audience |Mgmt/Tech Tech Tech
Objective | Provide Info, | Explain work, | Find defects

Ewvaluate may find early

specs or plan | design or logic | Find defects

Source: http://www.math.uaa.alaska.edu/~afkjm/cs470/handouts/inspections.pdf

http://www.math.uaa.alaska.edu/~afkjm/cs470/handouts/inspections.pdf

30

Cost

The cost of finding (or missing) bugs

Requirements defect

" : found via traditional
Programming defect found via g
acceptance testing

Pair Programming "

Programming defect found via Design defect N
Continuous Integration found via traditional =
| system testing

| Design or programming defect found \
| via Test Driven Development (TDD) \
L
,’ ,’ Requirements or design defect found via
[Active Stakeholder Participation s

Progamming defect
= - found via traditional
o Requirements or design defect —— system testing

I
|
I
Iy found via Model Storming
|
/
|
I

Defect found via a

’l /I b Ll e e SRS review or inspection
e i
I/
l Ed 0 O aae Defect found via independent
Yy parallel testing
Length of Feedback Cycle Copyright 2006-2009 Scott W. Ambler

Source: https://dev.astrotech.io/sonarqube/quality-models.html

https://dev.astrotech.io/sonarqube/quality-models.html
https://dev.astrotech.io/sonarqube/quality-models.html
https://dev.astrotech.io/sonarqube/quality-models.html

31

Worst Software Failures: Mariner |

Navigation Gorne Wrong

Mariner 1 Destroyed

The first American spacecraft sent to explore another
planet, Mariner 1 was launched on July 22, 1962. But it
never reached Venus. It never even reached space.

WHAT HAPPENED

Unbeknownst to its operators, the launch computer that controlled
the Atlas rocket carrying Mariner 1 contained a tiny programming

error. A single character had been left out of the guidance equations.

THE CONSEQUENCES

About four minutes into its flight, the Atlas rocket carrying Mariner 1
began behaving erratically. The rocket had to be destroyed, and with
it Mariner 1.

LESSONS LEARNED

The disaster revealed a critical need to thoroughly debug software
before launch. NASA also learned that software can be engineered
so that small errors do not impact safety. Thanks to NASA's
corrective actions, several Apollo lunar modules safely landed on the

Moon despite minor software "bugs.”

Mariner 1 Launch
Launch of Mariner 1 on July 22, 1952,

Credit: NASA Kennedy Space Center via National Air and Space
Museum, Smithsonian Institution

<)

Source: https://timeandnavigation.si.edu/navigating-space/challenges/mariner-1-destroyed

https://timeandnavigation.si.edu/navigating-space/challenges/mariner-1-destroyed
https://timeandnavigation.si.edu/navigating-space/challenges/mariner-1-destroyed
https://timeandnavigation.si.edu/navigating-space/challenges/mariner-1-destroyed
https://timeandnavigation.si.edu/navigating-space/challenges/mariner-1-destroyed
https://timeandnavigation.si.edu/navigating-space/challenges/mariner-1-destroyed
https://timeandnavigation.si.edu/navigating-space/challenges/mariner-1-destroyed
https://timeandnavigation.si.edu/navigating-space/challenges/mariner-1-destroyed

32

Worst Software Failures: Ariane 5

June 4, 1996 — Ariane 5 Flight 501. Working code for the Ariane 4
rocket is reused in the Ariane 5, but the Ariane 5's faster engines trigger
a bug in an arithmetic routine inside the rocket's flight computer. The
error is in the code that converts a 64-bit floating-point number to a 16-
bit signed integer. The faster engines cause the 64-bit numbers to be
larger in the Ariane 5 than in the Ariane 4, triggering an overflow
condition that results in the flight computer crashing.

First Flight 501's backup computer crashes, followed 0.05 seconds later
by a crash of the primary computer. As a result of these crashed
computers, the rocket's primary processor overpowers the rocket's
engines and causes the rocket to disintegrate 40 seconds after launch.

Source: https://www.wired.com/2005/11/historys-worst-software-bugs/

https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/

Worst Software Failures: Mars Climate Orbiter

Mars Climate Orbiter built by NASA's Jet Propulsion Laboratory ’
approached the Red Planet at the wrong angle. At this point, it could

easily have been renamed the Mars Climate Bright Light in the Upper

Epoch:
Sep 23,1999

Atmosphere, and shortly afterward been renamed the Mars Climate Debris
Drifting Through the Sky.

There were several problems with this spacecraft -- its uneven payload
made it torque during flight, and its project managers neglected some
important details during several stages of the mission. But the biggest
problem was that different parts of the engineering team were using
different units of measurement. One group working on the thrusters

measured in English units of pounds-force seconds; the others used

e
2
©
o
e
o

Sun

metric Newton-seconds. And whoever checked the numbers didn't use

the red pen like a pedantic high-school teacher.

direction

The result: The thrusters were 4.45 times more powerful than they should
have been. If this goof had been spotted earlier, it could have been

compensated for, but it wasn't, and the result of that inattention is now

lost in space, possibly in pieces.

33 Source: https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html

https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html

34

Worst Software Failures: ESA Schiaparelli

European Mars Lander Crashed Due to Data
Glitch, ESA Concludes

By Mike Wall published May 27, 2017

The reason Europe’s Schiaparelli Mars lander failed to touch down safely last fall
Is that conflicting data confused the craft's onboard computer, according to the
newly completed crash investigation.

Things started to go wrong for Schiaparelli about 3 minutes after it hit the
Martian atmosphere on Oct. 19, 2016. At that time, the lander deployed its
parachute and then began spinning unexpectedly fast, according to the
investigation, which concluded last week.

This superfast rotation briefly saturated Schiaparelli's spin-measuring
instrument, which "resulted in a large attitude-estimation error by the guidance,
navigation and control-system software,” European Space Agency (ESA) officials
wrote in a statement Wednesday (May 24). ("Attitude" refers to a spacecraft's
orientation.) [In Photos: Europe's Schiaparelli Mars Landing Day]

Worst Software Failures: Therac-25

Datent:
if mode/energy specified then
BERM TYPE: E EN) : 10 begin
calculate table index
repeat
fetch parameter
outpul parameter
point to next parameter
until all parameters sel
call Magnet
if mode/energy changed then return
emd
il data entry is complete them set Tphase to 3
if data entry is not complete then
if reset command entered then sct Tphase o d)
return

Magnet:
S¢t bending magnet flag
repeat
Set next magnet
Call Ptime
if modefenergy has changed, them exil
mntfil all magnets are set
return

* Radiation therapy machine operated in USA and Canada. -
* At least six overdose incidents in patients (1985-1987). | ropent

if bending magnet flag 1s set then

* Cause: Concurrency error due to race conditions. o e s claraged than oni
. . . until hysteresis delay has expired

» “Refurbished” PDP-11 assembly, single-person project. Clear bending magact lag

See also: “An investigation of the Therac-25 accidents”, IEEE Computer, 1993. Figure 3. Datent, Magnet, and Ptime subroutines.

35 see also: https://www.youtube.com/watch?v=ApOorGCiou8 Source: https://en.wikipedia.org/wiki/Therac-25

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Therac-25
https://www.youtube.com/watch?v=Ap0orGCiou8

36

Worst Software Failures: Multidata/Cobalt-60

November 2000 — National Cancer Institute, Panama City. In a series
of accidents, therapy planning software created by Multidata Systems
International, a U.S. firm, miscalculates the proper dosage of radiation
for patients undergoing radiation therapy.

Co-60

1 uCi. 527 yrs
Radioactive Materiay
G amma ? Multidata's software allows a radiation therapist to draw on a computer
screen the placement of metal shields called "blocks" designed to
sPBCtrum Tegg ques protect healthy tissue from the radiation. But the software will only
”3”2,?;,,“; g‘a‘et',-t'y"ense allow technicians to use four shielding blocks, and the Panamanian

doctors wish to use five.

The doctors discover that they can trick the software by drawing all five
blocks as a single large block with a hole in the middle. What the
doctors don't realize is that the Multidata software gives different
answers in this configuration depending on how the hole is drawn: draw
it in one direction and the correct dose is calculated, draw in another
direction and the software recommends twice the necessary exposure.

Source: https://www.wired.com/2005/11/historys-worst-software-bugs/

https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/

Worst Software Failures: Patriot missiles

Patriot missile mistiming

During the first Persian Gulf war, Iraqi-fired Scud missiles were the most Hours | Secouds | Caleulation Time | [uaceuracy | Approxiumle Shilt ia
[seoonds) [seconds) | range gale {molers)
threatening airborne enemies to U.S. troops. Once one of these speeding 0 0 0 0 0
1 3600 30000066 0034 T
death rockets launched, the U.S.'s best defense was to intercept it with an 8 | 28300 28700.9725 0275 55
o) o) o _ 20" | 72000 | 71099.9313 0687 137
antiballistic Patriot missile. The Patriot worked a bit like a shotgun, getting 4| 17200 | 172768352 1648 330
o _ o] T2 | 250200 | 9250198.7528 2472 494
within range of an oncoming missile before blasting out a cloud of 1,000 100° | 360000 | BGODUD.GEGT | 3433 G87

pellets to detonate its warhead.

A Patriot needed to deploy its pellets between 5 and 10 meters from an
oncoming missile for the best results. This requires split-second timing,
which is always tricky with two objects moving very fast toward each
other. Even the Patriot's most prominent booster, then-President George
H.W. Bush, conceded that

one Scud (out of 42 fired) got past the Patriot. The single failure the
president acknowledged was at a U.S. base in Dhahran, Saudi Arabia, on

Feb. 25, 1991, and it cost 28 soldiers their lives. The fault was traced to a

software error.

Source: https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html

https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html
https://www.computerworld.com/article/2515483/epic-failures-11-infamous-software-bugs.html

Worst Software Failures: Boeing 737 MAX

How the MCAS (Maneuvering Characteristics
Augmentation System) works on the 737 MAX

1. The angle-of-attack sensor
aligns itself with oncoming airflow.

Oncoming
airflow
¢ "\ —
-) g —
Level ——> The angle of attack is the

Jight angle between the wing

and the airflow.

2. Data from the sensor
is sent to the flight computer.

If the angle rises
too high, suggesting
an approaching stall ...

flight

38

Source: https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/

..the MCAS activates.

3. MCAS automatically swivels
the horizontal tail to lift the
plane’s tail while moving

the nose down.

Horizontal
tail

Sources: Boeing, FAA, Indonesia National Transportation
Safety Committee, Leeham.net, and The Air Current

Reporting by DOMINIC GATES,
Graphic by MARK NOWLIN / THE SEATTLE TIMES

https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/
https://www.seattletimes.com/seattle-news/times-watchdog/the-inside-story-of-mcas-how-boeings-737-max-system-gained-power-and-lost-safeguards/

Worst Software Failures: F-35 AESA radar

IHS Jane's reports that an issue arose in late 2015 with the F-35's AN/APG-81
active electronically scanned array (AESA) radar system, built by Northrop
Grumman for the Lockheed Martin-led F-35 program. The software planned
to be used in the F-35A when the Air Force declares its "initial operational
capability” (I0C) with the fighter later this year—revision 3i—has a major flaw.
As Air Force F-35 Integration Office Director Major General Jeffrey Harrigian
told Jane's, that flaw affects "radar stability—the radar’s ability to stay up and
running. What would happen is they'd get a signal that says either a radar
degrade or a radar fail—something that would force us to restart the radar.”

As several Ars readers have pointed out, rebooting an aircraft's radar system
is not an uncommon occurrence. In the F-16, the radar had to be restarted
with new code for different mission profiles. But the Air Force did not go into
detail about when the instability in the radar system occurred, and clearly felt
this was a problem worth shifting priorities to repair before |0OC. Harrigan
said that Lockheed Martin has discovered the cause of the problem and has
diverted developers who were working on the next increment of the F-35's
code to fix it. A patch is expected by the end of March. But if the fix is
delayed, it could push back the Air Force's IOC declaration, which is currently
expected some time after August of this year.

Source: https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/

https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/
https://arstechnica.com/information-technology/2016/03/f-35-radar-system-has-bug-that-requires-hard-reboot-in-flight/

40

Worst Software Failures: Tesla car crash

PRELIMINARY REPORT

HIGHWAY

The information in this preliminary report is
It will be supplemented or corrected di

On Friday, March 23, 2018, about 9:27 a.m., Paci
electric-powered passenger vehicle, occupied by
US Highway 101 (US-101) in Mountain View, $
approached the US-101/State Highway (SH-85) 1
from the left, which was a high-occupancy-vehicl

According to performance data downloaded from
driver assistance features traffic-aware cruise conty
Tesla refers to as “autopilot.” As the Tesla approac
lanes of US-101 from the SH-85 exit ramp, it me
Tesla continued traveling through the gore area an
at a speed of about 71 mph.? The crash attenuatd
barrier. The speed limit on this area of roadway 1s
the traffic-aware cruise control speed was set to
rotated the Tesla counterclockwise and caused a sq
Tesla was involved in subsequent collisions with
Audi A4 (see figure 1).

A preliminary review of the recorded performance data showed the following:

The Autopilot system was engaged on four separate occasions during the 32-minute
trip, including a continuous operation for the last 18 minutes 55 seconds prior to the
crash.

During the 18-minute 55-second segment, the vehicle provided two visual alerts and
one auditory alert for the driver to place his hands on the steering wheel. These alerts
were made more than 15 minutes prior to the crash.

During the 60 seconds prior to the crash, the driver’s hands were detected on the
steering wheel on three separate occasions, for a total of 34 seconds; for the last
6 seconds prior to the crash, the vehicle did not detect the driver’s hands on the steering
wheel.

At 8 seconds prior to the crash, the Tesla was following a lead vehicle and was traveling
about 65 mph.

At 7 seconds prior to the crash, the Tesla began a left steering movement while
following a lead vehicle.

At 4 seconds prior to the crash, the Tesla was no longer following a lead vehicle.

At 3 seconds prior to the crash and up to the time of impact with the crash attenuator,
the Tesla’s speed increased from 62 to 70.8 mph, with no precrash braking or evasive
steering movement detected.

Worst Software Failures: (and the list goes on...)

January 15, 1990 — AT&T Network Outage. A bug in a new release of
the software that controls AT&T's +4ESS long distance switches causes
these mammoth computers to crash when they receive a specific
message from one of their neighboring machines — a message that the
neighbors send out when they recover from a crash.

1993 — Intel Pentium floating point divide. A silicon error causes
Intel's highly promoted Pentium chip to make mistakes when dividing
floating-point numbers that occur within a specific range. For example,
dividing 4195835.0/3145727.0 yields 1.33374 instead of 1.33382, an error
of 0.006 percent. Although the bug affects few users, it becomes a

NYSE ¢ public relations nightmare. With an estimated 3 million to 5 million

!,l.l,!;',! @NYSE defective chips in circulation, at first Intel only offers to replace Pentium
(1 of 2) We're experiencing a technical issue € EUROCONTROL Geurocontol - 1 _
that we’re working to resolve as quickly as A computer failure is affecting London
possible. airspace with potentially severe #flightdelay
7/8/15, 7:09 PM from New York, USA OoWw. IY/FNheN

289 33

41 Source: https://www.wired.com/2005/11/historys-worst-software-bugs/

https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/

42

Software Reliability: NASA SEL

SOFTWARE ENGINEERING LAEORATORY SERIES

Recommended Approach to
Software Development

Revision 3

JUNE 1992

NANASA

SEL-81-305

M liorsl Anroroulics and
Spach Adinins raton

‘Goddard Epace Flight Center
Greanbek, Maryland 20771

IISUIEL | N PHOBLER
LS I

MECLIE=MEN IS
s —

FURCIRINS 10
IBEDUMERERTS
IHATE

HIGH-LEWEL TS 1EM
ARCHI ECTUHE

EMGINEEIIRG
SIOY MEITDIENS

LOCUNER 1A DR FHOE
PHEVIDUS PHOJELC S

PIEMLED MIGHLEYVEL

- IEEOUMERENTS

SYSIEN ANL CEIATIONS

CONCEN BUCUREN 1

Itlﬂtd /
HIGHLEVEL STsIER

AICHN EL IUME

ST R R O R
HEFMEL

UEHME
CERNIORS
CUMLEIS

DA N IDRS STEHARIDS

suie
FRIENCIAR S

-

SLIE-HAR LG Y-MAT EIBALS

43

Software Reliability: NASA SEL

MEASURES MEASURE SOURCE FREQUENCY MAJOR APPLICATION
CLASS
ESTIMATES | Estimates of: Managers Manthly » Project stability
~Total SLOC = Planning aid
{(new, modified,
reused)
* Total unils
= Total effort
+ Major dates
RESOURCES | - Staff hours Developers Weekly - Project stability
{total & by activity) * Replanning indicator
= Computer use Automated Weekly = Effectivenessfimpact of the
tool development process
being applied
STATUS * Requirements Managers Biweekly * Project progress
{growth, TBDs, = Adherence to defined
changes, Q&As) process
= Units designed, Developers Biweekly = Stability and quality of
coded, tested requirements
= SLOC {cumulative) Automated Weekly
* Tests (complete, Developers Biweekly
passed)
ERRORS/ = Errors (by Developers By event * Effectivenassfimpact of the
CHANGES category) development process
= Changes (by Developers By event = Adherence to defined
category) Process
= Changes (to source) Automated Weekly
FIMAL Actuals at completion: Managers 1 time, at * Build predictive modeals
cLOsE-ouT | - Effort completion * Plan/manage new projects

* Size (SLOC,
units)

* Source
characteristics

* Major dates

44

FULL-TIME-EQUIVALENT {40-HOUR WORK WEEKS) OF STAFF

26

22

18

14

10

Software Reliability: NASA SEL

REQMTS PRELIM DETAILED BUILD
ANALYSIS | DESIGN DESIGN 1

SECOND REPLAN ——jm

FIRST REFPLAN

BUILD | BUILD | SYSTEM
2 3 TESTING
® ®
LA ®

ORIGINAL PLAN
_h-

ACCEPT- SYSTEM
ANCE DELIVERY
TESTING

ACTUAL DATA

Software Reliability: NASA SEL
[]
SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-003
In general, use short comments to document variable definitions and block comments
to describe computation processes.
Example: block comment vs. short comment
preferred style:
‘If*
* Main sequence: get and process all user reguests
C STYLE GUIDE *
while (!finish()})
1
inquire();
AUGUST 1984 process();
b
nof recommended:
while (!finish(}) /* Main sequence: */
{ /* *
inquire(); /* Get user request */
process(); /* And carry it out *f
} /* As long as possible *f
_
::I‘ur;:rv?.‘:nanc
=y

46

Software Reliability: NASA SEL

SOFTWARE ENGINEERING LABORATORY SERIES

SOFTWARE PROCESS
IMPROVEMENT GUIDEBOOK

Revision 1

MARCH 1556

SEL-95-102

Maticnal Asronscs and
Space administration

Gosdard 3psss Fight Cantar
Greenbeil, Mandand 20771

Administrative/IRM
{30 MSLOC)
19%

Science Analysis
(20 MSLOC)
13%

General Support
(35 MSLOC)
22%

Simulation, Research
(6 MSLOC)

Flight’Embedded
(10 MSLOC)
6%

Mission Ground Support
(59 MSLOC)
3I7%

Figure 2-3. NASA Operational Software Domains

Software Versus Total Costs
$1 Billion

Software
Costs

513 Billion
Monsoftware
Costs

Software Versus Total Staffing

Software
Personnel
8,400

Monsoftware
Personnel
71,300

Figure 2-4. NASA Software Resources

47

Software Reliability: NASA SEL

%

a0
40
30
20
10

FORTRAN

5%
— < 5% 12%
Cobol CIC++

29 35%

Ada Other
Operational software |:|
Software under development .

Figure 2-5. NASA Language Preferences and Trends

Computational Initialization

Data

Logic/
Control

Interface

Implementation

Require-
ments

Clerical

Figure 2-8. Error Distribution by Class

Figure 2-9. Error Distribution by Origin

48

Software Reliability: NASA SEL

JPL DOCID D-60411

JPL Institutional Coding Standard
for the C Programming Language

[versien edited for external distribution:
does nof include material copyrighted by MIRA Lid {i.e., LOC-5&6)
and miaterial copyrighfed by the 1S0 (i.e., Appendix A))
Cleared for external distribution on 03/04/09, CL#09-0763.

Version: 1.0

Date: March 3, 2009

Paper copies aof this document may not ba cusrent and shaulkd not ba reliad on for official
purpases, The most recant draf is in fhe LaRS PL DocuShars Library &8 higars-Jih

AP0

Jat Propulsion Laboratony
Calfamia Institute of Tachnclogy

Rule Summary

1 Language Compliance

1 | Do not stiray cutside the lanpuaze definrtion
2 | Cornpale with all warnines snabled: nse static source code analyzers.

2 Predictable Execution

3 | Use verifisble loop bounds for all loops meant to be tenminating.

4 | Do not uze direct or indirect recarsion

5 | Do not uze dynamic mernory allocation after task mitislization.
*§ | Usa IPC messazes for tazk corummicstion.

7 | Do not use task dalays for task synchronizstion.
“5 | Explicitly transfer waite-penmission {ownership)) for shared data objects.

9 | Place restrictions on the use of semaphares and bocks.

10 | Use memnory protection, safety margins, barmier pattems.

11 | Do not uze goto, sstjmp or lomegjime.

12 | Do pot uze sslactive vahe sssisuments to elements of an amem list

3 Defensive Coding

13 | Declara darta objects at smallest poszible level of scope.
14 | Check the retum vahie of non-void fanctions, or explicitly cast to (void).

15 | Check the validity of valees paszed to functions.

19 | Use static and dyvnamic assertions as sanity chacks.

*17 | Use U3, T1&, etc instead of predefined C data types such as int. short, stc.

18 | hiaks the order of evaluation in compound expreszions explicit.
18 | Do not use expressicns with side effects.

4 Code Clarify

20 | hlske only wervy limited uze of the C pre-processor.

21 | Do not dafine macros within a fimction or 3 block.

22 | Do not undefine or redefine macros.

23 | Place selza, Zalif and =endif in the same file az the metching #f or Sifdef.

*24 | Place no more than one staterment or declaration per line of tewt
25 | Usa short fianctions with a limited momber of parameters.

*26 Use no mors than oo levels of indirection per declaration.
*37 | Use no more than oo levels of deret cing per object refarencs.

“28 Do not hide dereference operations inzide macros or typedefs.

“28 | Do not use non-constant fianction pointers.

30 | Do not cast fanction pointers into other tyvpes.

31 | Do not place code or declarations before an sinchsde directive.
5 — MISRA shall compliance

T3 | Al MISFA shal mules not slready covered at Lesels 1-4.
rules.

& — MIZSRA should compliance
*16 | AN MWISFA showld rmules not already covered at Levels 1-4.
rules.

49

The 10 Rules T et =7
1. Avoid complex flow constructs, such as goto and recursion
2. All loops must have fixed bounds (this prevents runaway code) The Power Of 1 O
3. Avoid heap memory allocation Rules for Developing
4. Restrict functions to a single printed page l Safety-CrltlcaI Code
5

10.

. Use a minimum of two runtime assertions per function
. Restrict the scope of data to the smallest possible —_IL £

. Check the return value of all nonvoid functions, or cast to void to indicate

Software Reliability: NASA JPL/SEL

the return value is useless

. Use the preprocessor sparingly

. Limit pointer use to a single dereference, and do not use function

pointers

Compile with all possible warnings active; all warnings should then be

addressed before the release of the software

Source: https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d

https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d
https://betterprogramming.pub/the-power-of-10-nasas-rules-for-coding-43ae1764f73d

50

Software Reliability: NASA JPL/SEL

NASA Engineering and Safety Center "’Eﬁ}"m
9 Technical Assessment Report
Title: Page #:
30 of 134

National Highway Traffic Safety Administration
Toyota Unintended Acceleration Investigation -
Appendix A

Table A.8-5. Deviations from Power of 10 Rules

Number of warnings

Description

6,971
1,086

502

326
200
50
18

16

Scope could be local static €
Scope could be file static
Unchecked parameter dereference

Parameter not checked before use as an index

Parameter not checked before dereferencing """

Functions longer than 75 lines NCSL

Potentially unbounded loop <

globals...

pointers...

Pounter type inside typedef

Potentially recursive macro

hang up...

51

Hamilton in 1969, standing next to
listings of the software she and her
MIT team produced for the Apollo
project

See: “The Real Story Behind the Apollo 11 Computer Error” — https://www.youtube.com/watch?v=z4cn93H6sM0

NEXTCORE CAF COREINC
ADS LOCCTR
ccs EXECTEM2

TCF NOVAC3
LXCH EXECTEM1

CA Q
TC BAILOUT1 # NO CORE SETS AVAILABLE.
ocT 1202
Temperature Program Computer Activity
Gimbal Lock caution light condition light status light Verb code Program number
(yellow) (yellow) (yellow) (green) display display
N . | / / e

Uplink Activity —
status light (white) -

__ Noun code display

No Attitude

- Data displ ister 1
status light (white) _ Data display (register 1)

Standby status
light (white)

Key Release —
status light (white)

Operator Error —
status light (white)

- Data display (register 2)
_ Data display (register 3)

_ Clear Data pushbutton

Restart condition ~ e
light (yellow) pd
// /
Tradker condition ~ e
light (yellow) e
LR Altitude Data -~
No Good caution
light (yellow)
LR Velocity Data

No Good caution
light (yellow)

Verb pushbutton

_~ Enter Data pushbutton

— Proceed pushbutton

- Reset pushbutton

- Key Release pushbutton

pushbutton

https://www.youtube.com/watch?v=z4cn93H6sM0

52

2uvoyn

* [eplexopeva:

T eival n «Aflomiotio AoylopikoU» kot n Ataodaiion Motdotntag AoylopikoU (SQA).
Mati ot peBodoloyiec dtaodpaiiong moldtnTag AOYLOULIKOU Elval amopaitnTed.
MéBodol kot PETPLKEC OTLC SLadopec PATELS avATTTUENC AOYLOLLLKOU.

Mepika mapadeiypata anod Tov mpayUatiko KOOUO — ALOOTNMLKEC OTTIOOTOAEG.

* Mnyéc:

ISO/IEC 9126 Software Quality Model (1993), ISO/IEC 25010 Software Quality Model
(2011).

G. Schulmeyer, J. McManus, “Software Quality Handbook”, Prentice Hall (1998).

IEEE Std 730 (2002), IEEE Standard for Software Quality Assurance Plans, IEEE Computer
Society / Software Engineering Standards Committee.

Rosenberg, L.H.; Gallo, A.M., Jr., “Software quality assurance engineering at NASA”, Proc.
IEEE Aerospace Conf. 2002, Vol.5.

P
pr

pwrd
det

er ;
eger :- detlimit;

« - (seekerData’Length) Output:

(seekerData(p+1) seekerData(p)); x86_64-11nux-gru-gec-9 -¢ Mellokorld. add
detlinit

HelloWorld.adb:1:01: cospilation unit expected

ooy o XB6_64-11nux-gnu-gnataake-9: “HelloWorld.add™ co
e -

pwr;

disp ¢

et

id

r®

. Fortran

how it works:
Cold War SOSUS - realistic

Hamming (7,4) error correction
codesinR

Kmeans clustering in COBOL

Bi-directional Associative Memory
(BAM) in Arduino/C

Linear Regression in SQL, Matlab

k-nearest-neighbor Classifier in SQL

YouTube:
@ApneaCoding

https://www.youtube.com/@apneacoding

Github:
@xgeorgio
https://github.com/xgeorgio

54

Epwtnoslg

Xapn¢ Mlewpyiov (MSc,PhD)
https://www.linkedin.com/in/xgeorgio/
https://twitter.com/xgeorgio_gr

