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 Probabilities and Uncertainty 

 The Bayes rule 

 Measures of Belief and Disbelief 

 Certainty Factors (CF) 

 Hypotheses and Evidences 

 Logical operators and CF 

 Inference rules and CF 



Probability Theory 

 In real world, events happen with a certain 

probability, usually the result of many factors 

 Some of these factors are independent with each 

other, i.e. happen independently 

 Others usually happen (or not happen) together at 

the same time, correlated or not (by chance). 

 Example: the event “rain” happens with a probability 

that depends on dependent factors “cloud” and 

“cold” 
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The Bayes Theorem 

 In order to calculate “joined” probabilities we use the 

Bayes rule: 

 

P(H|Ek)  =  P(Ek|H)*P(H)  /  SUM{ P(Ei|H)*P(H) } 

 

H = hypothesis (e.g. H=“rains”) 

Ek = evidence k (e.g. Ek=“cloud”) 

H|Ek = propability of “rain” when there is “cloud” 

Ek|H = probability of “cloud” when “rain” (past history) 
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Certainty Factors 

 Bayes rule becomes too complex when there 
are many evidences Ei that are dependent 

 Instead, we often use approximate models for 
describing levels of certainty 

 Certainty Factors (Shortliffe, 1976): first used in 
the expert system MYCIN (implem. in LISP) 

 They describe hypotheses and evidences in 
terms of “certainty” about their truth 

 

MYCIN: “500 rules, roughly the same level of competence as 
human specialists in blood infections” (Britannica) 
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Measures of Belief and Disbelief 

Measure of Belief (MB): 

 

MB(H|E) = 1   ,   if  P(H)=1 

               = max{P(H|E),P(H)} / (1-P(H))  ,  if  P(H)<1 

 

Measure of Disbelief (MD): 

 

MD(H|E) = 1   ,   if  P(H)=0 

               = (P(H) - min{P(H|E),P(H)}) / P(H)  , if  P(H)<1 
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Certainty Factors 

Certainty Factor (CF): 

 

CF(H|E) = MB(H|E) – MD(H|E) 

 

0 <= MB(H|E) <= 1  ,  0 <= MD(H|E) <= 1 

thus:  -1 <= CF(H|E) < +1 
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CF: Multiple evidences 

What if new evidence Ek becomes available? 

 

MB(H|E1,E2) = MB(H|E1) + MB(H|E2)*[1-MB(H|E1)] 

 

MD(H|E1,E2) = MD(H|E1) + MD(H|E2)*[1-MD(H|E1)] 

 

CF(H|E1,E2) = MB(H|E1,E2) - MD(H|E1,E2) 
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CF: Uncertain evidences 

What if evidence E is not 100% certain to be true ? 

 

MB(H|E) = normal MB value for H based on E 

 

 If E comes from “measurements” M then: 

CF(E|M) = certainty of E based on M 

 

 The updated value for MB(H|E) now becomes: 

MB(H|E)new = MB(H|E) * max{ 0, CF(E|M) } 
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CF: Composite hypotheses 

What if combosite hypotheses are to be evaluated? 

 

MB(H1 AND H2 |E) = min{ MB(H1|E), MB(H2|E) } 

(similarly for MD) 

 

MB(H1 OR H2 |E) = max{ MB(H1|E), MB(H2|E) } 

(similarly for MD) 

 

MB(NOT H|E) = 1 - MB(H|E) 

(similarly for MD) 
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CF: IF-THEN inference rules 

How do we calculate CF for logical IF-THEN rules? 

rule(R): IF “E” THEN “H” with certainty CF(R) 

 

 Case: CF(H)>0,CF(R)>0 then: 

CF(H|E) = CF(H) + CF(R)*(1-CF(H)) 

 

 Case: CF(H)<0,CF(R)<0 then: 

CF(H|E) = CF(H) + CF(R)*(1-CF(H)) 

 

 Case: CF(H)*CF(R)<0 (i.e. different signs) then: 

CF(H|E) = (CF(H)+CF(R)) / (1-min{|CF(H)|,|CF(R)|}) 

 



P.C. – Readings 

 S. J. Russell, P. Norvig, “Artificial Intelligence: A 

Modern Approach”, 2nd/Ed, Prentice Hall, 2002. 

[see: ch.19] 
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