()

2%
7

,vao_n WV r }\)\C,] 6C|S

Awaxelplon Epywv AoyLopikou
2Uyxpovec MebBobdoloylec
Xapnc lewpytov (MSc, PhD)

https://www.epe.org.gr https://www.hiu.gr

‘Evwon NMAnpodopikwv EAAASOC

2 TOYOL:

o [pitoc “kaboAkdc” popéag EKTIPOTOTNONE TTUXLOUY WV
[TAnpoyoplkic.

@ AppodLoc popéag EKTPOTOTNOTG ETLOLYYEARLALTLV
[TAnpoypopLkic.

o Appoéddiog emiotnpovikdg “oupfouleutikde” popéac yla TO
Anuoocio.

@ Apwydc tng EBviktic Unpraknie Ltpatnyiknc & Moudelog tng
X QOPOLC.

2,

R

"‘\.\-
o

Topeic TapépPaonc

Mool siva oL kOpLol Topeic TapepuPdoewv tne EMNE;

®©E6 000000000

EOQvikn) Unprok Ltpatnyiky & Owkovoplio
Epyaoiakd (TTE), Anuooiog & 18iwtikdg Topéag
MNoudeia (A, B,)

‘Epevva & Teyvoroyia

‘Epya & vmnpeoiec TT1E

Acpdleloe cvoTnudtwy & dedopévwv
Avolktd cvothuata & mpdTuTa

Xpnon EA/AAK

[TvevpaTikd Sikol@pLorto

Kodikog Agovtoloyiag (TIE)

Kowwvikn pépipuvee (ICT4D)

5

2

Harris Georgiou (MSC, PhD) — https://github.com/xgeorgio/info

* R&D: Associate post-doc researcher and lecturer with the
University Athens (NKUA) and University of Piraeus (UniPi)

* Consultant in Medical Imaging, Machine Learning, Data
Analytics, Signal Processing, Process Optimization, Dynamic
Systems, Complexity & Emergent A.l., Game Theory

* HRTA member since 2009, LEAR / scientific advisor

* HRTA field operator (USAR, scuba diver)

* Wilderness first aid, paediatric (child/infant)

* Humanitarian aid & disaster relief in Ghana, Lesvos, Piraeus

* Support of unaccomp. minors, teacher in community schools

* Streetwork training, psychological first aid & victim support

* 2+4 books, 170+ scientific papers/articles (and 5 marathons)

Ertilokomnnon — Nnyeg

* [leplexopeva:
— Tueival n «Texvohoyia Aoylopkou» kat n Ataxeipion Epywv Aoylopikou (SPM).
— Tatl ot peBodoloyieg avamtuéng AoyLopkou eival anapaitnteg.
— KAaowkeg peBodoloyieg, TAEOVEKTLOTO KOL LELOVEKTHATAL.
— BOOLKEG EVVOLEC KOLL TEXVLKEC:
e Hierarchical design, UML diagrams, modularity, testing methods, ...

* MNnyég:
— MIT OpenCourseWare (MIT-OCW), Nancy Leveson: 16.355J) / ESD.355J) Advanced Software
Engineering, Fall 2002 — https://dspace.mit.edu/handle/1721.1/35847
— Stephen Kan, “Metrics and Models in Software Quality Engineering”, 2"d ed., Addison-Wesley
(2002).
— lan Sommerville, “Software Engineering”, 8t" ed., Addison-Wesley (2008).
— “2018 Intl. Conf. on Software Engineering: Celebrating its 40th anniversary, and 50 years of

Software engineering.” ICSE 2018 — Margaret Hamilton —
https://www.youtube.com/watch?v=2bVOFQUKk5IU

https://dspace.mit.edu/handle/1721.1/35847
https://www.youtube.com/watch?v=ZbVOF0Uk5lU

TL elvaw n «TexvoAoyla AOYLOULKOU »;

16.9382

Advanced Software Engineering

Fall 2000

Some "Data" (Myths?)
]

» The development of large applications in excess of 5000

function points (~500,000 LOC) is one of the most risky
business undertakings in the modern. world (Capers Jones)

* The risks of cancellation or major delays rise rapidly as the
overall application size increases (Capers Jones):

— 65% of large systems (over 1,000,000 LOC) are
cancelled before completion

— 50% for systems exceeding half million LOC
— 25 % for those over 100,000 LOC

* Failure or cancellation rate of large software systems is
over 20% (Capers Jones)

@

Copyright = Mancy Leveson, Sept. 2000

More "Data" (Myths?)
I N N A A N N

* After surveying 8,000 IT projects, Standish Group reported
about 30% of all projects were cancelled.

* Average cancelled project in U.S. is about a year behind
schedule and has consumed 200% of expected budget
(Capers Jones).

* Work on cancelled projects comprises about 15% of total
U.S. software efforts, amounting to as much as $14 billion
in 1993 dollars (Capers Jones).

@

Copyright = Mancy Leveson, Sept. 2000

And Yet More
I

* Of completed projects, 2/3 experience schedule delays
and cost overruns (Capers Jones) [bad estimates?]

» 2/3 of completed projects experience low reliability and
quality problems in first year of deployment (Jones).

* Software errors in fielded systems typically range from
0.5 to 3.0 occurrences per 1000 lines of code (Bell Labs
survey).

* Civilian software: at least 100 English words produced for
every source code statement.

Military: about 400 words (Capers Jones)

@

Copyright = Mancy Leveson, Sept. 2000

10

Death March Projects
I Y Y A

» Feature (scope) creep

* Thrashing

* Integration problems

* Overwriting source code

¢ Constant re-estimation

Types of Problem Projects (Yourdan)
A Y T

e Mission Impossible
Likely to succeed, happy workers

* Ugly
Likely to succeed, unhappy workers

* Kamikaze
Unlikely to succeed, happy workers

* Suicide
Unlikely to succeed, unhappy workers

* Redesign and rewriting during test

* No documentation of design decisions

@

Copyright = Mancy Leveson, Sept. 2000

Development Costs Analyze
Design
Test | SN
Planning Coding Maintain
Test
1/3 planning
1/6 coding '
. 1/4 component test: Development costs are only
1/4 system test the tip of the iceberg.
11 @

Copyright = Mancy Leveson, Sept. 2000

12

planning

coding

maintenance

Software Maintenance:

20% error correction

20% adaptation
60% enhancements

Most fielded software errors stem
from requirements not code

@

Copyright = Mancy Leveson, Sept. 2000

13

Are Things Improving?
I

* |s software improving at a slower rate than hardware?
"Software expands to fill the available memory" (Parkinson)

"Software is getting slower more rapidly than hardware
becomes faster” (Reiser)

* EXxpectations are changing

Copyright

@

Mancy Leveson, Sept. 2000

14

Why is software engineering hard?
I T T T

"Curse of flexibility"”

Organized complexity
Intangibility
Lack of historical usage information

Large discrete state spaces

Copyright

@

Mancy Leveson, Sept. 2000

15

The Curse of Flexibility

"Software is the resting place of afterthoughts."

No physical constraints

- To enforce discipline on design, construction
and modification

= To control complexity

So flexible that start working with it before fully understanding
what need to do

The untrained can get partial success.
"Scaling up is hard to do"

Copyright

@

Mancy Leveson, Sept. 2000

16

What is Complexity?
I

The underlying factor is intellectual manageability

1. A "simple" system has a small number of unknowns in its
interactions within the system and with its environment.

2. A system becomes intellectually unmanageable when the level of
interactions reaches the point where they cannot be thoroughly

- planned

— understood

- anticipated

- guarded against

@

Copyright = Mancy Leveson, Sept. 2000

17

Ways to Cope with Complexity
NI

* Analytic Reduction (Descartes)

- Divide system into distinct parts for analysis purposes.
— Examine the parts separately.

* Three important assumptions:

1.

The division into parts will not distort the
phenomenon being studied.

Components are the same when examined singly
as when playing their part in the whole.

Principles governing the assembling of the components
into the whole are themselves straightforward.

@

Copyright = Mancy Leveson, Sept. 2000

18

Waterfall Model

Feasibility ”'\
Study .
V&V Requirements

N V&b Design

« Deliverables - baselines

* Document-driven process
"Big Bang" testing, "stubs", daily build and smoke test

"A Rational Design Process and How to Fake It"

Copyright

@

Mancy Leveson, Sept. 2000

19

Evolutionary Model

* Prototyping — "Do it twice"

- to assess feasibility
- to verify requirements

* May only be a front end or executable specification
Or develop system with less functionality or quality attributes

* 3 approaches:
1) Use prototyping as tool for requirements analysis.
Need proper tools

2) Use to accomodate design uncertainty.
Prototype evolves into final product

Documentation may be sacrificed
May be less robust

Quality defects may cause problems later

3) Use to experiment with different proposed solutions
before large investments made.

Copyright

@

Mancy Leveson, Sept. 2000

20

Evolutionary Models (2)

« Drawbacks:
- Can be expensive to build

- Can develop a life of its own - turns out to be product itself
- Hard to change basic decisions made early
- Can be an excuse for poor programming practices

* Experimental Evaluation:

— Boehm: prototyping vs. waterfall
Waterfall: addressed product and process control risks better
Resulted in more robust product, easier to maintain
Fewer problems in debugging and integration due to
more thought-out design

Prototyping: addressed user interfaces better

— Alavi: prototyping vs. waterfall applied to an information system
Prototyping: users more positive and more involved

Waterfall: more robust and efficient data structures
@

Copyright = Mancy Leveson, Sept. 2000

Incremental Model

* Functionality produced and delivered in small increments.

* Focus attention first on essential features and add functionality
only if and when needed

* Systems tend to be leaner —— fights overfunctionality syndrome

* May be hard to add features later

* Variant: Incremental implementation only
- Follow waterfall down to implementation

- During requirements analysis and system design
Define useful subsets that can be delivered
Define interfaces that allow adding later smoothly

- Different parts implemented, tested, and delivered according

to different priorities and at different times.

2 1 12:0|:|1n.r|'igr'll{:B:l Mancy Leveson, Sept. 2000

22

Spiral Model

» Includes every other model
* Risk driven (vs. document driven or increment driven)

» Radius of spiral represents cost accumulated so far

Do you need one uniform process over entire project?
* In requirements analysis, identify aspects that are uncertain
e.g., library:
checkout and checkin (inventory control) — relatively certain
card catalogue, user search - relatively uncertain

then have separate processes for the different parts.

Copyright

@

Mancy Leveson, Sept. 2000

23

Business Modeling
Requirements
Analysis & Design
Implementation
Test

Deployment

[terative Development

Business value is delivered incrementally in
time-boxed crossdiscipline iterations.

Inception | Elaboration Construction Transition
I1 _|E1 E2| C1 C2 | C3 C4 T1 T2
N\
\
— \
H_
\
_—— .] I
N
AAA
| x\

Time

Source: Unified Process Model for Iterative Development (Wikipedia.org)

24

repeat

24
HOURS
2

SCRUM PROCESS q
_mESn=Ep=):

USER STORIES SPRINT BACKLOG l l

repeat

Source: https://aristeksystems.com/blog/how-not-to-burn-your-budget-with-agile-scrum/

Question 2: What form of Agile processes are you most using at the
moment?

Question 2 - Type of Agile Methodology

Extreme

Scrum

Other

Feature Driven

O A A S

By far the most popular form of Agile processes used is_ Extreme Programming, often shortened to XP.
Extreme processes are being used by 53% of all respondents.

Source: "Agile Methodologies Survey Results”, Shine Technologies, Jan.2003

Question 5: Has adoption of Agile processes altered the cost of
development?

Question 5 - Cost *

Unchanged .
AB%, Less Expensive
49% 44%
Much less
expensive
5%
More eg;;:en S expensive
° 0%

Across respondents with average knowledge or better, 48.6% believed that development costs were
reduced. Including the responses that indicated that costs were unchanged, a whopping 95% believe
Agile processes have either no effect or a cost reduction effect.
Source: "Agile Methodologies Survey Results”, Shine Technologies, Jan.2003

Question 7 - Positive features

Other

Respond to change
over plan

Relationships over
contracts

Code aver
documentation

People over
processes

Question 8 - Negative features

Other

Lack of authority

Lack of project
structure

Lack of planning

Low documentation

27

Source: "Agile Methodologies Survey Results”, Shine Technologies, Jan.2003

[Submitted on 15 Mar 2017 {v1), last revised 5 Apr 2018 (this version, v3)]

An Exploratory Study of Applying a Scrum Development Process for Safety-Critical Systems

Yang Wang, Jasmin Ramadani, Stefan Wagner

Agile techniques recently have received attention in developing safety-critical systems. However, a lack of empirical knowledge of performing safety assurance
techniques in practice, especially safety analysis into agile development processes prevents further steps. In this article, we aim at investigating the feasibility and the

effects of our S-Scrum development process, and stepwise improving and proposing an Optimized S-Scrum dé

environment. We conducted an exploratory case study in a one-year student project "Smart Home" at the Uniy An Exploratory Study on Applying a Scrum
project and collected guantitative and gualitative data from questionnaire, interviews, participant observation, Development Process for Safety-Critical Systems
Furthermore, we evaluated the Optimized S-Scrum in industry by conducting interviews. The first-stage results Yang Warg, Jusrin Ramadri, und Sicfun Wagper
Process Analysis) can ensure the safety during each sprint and enhance the safety of delivered products, whi ¢ e i g o .o

ariginal Scrum. Six challenges have been explored: Management changes the team's priorities during an itera
functional requirements are determined too late; Insufficient upfront planning; Insufficient well-defined complet
We investigated further the causalities and optimizations. The second-stage results revealed that the safety a

We have gained a positive assessment and suggestions from industry. The optimized S-Scrum is feasible for ¢ Proms A, i bty il st () intin e O
capability to ensure safety and the acceptable agility in a student project. Further attempt is still needed in ind| «» ooy ooy ety stk e iy o

& b gl s Ll

Abstract. Backround: Agil: techniques recently have received aticn

ormi P
sality analysis in 3 real ngile project bampers further o, Aime: In
this article, we aim at (1) understanding and optimizing the § Scrum
development process, a Scrum extension with the integration of o sy
o theary husod safity analysis tohnique, STPA (System- Thenectic

2018

Apr

5

Vereplored pix chall ; priorily

thon; Lime pressure on determining safety requircments; safety planning;
time to perform upfrond plunning; and safety requirements! acceptance
writaria. During slajes 2, U saledy s spility bavo besn improved altor
the oplimizations, inclding an internal and an external safely expert;
pre planning mesting regular safely meeling an agie siety plan; and
improved safety cpics and safety starics. We: hve also gained wluble
suggestions f ustry, but the geseralisntion problem due o the
specilie o | ansodvis]

SE]

5

Comments: 16 pages, 4 figures

[C;

Subjects: Software Engineering (cs.5E)
Cite as: arkiv:1703.05375 [cs.5E]

Keywords: Agile software development, safety critical systems, ose
sty

I Introduction

To redduce: the risks and costs for reworking and rescheduling, agile Lochmiques
have aroused attention for the development of safety-critical systems. Tradi-
tionally standardised safoly assurance, such as TEC GLHS (1, is based on the
V-model. Even though there is no probibition o adapt standards for lightweight
development proceses with ilerations, some limitations cannol be svoided dur-
g e selaplation [%). Fxisting research in agike Lechniques for safely erilical
systems is striving for consistency Lo standards. Safe Scrum [1] i & considerable
suecess duc to a comprehensive combination between Serum and TPC 61508,
owever, an inteprated safety analysis to face the changing, architecturcs inside
each sprint #ill noeds to be enhanced. Therefore, in 2016, we proposed §-Scrum

arXiv:1703.05375v3

28

29

Requirements specification:

e A structured document that sets out the services the system is expected to
provide.

e Should be precise so that it can act as a contract between the system procurer
and software developer and thus needs to be understandable by procurers and

developers.

e Describes what the system will do but not how it will do it (objectives but not

how objectives will be achieved).

Design specification:

e An abstract description of the software that serves as a basis for (or describes)
its detailed design and implementation.

e Describes fiow the requirements will be achieved.

e Primary readers will be software designers and implementers rather than users

or management.

e The goals and constraints specified in requirements document should be trace-
able to the design specification (and from there to the code).

Copyright

@

Mancy Leveson, Sept. 2000

30

Types of Specifications

* |nformal

— Free form, natural language
— Ambiguity and lack of organization can lead to
Incompleteness, inconsistency, and misunderstandings

* Formatted
— Standardized syntax (e.g., UML)

— Basic consistency and completeness checks

— Imprecise semantics implies other sources of error
may still be present.

12:0|:|1n.r|'igr'll{:B:l

Mancy Leveson, Sept. 2000

31

Algebraic Specifications

Axioms stated in English:

1.
2.

A new stack is empty.

A stack is not empty immediately after pushing
an item onto it.

Attempting to pop a new stack results in an error.
There is no top item on a new stack.

Pushing an item onto a stack and immediately popping
it off leaves the stack unchanged.

Pushing an item onto a stack and immediately
requesting the top item returns the item just pushed
onto the stack.

@

Copyright = Mancy Leveson, Sept. 2000

32

State Machine Specifications

Define behavior using states and transitions between states

temp <sp/ temp > sp /
turn on heat turn on AC
Below At \— = Above
setpoin setpoint -
__‘___'_._‘_/’/
temp = sp / temp =sp /
turn off heat turn off AC

Copyright

@

Mancy Leveson, Sept. 2000

33

3

break released no break

break ON

O

| break pressed |

accel DECR

wheel turning

break pressure OK

Example: ABS in cars (simplified)

)

34

Structured Programming

e Goal: mastering complexity

* Dijkstra, Hoare, Wirth:

- Construction of correct programs requires that programs
be intellectually manageable

- Key to intellectual manageability is the structure of the
program itself.

~ Disciplined use of a few program building blocks facilitates
correctness arguments.

Copyright

@

Mancy Leveson, Sept. 2000

35

Structured Programming (2)

» Restricted control structures
 Levels of abstraction

» Stepwise refinement

* Program families

* Abstract data types

* System structure:

- Programming-in-the-large vs. programming-in-the-small
- Modularization
- Minimizing connectivity

Copyright

@

Mancy Leveson, Sept. 2000

36

Stepwise Refinement

Wirth (1971): "Divide and conquer”

~ A top-down technique for decomposing a system from
preliminary design specification of functionality into more
elementary levels.

- Program construction consists of sequence of refinement steps.
- Use a notation natural to problem as long as possible.
- Refine function and data in parallel.

— Each refinement step implies design decisions. Should be
made explicit.

12:0|:|1n.r|'igr'll{:B:l

Mancy Leveson, Sept. 2000

37

Prime Number Program

begin var table p;

fill table p with first 1000 prime numbers
print table p

end

» Assumes type "table" and two operators

* Design decisions made:
— All primes developed before any printed
— Always want first 1000 primes

* Decisions not made:
- Representation of table
— Method of calculating primes
— Print format

Copyright

@

Mancy Leveson, Sept. 2000

38

Four Primary Design Principles

1. Separation of concerns
- Deal with separate aspects of a problem separate.

2. Abstraction

- ldentify important aspects of a phenomenon and ignore
details that are irrelevant at this stage.

- Hierarchical abstraction: build hierarchical layers of abstraction

+ Procedural (functional) abstraction
+ Data abstraction

+ Control abstraction (abstract from precise sequence of
events handled, e.g., nondeterminacy)

12:0|:|1n.r|'igr'll{:B:l

Mancy Leveson, Sept. 2000

39

Four Primary Design Principles (2)

3. Simplicity

— Emphasis on software that is clear, simple, and
therefore easy to check, understand, and modify.

4. Restricted visibility

— Locality of information

Copyright

@

Mancy Leveson, Sept. 2000

40

General Software Design Concepts

Implementations of the general principles

e Decomposition

— Can decompose with respect to time order, data flow,
logical groupings, access to a common resource,
control flow, or some other criterion.

— Functional decomposition seems to be a natural way for
people to solve problems as evidenced by its wide use.

— Top-down decomposition: start at high levels of abstraction
and progress to levels of greater and greater detail.

— Bottom-up: form and layer groups of instruction sequences
until work way up to a complete solution.

Copyright

@

Mancy Leveson, Sept. 2000

General Software Design Concepts (2)

e Decomposition (con't.)
— Iterative decision making process:
« List difficult decisions and decisions likely to change
* Design a module specification to hide each such decision

- Break module into further design decisions.
- Continue refining until all design decisions hidden
in @ module

* Program Families: design for flexibility, not generality

41 @

Copyright = Mancy Leveson, Sept. 2000

General Software Design Concepts (3)

* Virtual Machines

— A module provides a virtual machine: a set of operations
that can be invoked in a variety of ways and orders to
accomplish a variety of tasks.

— Don't think of systems in terms of components that
correspond to steps in processing.

— Do provide a set of virtual machines that are useful for
writing many programs.

* Information Hiding
— Each design unit hides internal details of processing activities.
— Design units communicate only through well-defined interfaces.

— Each design unit specified by as little information as possible
— If internal details change, client units should need no change

42 Copyright

Mancy Leveson, Sept. 2000

43

General Software Design Concepts (4)

* Modularity

- Separation of concerns:

1. Deal with details of each module in isolation (ignoring
details of other modules)

2. Deal with overall characteristics of all modules and their
relationships in order to integrate them into a coherent
system.

- Base on hierarchy and abstraction:

« Abstraction handled through information hiding
+ Hierarchy by defining uses and is-composed-of relations

- Minimize connectivity

@

Copyright = Mancy Leveson, Sept. 2000

General Software Design Concepts (9)

* Modularity (con't.)

- Sample things to modularize and encapsulate:

- abstract data types

- algorithms (e.g., sort)

» input and output formats

+ processing sequence

» machine dependencies (e.g., character codes)

+ policies (e.g., when and how to do garbage collection)
« external interfaces (hardware and software)

- Benefits:
- Allows understanding each part of a system separately
- Aids in modifying system
- May confine search for a malfunction to a single module.
@

Copyright = Mancy Leveson, Sept. 2000

44

45

 60s and 70s: people recognized that a systematic approach to
development needed to cope with large-scale projects. Needed
a way to promulgate and encourage the adoption of desirable
practices.

A procedural form (do this, then do this, then this ...) lent
itself to this role.

Also easily conveyed through books and courses, easy to
teach, easy to write exam questions.

Yourdan, Michael Jackson, etc.
Met some real needs.

» By late 70s, use of procedural form was entrenched.

@

Copyright = Mancy Leveson, Sept. 2000

* But some good practices that did not lend themselves to such a
form, e.g., information hiding (for which no satisfactory form of
procedural development practice has yet been devised).

* Reaction in 80s to shortcomings was to "pile more on"
- More diagrammatical forms
- More models
- More complexity
"Arguably, much of this complexity stems from the paradox of
object orientation, which seems to provide excellent paradigms

for analysis and implementation, but present major difficulties
for the designer.”

* In 90s, attempts to develop other paradigms for transferring design
knowledge, e.g., patterns and architectures.

46 @

Copyright = Mancy Leveson, Sept. 2000

47

Basic Testing Guidelines

A test case has two parts:

1. Description of input data
2. Precise description of correct output for that input

A programmer should avoid testing his or her programs.

A programming organization should not test its own programs.

The results of each test should be thoroughly inspected (lots
of errors are missed).

Test cases must be written for invalid and unexpected as
well as valid and expected input conditions.

@

Copyright = Mancy Leveson, Sept. 2000

48

Black Box Testing

Test data derived solely from specification (i.e.,
without knowledge of internal structure of program).

® Need to test every possible input
=y "2 st (since black box, only way to be sure to detect
ifx=5theny:=3 this is to try every input condition)

| Valid inputs up to max size of machine (not astronomical)

H Also all invalid input (e.g., testing Ada compiler requires all
valid and invalid programs)

m If program has "memory”, need to test all possible unique
valid and invalid sequences.

® So for most programs, exhaustive input testing
Is impractical.

Copyright

@

Mancy Leveson, Sept. 2000

White Box Testing

Derive test data by examining program’s logic.

Exhaustic path testing: Two flaws

1) Number of unique paths through program is astronomical.
loop< 20x (5 52[1 N 519+ 51B+ 45 = 1014
= 100 trillion

If could develop/execute/verify one
test case every five minutes = 1 billion years

If had magic test processor that could
develop/execute/evaluate one test per
msec = 3170 years.

49 (Cﬂntrﬂl-ﬂow graph} Copyrigm@ Mancy Leveson, Sept. 2000

50

Static Analysis

* Syntax checks

* Look for error-prone constructions
(enforce standards)

o Program structure checks

Generate graphs and look for structural flaws

* Module interface checks
Detect inconsistencies in declarations of data structures
and improper linkages between modules

* Human Reviews
Checklists (inspections)

Walkthroughs (reviews)

Copyright

@

Mancy Leveson, Sept. 2000

51

Software Inspections

Started by IBM in 1972 (Fagan)

Process driven by a checklist of likely errors

« Build checklists through experience and feedback.
« Some companies consider checklists proprietary.

Performed after design complete and after coding complete.

Last about 2 hours, cover about 100 statements per hour.

Evaluation of walkthroughs and inspections:

e Find about 70-80% of errors.

e Most errors found before unit testing.

12:0|:|1n.r|'igr'll{:B:l

Mancy Leveson, Sept. 2000

52

Some Decision Factors

* Features of application:

Hard real time?
Not just efficiency
Predictability (need to guarantee deadlines will be met)
High assurance?
Portability?
Maintainability?
Others?

» Features of development environment:

Availability of programmers, compilers, development tools?
Schedule constraints?
Others?

Copyright

@

Mancy Leveson, Sept. 2000

53

Relationship between PL and Correctness

“PL” = Programming Language
* Error Proneness

- Language design should prevent errors.
Should be difficult or impossible to write an incorrect program.

If not possible, then allow their detection (as early as possible)

Need for general principles and hypotheses so can predict
error-prone features and improve language design.

Some hypotheses and data about:

Go to

Global variables

Pointers

Selection by position (long parameter lists)
Defaults and implicit type conversion
Attempts to interpret intentions or fix errors

- Meaning of features should be precisely defined (not

dependent on compiler.

@

Copyright = Mancy Leveson, Sept. 2000

54

Relationship between PL and Correctness

. Understandability PL” = Programming Language

- "The primary goal of a programming language is accurate
communication among humans."

- Readability more important than writeability.

* Well "punctuated” (easy to directly determine statement types
and major subunits without intermediate inferences)

* Use of distinct structural words (keywords, reserved words)
for distinct concepts (no overloading, e.g., = for equal, assignment)

* Avoidance of multiple use of symbols unless serve completely
analogous functions (e.g., commas as separators, parentheses for
grouping).

- Necessary to be able to see what is being accomplished at a
higher level of abstraction.

* Permit programmers to state their "intentions" along with
instructions necessary to carry them out.

@

Copyright = Mancy Leveson, Sept. 2000

Relationship between PL and Correctness

“PL” = Programming Language

* Maintainability

- Locality -- possible to isolate changes.

- Self-documenting

* Programming decisions should be recorded in program,
independent of external documentation.

* Good comment convention, freedom to choose meaningful
variable names, etc.
* User-defined types and named constants
e.g., type direction=(north, south, east, west)

- Explicit interfaces
« Should cater to construction of hierarchies of modules

55 C

Copyright = Mancy Leveson, Sept. 2000

Can programming language influence correctness?

* Languages affect the way we think about problems:

"The tools we use have a profound (and devious) influence
on our thinking habits, and, therefore on our thinking abilities?"

Dijkstra, 1982

* Additional experimental evidence:

- C130J software written in a variety of languages by a variety
of vendors.

= All certified to DO-178B standards (FAA).
- Then subjected to a major IV&V exercise by the MoD

» Significant, safety-related errors found in Level A certified
software

« Residual error rate of Ada code on aircraft was one tenth
that of code written in C.

* Residual error rate of SPARK code (Ada subset) one tenth
that of the Ada code. ®

56 Copyright = Mancy Leveson, Sept. 2000

57

* [lep

* lny

uvoyn

LEXOMEVAL:
Tielval n «Texvohoyia Aoylopkou» kat n Ataxeipion Epywv Aoylopikou (SPM).
Mati ot peBodoAoyieg avamntuéng Aoyloptkol ivatl anapaitntec.
KAaokeg peBodoloyleg, MAEOVEKTAMOTA KOL LELOVEKTILOTAL.
BOlOLKEG EVVOLEG KOLL TEXVLKEC:
e Hierarchical design, UML diagrams, modularity, testing methods, ...

£C:

MIT OpenCourseWare (MIT-OCW), Nancy Leveson: 16.355J) / ESD.355J) Advanced Software
Engineering, Fall 2002 — https://dspace.mit.edu/handle/1721.1/35847

Stephen Kan, “Metrics and Models in Software Quality Engineering”, 2" ed., Addison-Wesley
(2002).

lan Sommerville, “Software Engineering”, 8t" ed., Addison-Wesley (2008).

“2018 Intl. Conf. on Software Engineering: Celebrating its 40th anniversary, and 50 years of

Software engineering.” ICSE 2018 — Margaret Hamilton —
https://www.youtube.com/watch?v=2bVOFQUKk5IU

https://dspace.mit.edu/handle/1721.1/35847
https://www.youtube.com/watch?v=ZbVOF0Uk5lU

Output:

X86_64-1inux-gnu-gec-9 -¢ Mellokorld. add
Hellokorld.adb:1:01: cospilation unit expected
XB6_64-11inux-gnu-gnataake-9: “Hellokorld.add™ co

how it works:
counter-artillery radar code

Hamming (7,4) error correction
codesinR

Kmeans clustering in COBOL

Bi-directional Associative Memory
(BAM) in Arduino/C

Linear Regression in SQL, Matlab

k-nearest-neighbor Classifier in SQL

YouTube:
@ApneaCoding

https://www.youtube.com/@apneacoding

Github:

@xgeorgio
https://github.com/xgeorgio

59

Epwtnoslg

Xapn¢ Mlewpyiov (MSc,PhD)
https://www.linkedin.com/in/xgeorgio/
https://twitter.com/xgeorgio_gr

