СИНТЕЗ НОВЫХ ДЕФОЛИАНТНЫХ ВЕЩЕСТВ ХН-20, ХН-21.

Хамидулло И.Нурбоев к.х.н., доцент, Н.К. Муртазаева ассистент кафедры Самаркандский Государственный медицинский университет, кафедра биологическая химия г.Самарканд, nurboevxamidullo66@gmail.com

Аннотация: Рассматриваются фунгицидная и бактериологическая свойства производных пиримидинового ряда. Показана эффективность их применения как против гоммоза, так и корневой гнили хлопчатника **Ключевые слова:** 2-оксо-3-н-бутил- 6-метилпиримидон-4, 2- амино -3-нгептил-6-метилпиримидинон-4, 2-н-нонилтио-6-фенилпиримидинон-4.

Производные пиримидина представляют собой как практический, так и теоретический интерес. Пиримидиновые основания играют огромную роль в жизненных процессах. Они входят в состав нуклеиновых кислот, витаминов, физиологически активных веществ, алкалоидов и широко распространены в природе. Соединения пиримидинового ряда являются одними из наиболее важных гетероциклических соединений: на их основе получают лекарственные препараты, которые с высокой эффективностью используют в медицине и фармакологии. Производные пиримидина также используются в качестве гербицидов, фунгицидов, красителей, ускорителей, вулканизации, стабилизаторов, тканей и т.д.

Пиримидиновые соединения были переданы на испытание в УЗНИИЗР и в лабораторию фитотоксикологии ИХРВ АНРУз в качестве фунгицидов, бактерицидов, дефолиантов. Испытание препаратов проводили против вертицеллёзного, фузариозного увядания, корневой гнили и гоммоза хлопчатника.

Анализы показали, что среди 24 проверенных соединений самыми эффективными оказались препараты условно названные ХН-7, ХН-8, ХН-13, XH-14, против Fusarium oxysporum и Vertecilium dahlia, а препарат XH-7, XH-8, XH-21, против Xantomanas malvacearum. Вещество XH-7 подавляет Vert.dahlia на 75%, Fus.oxysporum на 82 %, Rhiz.Solani на 88 % Xant.malvcearum на 90%, а XH-8 на 92,75 %, 98 %, 92 % соответственно. Соединения ХН-13, ХН-14 оказывают указанный эффект против первых трёх возбудителей от 76 % до 92 %. Особый интерес среди испытанных соединений представляют препараты ХН-20 и ХН-21. Они показали слабую фунгицидную активность против Fusarium Oxysporium, но они были очень эффективными и против Vert.dahlia, Rhiz.solani, Xant.malv (75-95 Полученные результаты первичных испытаний обнадеживающими. Они были испытаны в полевых условиях, экспериментальной базе УзНИИЗР против гоммоза и корневой гнили хлопчатника. Полученные опытныеданные приведены в таблице-1.

таблице-1 Фунгицидная и бактерицидная активности производные пиримидинонов-4 (30 мг/л)

Шифр	Название вещества	Fusarium ox- ysporium	Vert. dahlia	Rhizactonia Solani	Xantomanas malvacerarum
1	2	3	4	5	6
XH-1	2-оксо-3-н-бутил-6-	41	48	53	29
	метилпиримидинон-4				
XH-2	2-оксо-3-н-пентил-6-	32	40	47	38
	метилпиримидинон-4				
XH-3	2-оксо-3-н-гексил-6-	25	55	62	23
3711 4	метилпиримидинон-4	22	27	4.1	16
XH-4	2-оксо-3-н-гептил-6-	33	37	41	46
XH-5	метилпиримидинон-4 2-оксо-3-н-октил-6-	42	53	59	32
АП-Э		42	33	39	32
XH-6	метилпиримидинон-4 2-оксо-3-н-нонил-6-	50	32	45	48
AII-0	метилпиримидинон-4	30	32	73	70
XH-7	2-амино-3-н-бутил-6-	82	75	88	90
2111 /	метилпиримидинон-4	02	7.5		
XH-8	2-амино-3-н-пентил-6-	75	92	98	92
	метилпиримидинон-4	, -			, _
XH-9	2-амино-3-н-гексил-6-	39	41	52	26
	метил-пиримидинон-4				
XH-10	2-амино-3-н-гептил-6-	27	38	59	33
	метилпиримидинон-4				
XH-11	2-амино-3-н-октил-6-	38	23	32	45
	метилпиримидинон-4				
XH-12	2-амино-3-н-ноил-6-	51	36	41	24
X/II 10	метилпиримидинон-4	7.6	0.0	0.0	12
XH-13	2-н-бутилтио	76	88	80	43
VII 14	6-метилпиримидон-4	0.4	02	0.1	50
XH-14	2-н-пенилтио	84	92	81	59
XH-15	6-метилпиримидион-4 2-н-гексилтио	38	52	71	48
A11-13	6-метилпиримидинон4	36	32	/ 1	40
XH-16	2-н-гептилтио	33	47	62	60
711110	6-метил-пиримидон-4		1,	02	
XH-17	2-н-октилтио	48	42	66	57
	6-метилпиримидон-4				- ,
XH-18	2-н-нонтилтио	36	53	60	64
	6-метилпиримидон-4				
XH-19	2-н-бутилтио-6-	42	65	82	76
	фенилпиримидинон-4				
XH-20	2-н-пентилтио-6-	35	80	90	96
	фенилпиримидинон-4				
XH 21	2-н-гексилтио-6-	43	75	95	100
	фенилпиримидинон-4				

XH-22	2-н-гептилтио-6-	51	65	72	65
	фенилпиримидинон-4				
XH-23	2-н-октилтио-6-	42	72	83	76
	фенилпиримидинон-4				
XH-24	2-н-нонилтио-6-	49	80	75	62
	фенилпиримидинон-4				

^{*}ХН-Хамидулло Нурбоев

Как видно из приведенных данных, эти препараты в дозе 500 г/100 кг семян хлопчатника оказывают хороший эффект как против гоммоза, так и корневой гнили хлопчатника. Препараты также увеличивают всхожесть семян хлопчатника и дают прибавку урожая хлопка-сырца. По своей эффективности превосходят даже эталон «Никамизалон», однако по своей биологической активности немного уступают ему. Препарат XH-21 превосходит по активности Никамизалон против корневой гнили хлопчатника. Отдельные представители препаратов были испытаны на модельных растениях: на средневолокнистом хлопчатнике сорта Наманган-77. Обработка проведена при раскрытии 60 % коробочек в среднем на кусте, при концентрации 0,3 % по 50 мл раствора на три растения хлопчатника. Опытным путем установлено, что из испытанных препаратов значительную дефолирующую активность показали 2-нонил-тио – 6-фенилпиримидинон-4 и 2-пентил-тио-6-метил-пиримидинон-4. Листья, на кустах хлопчатника были полусухие, от красноватого до бурого оттенков. Ожогов листьев и растений не наблюдалось. Количество опавших листьев на 14-й день после обработки составляло 55%, при опадании в контроле -10.1%.

Заключение: Мы рассмотривали и проанализировам фунтицидная и бактериологическая свойства производных пиримидинового ряда. Показано, что эффективность их применения как против гоммоза, так и корнивой гнили хлопчатника.

Литература:

- 1. Nurbaev, Kh. I., Oripov, E. O., Abdullaev, N. D., & Shakhidoyatov, Kh. M. (1997). Alkylation of 2-oxothioxo-primidinones-4. Chemistry of nature. conn., 35-36.
- 2. Nurboev, Kh. I., & Jalilov, M. U. PYRIMIDINE DRUGS AND THEIR APPLICATION IN MEDICINE.
- 3. Nurbaev, Kh. I., & Murtazaeva, N. K. (2022). Study of the Alkylation Reaction of 2-Thioxo6-Phenylpyrimidin-4-One with Higher Alkyl Halides. Central Asian Journal of Medical and Natural Science, 3(2), 443-447. https://doi.org/10.17605/cajmns.v3i2.692
- 4. Nurboev, Kh. I. (2023). Alkylation Reaction of Pyrimidine Ring With Various Alkyl Halides. AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI, 2(5), 45–49. Retrieved from