Natural Computation and Behavioral Robotics

Competition, Games and Evolution

Harris Georgiou (MSc,PhD)

Lecture 6

Overview

- What is Natural Gaming ?
- Zero sum and Non-zero sum Games
- Competitive and Cooperative behavior
- Evolution and Stable Strategies
- An example: "Tit-for-Tat" (T4T) strategy
- Properties of "good" cooperative strategies

Natural Gaming

"Game": Any situation where 2 or more adversaries try to get most while others do the same.

In Nature: compete against others for better access to (limited) food, territory, mates, etc.

Most common dilemma: "fight" or "flee" situation.

"Best" strategy is not always best because the opponent may also use it at the same time!

"They look at you in the best hiding places first ... "

Zero-Sum Games

- Example: "Hawks vs. Doves" (John M. Smith)
 - Hawk: aggressive behavior, "fight" rather than "flee"
 - Dove: defensive behavior, "flee" rather than "fight"
- Neither pure "Hawk" or pure "Dove" strategies are all-win situations

(R →C)	Hawk	Dove
Hawk	-3 (0)	+2 (3)
Dove	<u>-1</u> (1)	+1 (2)

- <u>Solution</u>: **Minimax** theorem (if zero-sum game)
- "How many?" ⇒ Depends on the matrix values!

Non-Zero-Sum Games

- Example: "Chicken"
 - Swerve: defensive behavior, "chicken" to avoid collision
 - Drive: aggressive behavior, "persist" and win the race
- Neither pure "Swerve" or pure "Drive" strategies are all-win situations

(A↔B)	Swerve	Drive
Swerve	(<u>3,3</u>)	(2*,4*)
Drive	(4*,2*)	(1,1)

- Solution: Nash equilibrium (and generalizations)
- "How many?" \Rightarrow Depends on the matrix values!

Famous "Chicken" game: Cuban Missile Crisis (1962)

A special case – Prisoner's Dilemma

- "Prisoner's Dilemma" situation
 - Silent: cooperative behavior, "no talk" in the interrogation
 - **Confess**: competitive behavior, "talk" in the interrogation
- "Confess" seems better, but cooperation for mutual "Silent" is the optimum, when played *iteratively*

(A↔B)	Silent	Confess
Silent	(3,3)	(1,4*)
Confess	(4*,1)	(<u>2</u> *, <u>2</u> *)

- <u>Solution</u>: best result for **both** if they "cooperate" (Silent)
- Demonstrates difference between "personal" and "collective" gain

Famous "P.D." situation: Post-Cold War deterrence strategy for WMD (arsenal scale-down).

Harris Georgiou (MSc,PhD)

Competitive Behavior

- Players "fight" each other to gain an advantage.
- "Fight" may resolve in double profits or severe consequences (energy, injuries, etc).
- This is usually the default behavior of a species when living alone or against another species.
- Zero-sum games: "fight" is the only option available.
- Non-zero-sum games: not applicable here, all players try to maximize their own individual gain.

Harris Georgiou (MSc,PhD)

Cooperative Behavior

- Players "agree" on a fair *bargaining solution* of split gains.
- "Agreement" may reduce direct gain but also avoids severe losses (energy, injuries, death, etc).
- This is usually the default behavior of a members of the same species when living in groups or herds.
- Zero-sum games: cooperation not applicable
- **Non-zero-sum** games: players can "bargain" on a mutually beneficial solution, maybe without "fight".

Evolution and Stable Strategies

- <u>Evolution</u>: a sequence of iterative steps of a process that changes and adapts a system to the current environment.
- <u>Optimal Solutions</u>: competition for limited resources ends up in some "stable" configuration that allocates them optimally.
- <u>Stable Strategies</u>: Behavioral patterns that eventually lead Evolution to Optimal solutions.
- **Optimality Criterion**: Natural selection drives the population to optimally exploit the available resources.
- Evolutionary Stable Strategies (E.S.S.): Behavioral patterns that "survive" during the process of Evolution.

E.S.S. Example: "Tit-for-Tat" (T4T)

Basic principle of T4T (A. Rapoport, R. Axelrod – 1980):

- 1. On the first iteration, take the most "defensive" or "kind" or "cooperative" action available.
- 2. On each of the next iterations that follow, do what the opponent did on the immediately preceding step.
- Rule 1 makes sure there is a chance of **cooperation**
- Rule 2 makes sure the opponent "learns" by **retaliation**
- "Punishment" of the opponent is as important as the "kind" tactic on the very first step (beginning of the game).
- T4T has proven very efficient in terms of emergence of cooperation and adaptiveness in changing environments.

Harris Georgiou (MSc,PhD)

Properties of "good" E.S.S.

- <u>Robustness</u>: surviving against any other strategy, more or less "intelligent" than own.
- <u>Stability</u>: once established, preserved
- <u>Initiation</u>: (cooperation) survive even when all other players are "hostile", i.e. non-cooperative.
- In Practice: a "good" cooperative E.S.S. should be "Nice", "Retaliatory", "Forgiving" and "Optimistic".
- Cooperative E.S.S. are the key to flocks and herds.

12 – 13

Food for thought

- How "kind" can a player be before getting eliminated by hostile opponents ?
- Why retaliation in T4T has to come immediately in the very next play ?
- Can T4T strategy beat an advanced AI program in a computer game like chess ?
- How does T4T strategy perform in the iterative form of the classic "Chicken" and "Prisoner's Dilemma" ?

P.C. – Readings

- John L. Casti, "Reality Rules II: Picturing the World in Mathematics – The Frontier", John Wiley & Sons, 1997. [see: ch.5]
- Tom Mitchell, "Machine Learning", McGrawHill, 1997. [see: ch.9, ch.13]