Knowledge Representation and Reasoning

Propositional Calculus and Resolution

Harris Georgiou (MSc,PhD) Lecture 1

Propositional Calculus

- What is Propositional Calculus (P.C.)?
- Elements of P.C. Formal Language
- Reasoning: Proofs and Entailments
- Clauses and Resolution
- Resolution as Inference Rule
- Algorithms and Complexity

Elements of P.C. language:

- Atoms: P, R, Q, A2, ...
- Connectives: \wedge , \vee , \supset , \neg (AND, OR, IMPLIES, NOT)
- Well-formed formulas (**wff**) P , $R \wedge A1$, $P1 \supset \neg B)$, ...

The Propositional Truth Table:

Note: Semantics of "implies" (P1 \supset P2) is equivalent to (\neg P1 \vee P2)

Rules of Inference:

- \bullet {P1, P2} \rightarrow P1 \land P2
- \bullet {P1} \rightarrow P1 \vee (any)
- \bullet {P1, (P1 \supset P2)} \rightarrow P2 *"modus ponens"*

 $\bullet \leftarrow \neg P1 \rightarrow P1$

...

Proofs:

- $D =$ sequence of wff (prior knowledge)
- \bullet E = "theorem", a wff to be proven
- Proof: D → E (**deduction** rule)
- Example: $D = {P, R, P \supset Q}$, $E = {Q \wedge R}$ $D = \{P, R, P \supset Q\} \rightarrow \{P, P \supset Q, Q, R, Q \wedge R\} \rightarrow \{Q \wedge R\} = E$

Entailment:

"Discover" wff that hold true given D

Equivalence of wff:

- Produce the same outcome in all cases
- Formal definition:

 $P1 = P2$: (P1 $\supset P2$) \wedge (P2 \supset P1)

Soundness:

• If any P1 that is implied by D and rules R can be "discovered" by entailement

Completeness:

• If any P1 that is implied by D and rules R can be "proven" by a proof

- The PSAT (Propositional Satisfiability) Problem: find a model D that implies a given formula P1
- Common situation in circuit design, path planning, etc.
- Usual form: **CNF – Conjunctive Normal Form**

 $8 - 16$

Resolution in P.C.

- Resolution: use deduction rules to assert or discard the validity of a Clause.
- Clause: any formatted wff that is used in a Resolution scheme.
- Resolution on Clauses:
	- Follow **3 simple rules** for converting any wff into a clause in CNF that can be resolved

 $10 - 16$

Resolution in P.C.

- Converting a wff to a clause (CNF): $\neg(P \supset Q) \vee (R \supset P)$
	- 1. Eliminate implication signs (\supset) by using the equivalent form using $(-\vee)$:

 $\neg(\neg P\vee Q) \vee (\neg R\vee P)$

- 2. Reduce the (\neg) signs using De Morgan's laws: $(P \wedge \neg Q) \vee (\neg R \vee P)$
- 3. Convert to CNF, i.e. place (\wedge) outside parentheses:

 $(P\vee\neg R\vee P) \wedge (\neg Q\vee\neg R\vee P) \equiv \{(P\vee\neg R)$, $(\neg Q\vee\neg R\vee P)\}$

 $11 - 16$

Resolution in P.C.

Resolution as Inference Rule:

- Resolution is "sound" BUT not "complete", i.e. not all logical expressions can be entailed.
- Instead, formulate the negation of the clause to be entailed and then investigate if this new clause can be proven within the current "state of world".
- Resolution Refutation: proof of the negation (non-empty result) invalidates the original clause, otherwise the original clause is asserted as true.
- Note: Resolution with CNF is faster, since it can be finalized when one term gets invalidated (false).

P.C. Resolution Strategies

Problem: In what **order** should the resolutions be performed for optimal results?

- **Breadth-first**: expand all nodes in same level
- **Depth-first**: expand each node to the end
- **Unit-preference**: expand "small" nodes first
- Horn clauses: contain at most one positive literal \Rightarrow limits the complexity of deduction search to linear times.

Exercices – Learning Objectives

- Learn to describe a real-world problem with a set of Rules and desired Functionality
- **Translate specifications into Predicates**
- Translate Predicates into Truth Tables
- Bottom-Up approach: implement Truth Tables using Boolean expressions
- Top-Down approach: implement Predicates (CNF) as Boolean expressions

Exercise #1: 3x8 multiplexer

 Design a Boolean implementation of a 3x8 multiplexer chip with functionality as described in the following Truth Table:

Exercise #2: Simple ABS controller

- Design a Boolean implementation of a simplified anti-blocking system (ABS) for car brakes, according to the following logical functionality:
- Car brakes work in two modes: ABS "ON" and ABS "OFF"
- ABS is activated when brake pedal is pressed and wheel(s) is sliding on the road, instead of rolling.
- ABS controller should be activated for opposing pair(s) of wheels, i.e. for both wheels on the same axis (front pair, rear pair or all four wheels)
- Hint:
	- Begin by first formulating ABS functionality for each wheel using a predicate expression like:

ABS(Wheel FR, "ON") = BRAKE(Wheel FR, "ON") \land \lnot SLIDING(Wheel_FR)

 $16 - 16$

P.C. – Readings

- Nils J. Nilsson, "Artificial Intelligence A New Synthesis", Morgan Kaufmann Publishers (1998). [see: ch.13 & ch.14]
- S. J. Russell, P. Norvig, "Artificial Intelligence: A Modern Approach", 2nd/Ed, Prentice Hall, 2002.