Vector competence : Efficiency parameters :

Data

M<-subset(data_full,tissu=="z_midguts")
X<-subset(data_full,tissu=="thorax")
S<-subset(data_full,tissu=="saliva")

Efficiency :

##All tissues together

glm_all<-glmmTMB(results~lineage*bloodmeal_titer*tissu*wing_size+(1|replicate),family="binomial",data=data_full,na.action = na.omit)
car::Anova(glm_all,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                                          Chisq Df Pr(>Chisq)
## (Intercept)                             0.0645  1     0.7995
## lineage                                 0.0001  1     0.9919
## bloodmeal_titer                         1.6801  1     0.1949
## tissu                                   0.0498  2     0.9754
## wing_size                               0.0253  1     0.8736
## lineage:bloodmeal_titer                 1.5139  1     0.2185
## lineage:tissu                           0.1067  2     0.9481
## bloodmeal_titer:tissu                   0.2202  2     0.8957
## lineage:wing_size                       0.0132  1     0.9085
## bloodmeal_titer:wing_size               1.2072  1     0.2719
## tissu:wing_size                         0.0686  2     0.9663
## lineage:bloodmeal_titer:tissu           0.2462  2     0.8842
## lineage:bloodmeal_titer:wing_size       1.6844  1     0.1943
## lineage:tissu:wing_size                 0.1054  2     0.9487
## bloodmeal_titer:tissu:wing_size         0.1445  2     0.9303
## lineage:bloodmeal_titer:tissu:wing_size 0.3576  2     0.8363
glm_all1<-glmmTMB(results~(lineage+bloodmeal_titer+tissu+wing_size)^3+(1|replicate),family="binomial",data=data_full,na.action = na.omit)
anova(glm_all1,glm_all)
## Data: data_full
## Models:
## glm_all1: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^3 + , zi=~0, disp=~1
## glm_all1:     (1 | replicate), zi=~0, disp=~1
## glm_all: results ~ lineage * bloodmeal_titer * tissu * wing_size + (1 | , zi=~0, disp=~1
## glm_all:     replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_all1 23 699.96 806.44 -326.98   653.96                         
## glm_all  25 703.60 819.33 -326.80   653.60 0.3674      2     0.8322
car::Anova(glm_all,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                                          Chisq Df Pr(>Chisq)
## (Intercept)                             0.0645  1     0.7995
## lineage                                 0.0001  1     0.9919
## bloodmeal_titer                         1.6801  1     0.1949
## tissu                                   0.0498  2     0.9754
## wing_size                               0.0253  1     0.8736
## lineage:bloodmeal_titer                 1.5139  1     0.2185
## lineage:tissu                           0.1067  2     0.9481
## bloodmeal_titer:tissu                   0.2202  2     0.8957
## lineage:wing_size                       0.0132  1     0.9085
## bloodmeal_titer:wing_size               1.2072  1     0.2719
## tissu:wing_size                         0.0686  2     0.9663
## lineage:bloodmeal_titer:tissu           0.2462  2     0.8842
## lineage:bloodmeal_titer:wing_size       1.6844  1     0.1943
## lineage:tissu:wing_size                 0.1054  2     0.9487
## bloodmeal_titer:tissu:wing_size         0.1445  2     0.9303
## lineage:bloodmeal_titer:tissu:wing_size 0.3576  2     0.8363
glm_all2<-glmmTMB(results~(lineage+bloodmeal_titer+tissu+wing_size)^2+(lineage:tissu:wing_size+lineage:bloodmeal_titer:wing_size+lineage:bloodmeal_titer:tissu)+(1|replicate),family="binomial",data=data_full,na.action = na.omit)
anova(glm_all1,glm_all2)
## Data: data_full
## Models:
## glm_all2: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^2 + , zi=~0, disp=~1
## glm_all2:     (lineage:tissu:wing_size + lineage:bloodmeal_titer:wing_size + , zi=~0, disp=~1
## glm_all2:         lineage:bloodmeal_titer:tissu) + (1 | replicate), zi=~0, disp=~1
## glm_all1: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^3 + , zi=~0, disp=~1
## glm_all1:     (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_all2 21 696.12 793.34 -327.06   654.12                         
## glm_all1 23 699.96 806.44 -326.98   653.96 0.1582      2     0.9239
car::Anova(glm_all2,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                                    Chisq Df Pr(>Chisq)  
## (Intercept)                       0.1175  1    0.73181  
## lineage                           0.0415  1    0.83852  
## bloodmeal_titer                   6.1060  1    0.01347 *
## tissu                             0.0637  2    0.96866  
## wing_size                         0.0128  1    0.90980  
## lineage:bloodmeal_titer           4.4337  1    0.03524 *
## lineage:tissu                     0.0960  2    0.95312  
## lineage:wing_size                 0.0084  1    0.92702  
## bloodmeal_titer:tissu             2.0740  2    0.35452  
## bloodmeal_titer:wing_size         4.6372  1    0.03129 *
## tissu:wing_size                   0.0198  2    0.99014  
## lineage:tissu:wing_size           0.0749  2    0.96326  
## lineage:bloodmeal_titer:wing_size 5.6772  1    0.01719 *
## lineage:bloodmeal_titer:tissu     3.0493  2    0.21769  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glm_all3<-glmmTMB(results~(lineage+bloodmeal_titer+tissu+wing_size)^2+(lineage:tissu:wing_size+lineage:bloodmeal_titer:wing_size)+(1|replicate),family="binomial",data=data_full,na.action = na.omit)
anova(glm_all3,glm_all2)
## Data: data_full
## Models:
## glm_all3: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^2 + , zi=~0, disp=~1
## glm_all3:     (lineage:tissu:wing_size + lineage:bloodmeal_titer:wing_size) + , zi=~0, disp=~1
## glm_all3:     (1 | replicate), zi=~0, disp=~1
## glm_all2: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^2 + , zi=~0, disp=~1
## glm_all2:     (lineage:tissu:wing_size + lineage:bloodmeal_titer:wing_size + , zi=~0, disp=~1
## glm_all2:         lineage:bloodmeal_titer:tissu) + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)
## glm_all3 19 695.27 783.23 -328.64   657.27                        
## glm_all2 21 696.12 793.34 -327.06   654.12  3.15      2      0.207
car::Anova(glm_all3,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                                     Chisq Df Pr(>Chisq)   
## (Intercept)                        0.2195  1   0.639386   
## lineage                            0.0638  1   0.800534   
## bloodmeal_titer                    7.6202  1   0.005772 **
## tissu                              0.1392  2   0.932761   
## wing_size                          0.0021  1   0.963066   
## lineage:bloodmeal_titer            6.1602  1   0.013065 * 
## lineage:tissu                      0.1298  2   0.937176   
## lineage:wing_size                  0.0432  1   0.835324   
## bloodmeal_titer:tissu             10.4878  2   0.005280 **
## bloodmeal_titer:wing_size          5.2966  1   0.021367 * 
## tissu:wing_size                    0.0035  2   0.998232   
## lineage:tissu:wing_size            0.1143  2   0.944452   
## lineage:bloodmeal_titer:wing_size  6.0271  1   0.014088 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glm_all4<-glmmTMB(results~(lineage+bloodmeal_titer+tissu+wing_size)^2+(lineage:bloodmeal_titer:wing_size)+(1|replicate),family="binomial",data=data_full,na.action = na.omit)
anova(glm_all4,glm_all3)
## Data: data_full
## Models:
## glm_all4: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^2 + , zi=~0, disp=~1
## glm_all4:     (lineage:bloodmeal_titer:wing_size) + (1 | replicate), zi=~0, disp=~1
## glm_all3: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^2 + , zi=~0, disp=~1
## glm_all3:     (lineage:tissu:wing_size + lineage:bloodmeal_titer:wing_size) + , zi=~0, disp=~1
## glm_all3:     (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_all4 17 691.39 770.08 -328.69   657.39                         
## glm_all3 19 695.27 783.23 -328.64   657.27 0.1143      2     0.9444
car::Anova(glm_all4,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                                     Chisq Df Pr(>Chisq)   
## (Intercept)                        0.2069  1   0.649175   
## lineage                            0.0654  1   0.798217   
## bloodmeal_titer                    7.6073  1   0.005813 **
## tissu                              0.1913  2   0.908760   
## wing_size                          0.0016  1   0.968380   
## lineage:bloodmeal_titer            6.2238  1   0.012604 * 
## lineage:tissu                      0.4666  2   0.791926   
## lineage:wing_size                  0.0236  1   0.878020   
## bloodmeal_titer:tissu             10.5376  2   0.005150 **
## bloodmeal_titer:wing_size          5.2856  1   0.021502 * 
## tissu:wing_size                    0.0487  2   0.975920   
## lineage:bloodmeal_titer:wing_size  6.0910  1   0.013587 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glm_all4a<-glmmTMB(results~(lineage+bloodmeal_titer+tissu+wing_size)^2+(lineage:bloodmeal_titer:wing_size)+(replicate),family="binomial",data=data_full,na.action = na.omit)
## dropping columns from rank-deficient conditional model: replicateF
anova(glm_all4,glm_all4a)
## Data: data_full
## Models:
## glm_all4: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^2 + , zi=~0, disp=~1
## glm_all4:     (lineage:bloodmeal_titer:wing_size) + (1 | replicate), zi=~0, disp=~1
## glm_all4a: results ~ (lineage + bloodmeal_titer + tissu + wing_size)^2 + , zi=~0, disp=~1
## glm_all4a:     (lineage:bloodmeal_titer:wing_size) + (replicate), zi=~0, disp=~1
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## glm_all4  17 691.39 770.08 -328.69   657.39                             
## glm_all4a 20 668.80 761.39 -314.40   628.80 28.582      3  2.741e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Plot by replicate

summarySE(data_full,measurevar="results",groupvars=c("lineage","bloodmeal_titer","tissu","replicate"),na.rm = TRUE)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## The following objects are masked from 'package:plotly':
## 
##     arrange, mutate, rename, summarise
## The following objects are masked from 'package:rstatix':
## 
##     desc, mutate
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following object is masked from 'package:purrr':
## 
##     compact
## The following object is masked from 'package:ggpubr':
## 
##     mutate
##    lineage bloodmeal_titer     tissu replicate  N    results        sd
## 1      EU2            high    saliva         D  8 0.25000000 0.4629100
## 2      EU2            high    saliva         E 38 0.10526316 0.3110117
## 3      EU2            high    saliva         F 26 0.07692308 0.2717465
## 4      EU2            high    thorax         D 10 0.50000000 0.5270463
## 5      EU2            high    thorax         E 38 0.36842105 0.4888515
## 6      EU2            high    thorax         F 26 0.42307692 0.5038315
## 7      EU2            high z_midguts         D 11 0.45454545 0.5222330
## 8      EU2            high z_midguts         E 39 0.41025641 0.4983102
## 9      EU2            high z_midguts         F 26 0.50000000 0.5099020
## 10     EU2             low    saliva         A 18 0.00000000 0.0000000
## 11     EU2             low    saliva         B 21 0.00000000 0.0000000
## 12     EU2             low    saliva         C 40 0.22500000 0.4229021
## 13     EU2             low    thorax         A 18 0.00000000 0.0000000
## 14     EU2             low    thorax         B 21 0.00000000 0.0000000
## 15     EU2             low    thorax         C 44 0.72727273 0.4505106
## 16     EU2             low z_midguts         A 18 0.11111111 0.3233808
## 17     EU2             low z_midguts         B 21 0.00000000 0.0000000
## 18     EU2             low z_midguts         C 45 0.88888889 0.3178209
## 19     EU3            high    saliva         D 16 0.12500000 0.3415650
## 20     EU3            high    saliva         E 30 0.16666667 0.3790490
## 21     EU3            high    saliva         F 21 0.47619048 0.5117663
## 22     EU3            high    thorax         D 19 0.26315789 0.4524139
## 23     EU3            high    thorax         E 30 0.46666667 0.5074163
## 24     EU3            high    thorax         F 21 0.80952381 0.4023739
## 25     EU3            high z_midguts         D 19 0.52631579 0.5129892
## 26     EU3            high z_midguts         E 30 0.50000000 0.5085476
## 27     EU3            high z_midguts         F 21 0.80952381 0.4023739
## 28     EU3             low    saliva         A 39 0.02564103 0.1601282
## 29     EU3             low    saliva         B 43 0.00000000 0.0000000
## 30     EU3             low    saliva         C 26 0.07692308 0.2717465
## 31     EU3             low    thorax         A 38 0.18421053 0.3928595
## 32     EU3             low    thorax         B 43 0.02325581 0.1524986
## 33     EU3             low    thorax         C 28 0.71428571 0.4600437
## 34     EU3             low z_midguts         A 40 0.32500000 0.4743416
## 35     EU3             low z_midguts         B 39 0.07692308 0.2699528
## 36     EU3             low z_midguts         C 28 0.92857143 0.2622653
##            se         ci
## 1  0.16366342 0.38700249
## 2  0.05045277 0.10222702
## 3  0.05329387 0.10976078
## 4  0.16666667 0.37702619
## 5  0.07930219 0.16068150
## 6  0.09880948 0.20350194
## 7  0.15745916 0.35084088
## 8  0.07979350 0.16153349
## 9  0.10000000 0.20595386
## 10 0.00000000 0.00000000
## 11 0.00000000 0.00000000
## 12 0.06686669 0.13525064
## 13 0.00000000 0.00000000
## 14 0.00000000 0.00000000
## 15 0.06791703 0.13696775
## 16 0.07622159 0.16081351
## 17 0.00000000 0.00000000
## 18 0.04737794 0.09548396
## 19 0.08539126 0.18200715
## 20 0.06920457 0.14153923
## 21 0.11167657 0.23295323
## 22 0.10379087 0.21805653
## 23 0.09264111 0.18947235
## 24 0.08780519 0.18315841
## 25 0.11768779 0.24725287
## 26 0.09284767 0.18989481
## 27 0.08780519 0.18315841
## 28 0.02564103 0.05190754
## 29 0.00000000 0.00000000
## 30 0.05329387 0.10976078
## 31 0.06373022 0.12912969
## 32 0.02325581 0.04693213
## 33 0.08694009 0.17838633
## 34 0.07500000 0.15170182
## 35 0.04322704 0.08750856
## 36 0.04956348 0.10169585
summarySE(data_full,measurevar="results",groupvars=c("lineage","bloodmeal_titer","tissu"),na.rm = TRUE)
##    lineage bloodmeal_titer     tissu   N    results        sd         se
## 1      EU2            high    saliva  72 0.11111111 0.3164751 0.03729695
## 2      EU2            high    thorax  74 0.40540541 0.4943217 0.05746373
## 3      EU2            high z_midguts  76 0.44736842 0.5005260 0.05741427
## 4      EU2             low    saliva  79 0.11392405 0.3197492 0.03597459
## 5      EU2             low    thorax  83 0.38554217 0.4896820 0.05374958
## 6      EU2             low z_midguts  84 0.50000000 0.5030030 0.05488213
## 7      EU3            high    saliva  67 0.25373134 0.4384298 0.05356273
## 8      EU3            high    thorax  70 0.51428571 0.5034046 0.06016835
## 9      EU3            high z_midguts  70 0.60000000 0.4934352 0.05897678
## 10     EU3             low    saliva 108 0.02777778 0.1651017 0.01588692
## 11     EU3             low    thorax 109 0.25688073 0.4389311 0.04204198
## 12     EU3             low z_midguts 107 0.39252336 0.4906101 0.04742907
##            ci
## 1  0.07436800
## 2  0.11452505
## 3  0.11437510
## 4  0.07161991
## 5  0.10692503
## 6  0.10915835
## 7  0.10694144
## 8  0.12003258
## 9  0.11765546
## 10 0.03149396
## 11 0.08333450
## 12 0.09403275
est <- read_excel("data_full_15042024.xlsx", sheet = "PrevEstim", 
                                         col_types = c("text", "text", 
                                                       "text", "text", "numeric", 
                                                       "numeric", "numeric","numeric", "numeric", "numeric", "numeric"))

png("prev_300dpiTot.png", units = 'in', width = 12, height = 8, res = 300) # res = dpi (nombre pixels par image)
fig2<-ggplot(est) +
  aes(
    x = factor(bloodmeal_titer,levels = c('low','high')),
    y = results,
    colour = lineage,
    size = N
  ) +
  geom_point(aes(fill=lineage),shape = 21, color="black",position = position_jitterdodge(jitter.width=0.2,dodge.width=.75)) +
  scale_color_brewer(palette = "Dark2", direction = 1) +
  labs(y = "Prevalence",
       x = "Blodmeal titer") +
  facet_wrap(. ~ factor (tissu,levels=c('z_midguts','thorax','saliva')))+
theme_classic() +
  scale_y_continuous(labels = scales::percent, limits=c(0,1))+
  geom_jitter(data = est, aes(x = bloodmeal_titer, y = prev,fill = lineage), size = 15,position = position_dodge(.75,preserve = 'total'),color="black",shape="_")
plot(fig2)
dev.off()
## quartz_off_screen 
##                 2
plot(fig2)

Midgut analysis :

# Maximum model :
glm_mid<-glmmTMB(results~lineage*bloodmeal_titer*wing_size+(1|replicate),family="binomial",data=M,na.action = na.omit)
summary(glm_mid)
##  Family: binomial  ( logit )
## Formula:          
## results ~ lineage * bloodmeal_titer * wing_size + (1 | replicate)
## Data: M
## 
##      AIC      BIC   logLik deviance df.resid 
##    297.7    330.2   -139.9    279.7      263 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 3.549    1.884   
## Number of obs: 272, groups:  replicate, 6
## 
## Conditional model:
##                                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)                              -0.16270    3.70932  -0.044    0.965
## lineageEU3                                1.70551    5.06378   0.337    0.736
## bloodmeal_titerlow                      -10.89853    8.28725  -1.315    0.188
## wing_size                                 0.00798   10.19341   0.001    0.999
## lineageEU3:bloodmeal_titerlow            15.77150   10.34135   1.525    0.127
## lineageEU3:wing_size                     -3.31276   14.62401  -0.226    0.821
## bloodmeal_titerlow:wing_size             27.45379   23.43399   1.172    0.241
## lineageEU3:bloodmeal_titerlow:wing_size -43.18206   29.80173  -1.449    0.147
car::Anova(glm_mid,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                                    Chisq Df Pr(>Chisq)
## (Intercept)                       0.0019  1     0.9650
## lineage                           0.1134  1     0.7363
## bloodmeal_titer                   1.7295  1     0.1885
## wing_size                         0.0000  1     0.9994
## lineage:bloodmeal_titer           2.3259  1     0.1272
## lineage:wing_size                 0.0513  1     0.8208
## bloodmeal_titer:wing_size         1.3725  1     0.2414
## lineage:bloodmeal_titer:wing_size 2.0995  1     0.1473
# Minimum model 
glm_mid2<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)^2+(1|replicate),family="binomial",data=M,na.action = na.omit)
summary(glm_mid2)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate)
## Data: M
## 
##      AIC      BIC   logLik deviance df.resid 
##    297.9    326.8   -141.0    281.9      264 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 3.294    1.815   
## Number of obs: 272, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -1.8376     3.5608  -0.516    0.606
## lineageEU3                      5.5022     4.3955   1.252    0.211
## bloodmeal_titerlow             -1.6512     5.1899  -0.318    0.750
## wing_size                       4.8227     9.7757   0.493    0.622
## lineageEU3:bloodmeal_titerlow   0.8531     0.7806   1.093    0.274
## lineageEU3:wing_size          -14.2994    12.6621  -1.129    0.259
## bloodmeal_titerlow:wing_size    0.8439    14.3087   0.059    0.953
anova(glm_mid2,glm_mid)
## Data: M
## Models:
## glm_mid2: results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate), zi=~0, disp=~1
## glm_mid: results ~ lineage * bloodmeal_titer * wing_size + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_mid2  8 297.92 326.76 -140.96   281.92                         
## glm_mid   9 297.75 330.20 -139.87   279.75 2.1694      1     0.1408
car::Anova(glm_mid2,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                            Chisq Df Pr(>Chisq)
## (Intercept)               0.2663  1     0.6058
## lineage                   1.5670  1     0.2106
## bloodmeal_titer           0.1012  1     0.7504
## wing_size                 0.2434  1     0.6218
## lineage:bloodmeal_titer   1.1943  1     0.2745
## lineage:wing_size         1.2753  1     0.2588
## bloodmeal_titer:wing_size 0.0035  1     0.9530
glm_mid3<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)+(lineage:wing_size+lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=M,na.action = na.omit)
anova(glm_mid2,glm_mid3)
## Data: M
## Models:
## glm_mid3: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size + , zi=~0, disp=~1
## glm_mid3:     lineage:bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
## glm_mid2: results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_mid3  7 295.92 321.16 -140.96   281.92                         
## glm_mid2  8 297.92 326.76 -140.96   281.92 0.0035      1      0.953
summary(glm_mid3)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size +  
##     lineage:bloodmeal_titer) + (1 | replicate)
## Data: M
## 
##      AIC      BIC   logLik deviance df.resid 
##    295.9    321.2   -141.0    281.9      265 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 3.297    1.816   
## Number of obs: 272, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -1.9055     3.3710  -0.565    0.572
## lineageEU3                      5.4465     4.2943   1.268    0.205
## bloodmeal_titerlow             -1.3600     1.6018  -0.849    0.396
## wing_size                       5.0189     9.1962   0.546    0.585
## lineageEU3:wing_size          -14.1378    12.3673  -1.143    0.253
## lineageEU3:bloodmeal_titerlow   0.8508     0.7797   1.091    0.275
car::Anova(glm_mid3,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)
## (Intercept)             0.3195  1     0.5719
## lineage                 1.6086  1     0.2047
## bloodmeal_titer         0.7208  1     0.3959
## wing_size               0.2978  1     0.5852
## lineage:wing_size       1.3068  1     0.2530
## lineage:bloodmeal_titer 1.1908  1     0.2752
glm_mid4<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)+(lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=M,na.action = na.omit)
anova(glm_mid4,glm_mid3)
## Data: M
## Models:
## glm_mid4: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:bloodmeal_titer) + , zi=~0, disp=~1
## glm_mid4:     (1 | replicate), zi=~0, disp=~1
## glm_mid3: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size + , zi=~0, disp=~1
## glm_mid3:     lineage:bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_mid4  6 295.27 316.90 -141.63   283.27                         
## glm_mid3  7 295.92 321.16 -140.96   281.92 1.3468      1     0.2458
summary(glm_mid4)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:bloodmeal_titer) +  
##     (1 | replicate)
## Data: M
## 
##      AIC      BIC   logLik deviance df.resid 
##    295.3    316.9   -141.6    283.3      266 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 3.291    1.814   
## Number of obs: 272, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                     0.7607     2.3006   0.331    0.741
## lineageEU3                      0.5608     0.3758   1.492    0.136
## bloodmeal_titerlow             -1.3621     1.5993  -0.852    0.394
## wing_size                      -2.6527     5.8661  -0.452    0.651
## lineageEU3:bloodmeal_titerlow   0.8759     0.7779   1.126    0.260
car::Anova(glm_mid4,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)
## (Intercept)             0.1093  1     0.7409
## lineage                 2.2276  1     0.1356
## bloodmeal_titer         0.7254  1     0.3944
## wing_size               0.2045  1     0.6511
## lineage:bloodmeal_titer 1.2677  1     0.2602
glm_mid5<-glmmTMB(results~(lineage+bloodmeal_titer)+(lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=M,na.action = na.omit)
summary(glm_mid5)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer) + (lineage:bloodmeal_titer) +  
##     (1 | replicate)
## Data: M
## 
##      AIC      BIC   logLik deviance df.resid 
##    360.8    379.9   -175.4    350.8      332 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.642    1.625   
## Number of obs: 337, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                    -0.2106     0.9713  -0.217   0.8284  
## lineageEU3                      0.6697     0.3493   1.917   0.0552 .
## bloodmeal_titerlow             -0.9218     1.4116  -0.653   0.5137  
## lineageEU3:bloodmeal_titerlow   0.2850     0.6381   0.447   0.6551  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_mid5,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)  
## (Intercept)             0.0470  1    0.82836  
## lineage                 3.6764  1    0.05519 .
## bloodmeal_titer         0.4265  1    0.51373  
## lineage:bloodmeal_titer 0.1995  1    0.65512  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glm_mid6<-glmmTMB(results~(lineage+bloodmeal_titer)+(1|replicate),family="binomial",data=M,na.action = na.omit)
anova(glm_mid6,glm_mid5)
## Data: M
## Models:
## glm_mid6: results ~ (lineage + bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
## glm_mid5: results ~ (lineage + bloodmeal_titer) + (lineage:bloodmeal_titer) + , zi=~0, disp=~1
## glm_mid5:     (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_mid6  4 358.98 374.26 -175.49   350.98                         
## glm_mid5  5 360.78 379.88 -175.39   350.78 0.2038      1     0.6517
summary(glm_mid6)
##  Family: binomial  ( logit )
## Formula:          results ~ (lineage + bloodmeal_titer) + (1 | replicate)
## Data: M
## 
##      AIC      BIC   logLik deviance df.resid 
##    359.0    374.3   -175.5    351.0      333 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.527    1.59    
## Number of obs: 337, groups:  replicate, 6
## 
## Conditional model:
##                    Estimate Std. Error z value Pr(>|z|)   
## (Intercept)         -0.2542     0.9466  -0.269  0.78826   
## lineageEU3           0.7580     0.2893   2.620  0.00879 **
## bloodmeal_titerlow  -0.7578     1.3339  -0.568  0.56996   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_mid6,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                  Chisq Df Pr(>Chisq)   
## (Intercept)     0.0721  1   0.788265   
## lineage         6.8642  1   0.008794 **
## bloodmeal_titer 0.3228  1   0.569958   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Minimum model
glm_mid7<-glmmTMB(results~(lineage)+(1|replicate),family="binomial",data=M,na.action = na.omit)
anova(glm_mid6,glm_mid7)
## Data: M
## Models:
## glm_mid7: results ~ (lineage) + (1 | replicate), zi=~0, disp=~1
## glm_mid6: results ~ (lineage + bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)
## glm_mid7  3 357.30 368.76 -175.65   351.30                        
## glm_mid6  4 358.98 374.26 -175.49   350.98 0.316      1      0.574
summary(glm_mid7)
##  Family: binomial  ( logit )
## Formula:          results ~ (lineage) + (1 | replicate)
## Data: M
## 
##      AIC      BIC   logLik deviance df.resid 
##    357.3    368.8   -175.6    351.3      334 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.663    1.632   
## Number of obs: 337, groups:  replicate, 6
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -0.6283     0.7018  -0.895  0.37063   
## lineageEU3    0.7569     0.2893   2.616  0.00889 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_mid7,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##              Chisq Df Pr(>Chisq)   
## (Intercept) 0.8016  1   0.370629   
## lineage     6.8452  1   0.008888 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model for calculating means (emmeans)
glm_mid5<-glmmTMB(results~(lineage+bloodmeal_titer)+(lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=M,na.action = na.omit)
car::Anova(glm_mid5,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)  
## (Intercept)             0.0470  1    0.82836  
## lineage                 3.6764  1    0.05519 .
## bloodmeal_titer         0.4265  1    0.51373  
## lineage:bloodmeal_titer 0.1995  1    0.65512  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(glm_mid5,pairwise~lineage|bloodmeal_titer,type="response",p.adjust.methods="bonf")  
## $emmeans
## bloodmeal_titer = high:
##  lineage  prob    SE  df asymp.LCL asymp.UCL
##  EU2     0.448 0.240 Inf    0.1077     0.845
##  EU3     0.613 0.231 Inf    0.1906     0.914
## 
## bloodmeal_titer = low:
##  lineage  prob    SE  df asymp.LCL asymp.UCL
##  EU2     0.244 0.189 Inf    0.0415     0.706
##  EU3     0.456 0.246 Inf    0.1070     0.854
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## bloodmeal_titer = high:
##  contrast  odds.ratio    SE  df null z.ratio p.value
##  EU2 / EU3      0.512 0.179 Inf    1  -1.917  0.0552
## 
## bloodmeal_titer = low:
##  contrast  odds.ratio    SE  df null z.ratio p.value
##  EU2 / EU3      0.385 0.206 Inf    1  -1.786  0.0740
## 
## Tests are performed on the log odds ratio scale
emmeans(glm_mid5,pairwise~bloodmeal_titer|lineage,type="response",p.adjust.methods="bonf")
## $emmeans
## lineage = EU2:
##  bloodmeal_titer  prob    SE  df asymp.LCL asymp.UCL
##  high            0.448 0.240 Inf    0.1077     0.845
##  low             0.244 0.189 Inf    0.0415     0.706
## 
## lineage = EU3:
##  bloodmeal_titer  prob    SE  df asymp.LCL asymp.UCL
##  high            0.613 0.231 Inf    0.1906     0.914
##  low             0.456 0.246 Inf    0.1070     0.854
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## lineage = EU2:
##  contrast   odds.ratio   SE  df null z.ratio p.value
##  high / low       2.51 3.55 Inf    1   0.653  0.5137
## 
## lineage = EU3:
##  contrast   odds.ratio   SE  df null z.ratio p.value
##  high / low       1.89 2.62 Inf    1   0.459  0.6465
## 
## Tests are performed on the log odds ratio scale

emmeans Extract data from model

glm_mid_data<-emmeans(glm_mid5,pairwise~bloodmeal_titer*lineage,type="response",p.adjust.methods="bonf")
ok_midgut<-summary(glm_mid_data$emmeans)
ok_midgut
##  bloodmeal_titer lineage  prob    SE  df asymp.LCL asymp.UCL
##  high            EU2     0.448 0.240 Inf    0.1077     0.845
##  low             EU2     0.244 0.189 Inf    0.0415     0.706
##  high            EU3     0.613 0.231 Inf    0.1906     0.914
##  low             EU3     0.456 0.246 Inf    0.1070     0.854
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale

Thorax analysis :

glm_tho<-glmmTMB(results~lineage*bloodmeal_titer*wing_size+(1|replicate),family="binomial",data=X,na.action = na.omit)
summary(glm_tho)
##  Family: binomial  ( logit )
## Formula:          
## results ~ lineage * bloodmeal_titer * wing_size + (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    295.6    328.1   -138.8    277.6      265 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.253    1.501   
## Number of obs: 274, groups:  replicate, 6
## 
## Conditional model:
##                                          Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                               0.45657    3.65433   0.125   0.9006  
## lineageEU3                               -0.04367    5.03249  -0.009   0.9931  
## bloodmeal_titerlow                      -13.14311    7.39725  -1.777   0.0756 .
## wing_size                                -2.55748   10.20553  -0.251   0.8021  
## lineageEU3:bloodmeal_titerlow            13.88269    9.82696   1.413   0.1577  
## lineageEU3:wing_size                      1.39973   14.52836   0.096   0.9232  
## bloodmeal_titerlow:wing_size             33.42946   20.87814   1.601   0.1093  
## lineageEU3:bloodmeal_titerlow:wing_size -39.38509   28.33260  -1.390   0.1645  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_tho,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                                    Chisq Df Pr(>Chisq)  
## (Intercept)                       0.0156  1    0.90057  
## lineage                           0.0001  1    0.99308  
## bloodmeal_titer                   3.1569  1    0.07561 .
## wing_size                         0.0628  1    0.80213  
## lineage:bloodmeal_titer           1.9958  1    0.15774  
## lineage:wing_size                 0.0093  1    0.92325  
## bloodmeal_titer:wing_size         2.5637  1    0.10934  
## lineage:bloodmeal_titer:wing_size 1.9324  1    0.16450  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glm_tho2<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)^2+(1|replicate),family="binomial",data=X,na.action = na.omit)
summary(glm_tho2)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    295.8    324.7   -139.9    279.8      266 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.169    1.473   
## Number of obs: 274, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -1.5631     3.4052  -0.459    0.646
## lineageEU3                      4.4413     3.9544   1.123    0.261
## bloodmeal_titerlow             -4.5652     4.1093  -1.111    0.267
## wing_size                       3.2439     9.4662   0.343    0.732
## lineageEU3:bloodmeal_titerlow   0.2442     0.6794   0.359    0.719
## lineageEU3:wing_size          -11.5773    11.3827  -1.017    0.309
## bloodmeal_titerlow:wing_size    8.8090    11.1790   0.788    0.431
anova(glm_tho2,glm_tho)
## Data: X
## Models:
## glm_tho2: results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate), zi=~0, disp=~1
## glm_tho: results ~ lineage * bloodmeal_titer * wing_size + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_tho2  8 295.82 324.73 -139.91   279.82                         
## glm_tho   9 295.58 328.10 -138.79   277.58 2.2441      1     0.1341
car::Anova(glm_tho2,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                            Chisq Df Pr(>Chisq)
## (Intercept)               0.2107  1     0.6462
## lineage                   1.2614  1     0.2614
## bloodmeal_titer           1.2342  1     0.2666
## wing_size                 0.1174  1     0.7318
## lineage:bloodmeal_titer   0.1292  1     0.7193
## lineage:wing_size         1.0345  1     0.3091
## bloodmeal_titer:wing_size 0.6209  1     0.4307
glm_tho3<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)+(lineage:wing_size+lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=X,na.action = na.omit)
anova(glm_tho2,glm_tho3)
## Data: X
## Models:
## glm_tho3: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size + , zi=~0, disp=~1
## glm_tho3:     lineage:bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
## glm_tho2: results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_tho3  7 294.40 319.69 -140.20   280.40                         
## glm_tho2  8 295.82 324.73 -139.91   279.82 0.5797      1     0.4464
summary(glm_tho3)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size +  
##     lineage:bloodmeal_titer) + (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    294.4    319.7   -140.2    280.4      267 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.147    1.465   
## Number of obs: 274, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -2.5075     3.1882  -0.786    0.432
## lineageEU3                      3.4906     4.0762   0.856    0.392
## bloodmeal_titerlow             -1.5085     1.3272  -1.137    0.256
## wing_size                       5.9738     8.8089   0.678    0.498
## lineageEU3:wing_size           -8.8110    11.7302  -0.751    0.453
## lineageEU3:bloodmeal_titerlow   0.2253     0.6777   0.332    0.740
car::Anova(glm_tho3,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)
## (Intercept)             0.6185  1     0.4316
## lineage                 0.7333  1     0.3918
## bloodmeal_titer         1.2918  1     0.2557
## wing_size               0.4599  1     0.4977
## lineage:wing_size       0.5642  1     0.4526
## lineage:bloodmeal_titer 0.1105  1     0.7395
glm_tho4<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)+(lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=X,na.action = na.omit)
anova(glm_tho4,glm_tho3)
## Data: X
## Models:
## glm_tho4: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:bloodmeal_titer) + , zi=~0, disp=~1
## glm_tho4:     (1 | replicate), zi=~0, disp=~1
## glm_tho3: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size + , zi=~0, disp=~1
## glm_tho3:     lineage:bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_tho4  6 293.02 314.70 -140.51   281.02                         
## glm_tho3  7 294.40 319.69 -140.20   280.40 0.6195      1     0.4312
summary(glm_tho4)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:bloodmeal_titer) +  
##     (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    293.0    314.7   -140.5    281.0      268 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.163    1.471   
## Number of obs: 274, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -0.6160     1.9000  -0.324    0.746
## lineageEU3                      0.4424     0.3756   1.178    0.239
## bloodmeal_titerlow             -1.5146     1.3306  -1.138    0.255
## wing_size                       0.5369     4.8442   0.111    0.912
## lineageEU3:bloodmeal_titerlow   0.2247     0.6768   0.332    0.740
car::Anova(glm_tho4,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)
## (Intercept)             0.1051  1     0.7458
## lineage                 1.3874  1     0.2388
## bloodmeal_titer         1.2957  1     0.2550
## wing_size               0.0123  1     0.9117
## lineage:bloodmeal_titer 0.1103  1     0.7399
glm_tho5<-glmmTMB(results~(lineage+bloodmeal_titer)+(lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=X,na.action = na.omit)
summary(glm_tho5)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer) + (lineage:bloodmeal_titer) +  
##     (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    359.9    379.0   -175.0    349.9      331 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.117    1.455   
## Number of obs: 336, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -0.4957     0.8801  -0.563    0.573
## lineageEU3                      0.5585     0.3538   1.579    0.114
## bloodmeal_titerlow             -1.3125     1.2884  -1.019    0.308
## lineageEU3:bloodmeal_titerlow  -0.1631     0.5752  -0.284    0.777
car::Anova(glm_tho5,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)
## (Intercept)             0.3173  1     0.5733
## lineage                 2.4923  1     0.1144
## bloodmeal_titer         1.0378  1     0.3083
## lineage:bloodmeal_titer 0.0804  1     0.7768
glm_tho6<-glmmTMB(results~(lineage+bloodmeal_titer)+(1|replicate),family="binomial",data=X,na.action = na.omit)
anova(glm_tho6,glm_tho5)
## Data: X
## Models:
## glm_tho6: results ~ (lineage + bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
## glm_tho5: results ~ (lineage + bloodmeal_titer) + (lineage:bloodmeal_titer) + , zi=~0, disp=~1
## glm_tho5:     (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)
## glm_tho6  4 358.01 373.28 -175.00   350.01                        
## glm_tho5  5 359.93 379.01 -174.97   349.93  0.08      1     0.7773
summary(glm_tho6)
##  Family: binomial  ( logit )
## Formula:          results ~ (lineage + bloodmeal_titer) + (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    358.0    373.3   -175.0    350.0      332 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.155    1.468   
## Number of obs: 336, groups:  replicate, 6
## 
## Conditional model:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)         -0.4639     0.8800  -0.527   0.5981  
## lineageEU3           0.4976     0.2804   1.775   0.0759 .
## bloodmeal_titerlow  -1.4090     1.2535  -1.124   0.2610  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_tho6,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                  Chisq Df Pr(>Chisq)  
## (Intercept)     0.2779  1    0.59811  
## lineage         3.1498  1    0.07594 .
## bloodmeal_titer 1.2635  1    0.26099  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glm_tho7<-glmmTMB(results~(lineage)+(1|replicate),family="binomial",data=X,na.action = na.omit)
anova(glm_tho6,glm_tho7)
## Data: X
## Models:
## glm_tho7: results ~ (lineage) + (1 | replicate), zi=~0, disp=~1
## glm_tho6: results ~ (lineage + bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_tho7  3 357.20 368.65 -175.6   351.20                         
## glm_tho6  4 358.01 373.28 -175.0   350.01 1.1925      1     0.2748
summary(glm_tho7)
##  Family: binomial  ( logit )
## Formula:          results ~ (lineage) + (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    357.2    368.7   -175.6    351.2      333 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.602    1.613   
## Number of obs: 336, groups:  replicate, 6
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.1644     0.7027  -1.657   0.0975 .
## lineageEU3    0.4996     0.2807   1.780   0.0751 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_tho7,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##              Chisq Df Pr(>Chisq)  
## (Intercept) 2.7455  1    0.09753 .
## lineage     3.1684  1    0.07508 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Minimum model
glm_tho8<-glmmTMB(results~(1)+(1|replicate),family="binomial",data=X,na.action = na.omit)
summary(glm_tho8)
##  Family: binomial  ( logit )
## Formula:          results ~ (1) + (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    358.4    366.1   -177.2    354.4      334 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.368    1.539   
## Number of obs: 336, groups:  replicate, 6
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.8792     0.6536  -1.345    0.179
anova(glm_tho8,glm_tho7)
## Data: X
## Models:
## glm_tho8: results ~ (1) + (1 | replicate), zi=~0, disp=~1
## glm_tho7: results ~ (lineage) + (1 | replicate), zi=~0, disp=~1
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)  
## glm_tho8  2 358.45 366.08 -177.22   354.45                           
## glm_tho7  3 357.20 368.65 -175.60   351.20 3.2432      1    0.07172 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_tho8,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##              Chisq Df Pr(>Chisq)
## (Intercept) 1.8097  1     0.1785
# Model for calculating means (emmeans)
glm_tho5<-glmmTMB(results~(lineage+bloodmeal_titer)+(lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=X,na.action = na.omit)
summary(glm_tho5)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer) + (lineage:bloodmeal_titer) +  
##     (1 | replicate)
## Data: X
## 
##      AIC      BIC   logLik deviance df.resid 
##    359.9    379.0   -175.0    349.9      331 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.117    1.455   
## Number of obs: 336, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -0.4957     0.8801  -0.563    0.573
## lineageEU3                      0.5585     0.3538   1.579    0.114
## bloodmeal_titerlow             -1.3125     1.2884  -1.019    0.308
## lineageEU3:bloodmeal_titerlow  -0.1631     0.5752  -0.284    0.777
car::Anova(glm_tho5,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)
## (Intercept)             0.3173  1     0.5733
## lineage                 2.4923  1     0.1144
## bloodmeal_titer         1.0378  1     0.3083
## lineage:bloodmeal_titer 0.0804  1     0.7768
emmeans(glm_tho5,pairwise~lineage|bloodmeal_titer,type="response",p.adjust.methods="bonf") 
## $emmeans
## bloodmeal_titer = high:
##  lineage  prob    SE  df asymp.LCL asymp.UCL
##  EU2     0.379 0.207 Inf    0.0979     0.774
##  EU3     0.516 0.219 Inf    0.1604     0.856
## 
## bloodmeal_titer = low:
##  lineage  prob    SE  df asymp.LCL asymp.UCL
##  EU2     0.141 0.114 Inf    0.0252     0.509
##  EU3     0.196 0.144 Inf    0.0391     0.593
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## bloodmeal_titer = high:
##  contrast  odds.ratio    SE  df null z.ratio p.value
##  EU2 / EU3      0.572 0.202 Inf    1  -1.579  0.1144
## 
## bloodmeal_titer = low:
##  contrast  odds.ratio    SE  df null z.ratio p.value
##  EU2 / EU3      0.673 0.306 Inf    1  -0.871  0.3840
## 
## Tests are performed on the log odds ratio scale
emmeans(glm_tho5,pairwise~bloodmeal_titer|lineage,type="response",p.adjust.methods="bonf")
## $emmeans
## lineage = EU2:
##  bloodmeal_titer  prob    SE  df asymp.LCL asymp.UCL
##  high            0.379 0.207 Inf    0.0979     0.774
##  low             0.141 0.114 Inf    0.0252     0.509
## 
## lineage = EU3:
##  bloodmeal_titer  prob    SE  df asymp.LCL asymp.UCL
##  high            0.516 0.219 Inf    0.1604     0.856
##  low             0.196 0.144 Inf    0.0391     0.593
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## lineage = EU2:
##  contrast   odds.ratio   SE  df null z.ratio p.value
##  high / low       3.72 4.79 Inf    1   1.019  0.3083
## 
## lineage = EU3:
##  contrast   odds.ratio   SE  df null z.ratio p.value
##  high / low       4.37 5.53 Inf    1   1.166  0.2435
## 
## Tests are performed on the log odds ratio scale

extract data from model

glm_tho_data<-emmeans(glm_tho5,pairwise~bloodmeal_titer*lineage,type="response",p.adjust.methods="bonf")
ok_thorax<-summary(glm_tho_data$emmeans)
ok_thorax
##  bloodmeal_titer lineage  prob    SE  df asymp.LCL asymp.UCL
##  high            EU2     0.379 0.207 Inf    0.0979     0.774
##  low             EU2     0.141 0.114 Inf    0.0252     0.509
##  high            EU3     0.516 0.219 Inf    0.1604     0.856
##  low             EU3     0.196 0.144 Inf    0.0391     0.593
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale

Saliva analysis :

glm_salive<-glmmTMB(results~lineage*bloodmeal_titer*wing_size+(1|replicate),family="binomial",data=S,na.action=na.omit)
summary(glm_salive)
##  Family: binomial  ( logit )
## Formula:          
## results ~ lineage * bloodmeal_titer * wing_size + (1 | replicate)
## Data: S
## 
##      AIC      BIC   logLik deviance df.resid 
##    140.3    170.5    -61.2    122.3      202 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 0.5231   0.7233  
## Number of obs: 211, groups:  replicate, 6
## 
## Conditional model:
##                                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)                               -4.970      5.711  -0.870    0.384
## lineageEU3                                 3.604      8.445   0.427    0.670
## bloodmeal_titerlow                        -9.981     11.056  -0.903    0.367
## wing_size                                  7.922     16.205   0.489    0.625
## lineageEU3:bloodmeal_titerlow             17.317     17.567   0.986    0.324
## lineageEU3:wing_size                      -8.946     24.710  -0.362    0.717
## bloodmeal_titerlow:wing_size              26.183     31.077   0.843    0.399
## lineageEU3:bloodmeal_titerlow:wing_size  -53.599     51.266  -1.046    0.296
car::Anova(glm_salive,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                                    Chisq Df Pr(>Chisq)
## (Intercept)                       0.7572  1     0.3842
## lineage                           0.1821  1     0.6696
## bloodmeal_titer                   0.8150  1     0.3666
## wing_size                         0.2390  1     0.6249
## lineage:bloodmeal_titer           0.9717  1     0.3242
## lineage:wing_size                 0.1311  1     0.7173
## bloodmeal_titer:wing_size         0.7099  1     0.3995
## lineage:bloodmeal_titer:wing_size 1.0931  1     0.2958

#Model reduction

glm_salive2<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)^2+(1|replicate),family="binomial",data=S,na.action = na.omit)
summary(glm_salive2)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate)
## Data: S
## 
##      AIC      BIC   logLik deviance df.resid 
##    139.4    166.2    -61.7    123.4      203 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 0.5571   0.7464  
## Number of obs: 211, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                     -6.812      5.496  -1.240    0.215
## lineageEU3                       7.753      7.456   1.040    0.298
## bloodmeal_titerlow              -3.706      8.587  -0.432    0.666
## wing_size                       13.178     15.487   0.851    0.395
## lineageEU3:bloodmeal_titerlow   -1.073      1.162  -0.923    0.356
## lineageEU3:wing_size           -21.119     21.824  -0.968    0.333
## bloodmeal_titerlow:wing_size     8.502     24.281   0.350    0.726
anova(glm_salive2,glm_salive)
## Data: S
## Models:
## glm_salive2: results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate), zi=~0, disp=~1
## glm_salive: results ~ lineage * bloodmeal_titer * wing_size + (1 | replicate), zi=~0, disp=~1
##             Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_salive2  8 139.43 166.25 -61.717   123.43                         
## glm_salive   9 140.35 170.52 -61.175   122.35 1.0835      1     0.2979
car::Anova(glm_salive2,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                            Chisq Df Pr(>Chisq)
## (Intercept)               1.5363  1     0.2152
## lineage                   1.0811  1     0.2984
## bloodmeal_titer           0.1862  1     0.6661
## wing_size                 0.7240  1     0.3948
## lineage:bloodmeal_titer   0.8526  1     0.3558
## lineage:wing_size         0.9364  1     0.3332
## bloodmeal_titer:wing_size 0.1226  1     0.7262
glm_salive3<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)+(lineage:wing_size+lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=S,na.action = na.omit)
anova(glm_salive2,glm_salive3)
## Data: S
## Models:
## glm_salive3: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size + , zi=~0, disp=~1
## glm_salive3:     lineage:bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
## glm_salive2: results ~ (lineage + bloodmeal_titer + wing_size)^2 + (1 | replicate), zi=~0, disp=~1
##             Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_salive3  7 137.56 161.02 -61.778   123.56                         
## glm_salive2  8 139.43 166.25 -61.717   123.43 0.1236      1     0.7252
summary(glm_salive3)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size +  
##     lineage:bloodmeal_titer) + (1 | replicate)
## Data: S
## 
##      AIC      BIC   logLik deviance df.resid 
##    137.6    161.0    -61.8    123.6      204 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 0.6154   0.7845  
## Number of obs: 211, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                    -7.8119     4.7399  -1.648   0.0993 .
## lineageEU3                      8.2253     7.3514   1.119   0.2632  
## bloodmeal_titerlow             -0.7284     1.0706  -0.680   0.4963  
## wing_size                      16.0024    13.2903   1.204   0.2286  
## lineageEU3:wing_size          -22.4585    21.5029  -1.044   0.2963  
## lineageEU3:bloodmeal_titerlow  -1.1724     1.1225  -1.044   0.2963  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_salive3,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)  
## (Intercept)             2.7163  1    0.09933 .
## lineage                 1.2519  1    0.26319  
## bloodmeal_titer         0.4629  1    0.49626  
## wing_size               1.4498  1    0.22857  
## lineage:wing_size       1.0909  1    0.29628  
## lineage:bloodmeal_titer 1.0907  1    0.29631  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glm_salive4<-glmmTMB(results~(lineage+bloodmeal_titer+wing_size)+(lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=S,na.action = na.omit)
anova(glm_salive4,glm_salive3)
## Data: S
## Models:
## glm_salive4: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:bloodmeal_titer) + , zi=~0, disp=~1
## glm_salive4:     (1 | replicate), zi=~0, disp=~1
## glm_salive3: results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:wing_size + , zi=~0, disp=~1
## glm_salive3:     lineage:bloodmeal_titer) + (1 | replicate), zi=~0, disp=~1
##             Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## glm_salive4  6 136.66 156.77 -62.329   124.66                         
## glm_salive3  7 137.56 161.02 -61.778   123.56 1.1008      1     0.2941
summary(glm_salive4)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer + wing_size) + (lineage:bloodmeal_titer) +  
##     (1 | replicate)
## Data: S
## 
##      AIC      BIC   logLik deviance df.resid 
##    136.7    156.8    -62.3    124.7      205 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 0.5276   0.7264  
## Number of obs: 211, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -4.8050     3.6469  -1.317    0.188
## lineageEU3                      0.5575     0.6293   0.886    0.376
## bloodmeal_titerlow             -0.6731     1.0183  -0.661    0.509
## wing_size                       7.4396    10.2659   0.725    0.469
## lineageEU3:bloodmeal_titerlow  -1.2688     1.1103  -1.143    0.253
car::Anova(glm_salive4,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                          Chisq Df Pr(>Chisq)
## (Intercept)             1.7359  1     0.1877
## lineage                 0.7848  1     0.3757
## bloodmeal_titer         0.4369  1     0.5086
## wing_size               0.5252  1     0.4686
## lineage:bloodmeal_titer 1.3057  1     0.2532
# Minimum model
glm_salive5<-glmmTMB(results~(lineage+bloodmeal_titer)+(lineage:bloodmeal_titer)+(1|replicate),family="binomial",data=S,na.action = na.omit)
summary(glm_salive5)
##  Family: binomial  ( logit )
## Formula:          
## results ~ (lineage + bloodmeal_titer) + (lineage:bloodmeal_titer) +  
##     (1 | replicate)
## Data: S
## 
##      AIC      BIC   logLik deviance df.resid 
##    215.2    234.1   -102.6    205.2      321 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 0.5546   0.7447  
## Number of obs: 326, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -2.1682     0.5886  -3.684  0.00023 ***
## lineageEU3                      1.0567     0.4807   2.198  0.02792 *  
## bloodmeal_titerlow             -0.4802     0.9148  -0.525  0.59960    
## lineageEU3:bloodmeal_titerlow  -2.1861     0.8603  -2.541  0.01105 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(glm_salive5,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: results
##                           Chisq Df Pr(>Chisq)    
## (Intercept)             13.5712  1  0.0002297 ***
## lineage                  4.8332  1  0.0279162 *  
## bloodmeal_titer          0.2756  1  0.5996032    
## lineage:bloodmeal_titer  6.4568  1  0.0110527 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(glm_salive5,pairwise~lineage|bloodmeal_titer,type="response",p.adjust.methods="bonf")  
## $emmeans
## bloodmeal_titer = high:
##  lineage   prob     SE  df asymp.LCL asymp.UCL
##  EU2     0.1026 0.0542 Inf   0.03483    0.2661
##  EU3     0.2476 0.0971 Inf   0.10596    0.4774
## 
## bloodmeal_titer = low:
##  lineage   prob     SE  df asymp.LCL asymp.UCL
##  EU2     0.0661 0.0444 Inf   0.01696    0.2250
##  EU3     0.0224 0.0172 Inf   0.00487    0.0966
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## bloodmeal_titer = high:
##  contrast  odds.ratio    SE  df null z.ratio p.value
##  EU2 / EU3      0.348 0.167 Inf    1  -2.198  0.0279
## 
## bloodmeal_titer = low:
##  contrast  odds.ratio    SE  df null z.ratio p.value
##  EU2 / EU3      3.094 2.218 Inf    1   1.575  0.1153
## 
## Tests are performed on the log odds ratio scale
emmeans(glm_salive5,pairwise~bloodmeal_titer|lineage,type="response",p.adjust.methods="bonf")  
## $emmeans
## lineage = EU2:
##  bloodmeal_titer   prob     SE  df asymp.LCL asymp.UCL
##  high            0.1026 0.0542 Inf   0.03483    0.2661
##  low             0.0661 0.0444 Inf   0.01696    0.2250
## 
## lineage = EU3:
##  bloodmeal_titer   prob     SE  df asymp.LCL asymp.UCL
##  high            0.2476 0.0971 Inf   0.10596    0.4774
##  low             0.0224 0.0172 Inf   0.00487    0.0966
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## lineage = EU2:
##  contrast   odds.ratio    SE  df null z.ratio p.value
##  high / low       1.62  1.48 Inf    1   0.525  0.5996
## 
## lineage = EU3:
##  contrast   odds.ratio    SE  df null z.ratio p.value
##  high / low      14.39 13.51 Inf    1   2.839  0.0045
## 
## Tests are performed on the log odds ratio scale

extract data from model

glm_sal_data<-emmeans(glm_salive5,pairwise~bloodmeal_titer|lineage,type="response",p.adjust.methods="bonf")
ok_sal<-summary(glm_sal_data$emmeans)
ok_sal
## lineage = EU2:
##  bloodmeal_titer   prob     SE  df asymp.LCL asymp.UCL
##  high            0.1026 0.0542 Inf   0.03483    0.2661
##  low             0.0661 0.0444 Inf   0.01696    0.2250
## 
## lineage = EU3:
##  bloodmeal_titer   prob     SE  df asymp.LCL asymp.UCL
##  high            0.2476 0.0971 Inf   0.10596    0.4774
##  low             0.0224 0.0172 Inf   0.00487    0.0966
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale

Rate :

##Data

##Dissemination

dr_glm<-glmmTMB(rate~lineage*bloodmeal_titer+(1|replicate),family=binomial,data=DR)
summary(dr_glm)
##  Family: binomial  ( logit )
## Formula:          rate ~ lineage * bloodmeal_titer + (1 | replicate)
## Data: DR
## 
##      AIC      BIC   logLik deviance df.resid 
##     79.2     81.6    -34.6     69.2        7 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 2.021    1.422   
## Number of obs: 12, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                    -0.5384     0.8609  -0.625    0.532  
## lineageEU3                      0.6007     0.3521   1.706    0.088 .
## bloodmeal_titerlow             -1.2730     1.2604  -1.010    0.312  
## lineageEU3:bloodmeal_titerlow  -0.2691     0.5635  -0.478    0.633  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(dr_glm,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: rate
##                          Chisq Df Pr(>Chisq)  
## (Intercept)             0.3911  1    0.53174  
## lineage                 2.9099  1    0.08804 .
## bloodmeal_titer         1.0201  1    0.31249  
## lineage:bloodmeal_titer 0.2280  1    0.63302  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Model reduction

dr_glm2<-glmmTMB(rate~lineage+bloodmeal_titer+(1|replicate),family=binomial,data=DR)
anova(dr_glm2,dr_glm) 
## Data: DR
## Models:
## dr_glm2: rate ~ lineage + bloodmeal_titer + (1 | replicate), zi=~0, disp=~1
## dr_glm: rate ~ lineage * bloodmeal_titer + (1 | replicate), zi=~0, disp=~1
##         Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## dr_glm2  4 77.378 79.317 -34.689   69.378                         
## dr_glm   5 79.151 81.576 -34.576   69.151 0.2264      1     0.6342
car::Anova(dr_glm2,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: rate
##                  Chisq Df Pr(>Chisq)  
## (Intercept)     0.3148  1    0.57474  
## lineage         3.2295  1    0.07232 .
## bloodmeal_titer 1.3487  1    0.24551  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
dr_glm3<-glmmTMB(rate~lineage+(1|replicate),family=binomial,data=DR)
anova(dr_glm3,dr_glm2) 
## Data: DR
## Models:
## dr_glm3: rate ~ lineage + (1 | replicate), zi=~0, disp=~1
## dr_glm2: rate ~ lineage + bloodmeal_titer + (1 | replicate), zi=~0, disp=~1
##         Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## dr_glm3  3 76.646 78.100 -35.323   70.646                         
## dr_glm2  4 77.378 79.317 -34.689   69.378 1.2678      1     0.2602
car::Anova(dr_glm3,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: rate
##              Chisq Df Pr(>Chisq)  
## (Intercept) 2.9683  1    0.08491 .
## lineage     3.2397  1    0.07187 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
dr_glm4<-glmmTMB(rate~1+(1|replicate),family=binomial,data=DR)
anova(dr_glm3,dr_glm4) 
## Data: DR
## Models:
## dr_glm4: rate ~ 1 + (1 | replicate), zi=~0, disp=~1
## dr_glm3: rate ~ lineage + (1 | replicate), zi=~0, disp=~1
##         Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)  
## dr_glm4  2 77.960 78.929 -36.980   73.960                          
## dr_glm3  3 76.646 78.100 -35.323   70.646 3.314      1    0.06869 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(dr_glm4,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: rate
##              Chisq Df Pr(>Chisq)
## (Intercept) 1.9996  1     0.1573
drglm<-emmeans(dr_glm,pairwise~bloodmeal_titer|lineage,type="response",p.adjust.methods="bonf")  
data_glm_dr<-summary(drglm$emmeans)
 drglm
## $emmeans
## lineage = EU2:
##  bloodmeal_titer  prob    SE  df asymp.LCL asymp.UCL
##  high            0.369 0.200 Inf    0.0975     0.759
##  low             0.140 0.111 Inf    0.0261     0.499
## 
## lineage = EU3:
##  bloodmeal_titer  prob    SE  df asymp.LCL asymp.UCL
##  high            0.516 0.214 Inf    0.1652     0.851
##  low             0.185 0.135 Inf    0.0380     0.567
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## lineage = EU2:
##  contrast   odds.ratio   SE  df null z.ratio p.value
##  high / low       3.57 4.50 Inf    1   1.010  0.3125
## 
## lineage = EU3:
##  contrast   odds.ratio   SE  df null z.ratio p.value
##  high / low       4.67 5.79 Inf    1   1.245  0.2132
## 
## Tests are performed on the log odds ratio scale
## quartz_off_screen 
##                 2

##Transmission

tr_glm<-glmmTMB(rate~lineage*bloodmeal_titer+(1|replicate),family=binomial,data=TR)
summary(tr_glm)
##  Family: binomial  ( logit )
## Formula:          rate ~ lineage * bloodmeal_titer + (1 | replicate)
## Data: TR
## 
##      AIC      BIC   logLik deviance df.resid 
##     57.3     59.7    -23.6     47.3        7 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 0.5078   0.7126  
## Number of obs: 12, groups:  replicate, 6
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -2.2524     0.5727  -3.933 8.39e-05 ***
## lineageEU3                      1.0742     0.4783   2.246   0.0247 *  
## bloodmeal_titerlow             -0.4442     0.8884  -0.500   0.6171    
## lineageEU3:bloodmeal_titerlow  -2.1911     0.8564  -2.559   0.0105 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(tr_glm,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: rate
##                           Chisq Df Pr(>Chisq)    
## (Intercept)             15.4693  1  8.386e-05 ***
## lineage                  5.0436  1    0.02472 *  
## bloodmeal_titer          0.2500  1    0.61709    
## lineage:bloodmeal_titer  6.5462  1    0.01051 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(tr_glm,pairwise~bloodmeal_titer|lineage,type="response",p.adjust.methods="bonf")  
## $emmeans
## lineage = EU2:
##  bloodmeal_titer   prob     SE  df asymp.LCL asymp.UCL
##  high            0.0951 0.0493 Inf   0.03309    0.2442
##  low             0.0632 0.0418 Inf   0.01664    0.2119
## 
## lineage = EU3:
##  bloodmeal_titer   prob     SE  df asymp.LCL asymp.UCL
##  high            0.2354 0.0907 Inf   0.10284    0.4526
##  low             0.0216 0.0163 Inf   0.00483    0.0912
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## lineage = EU2:
##  contrast   odds.ratio    SE  df null z.ratio p.value
##  high / low       1.56  1.39 Inf    1   0.500  0.6171
## 
## lineage = EU3:
##  contrast   odds.ratio    SE  df null z.ratio p.value
##  high / low      13.95 12.78 Inf    1   2.875  0.0040
## 
## Tests are performed on the log odds ratio scale
emmeans(tr_glm,pairwise~lineage|bloodmeal_titer,type="response",p.adjust.methods="bonf")
## $emmeans
## bloodmeal_titer = high:
##  lineage   prob     SE  df asymp.LCL asymp.UCL
##  EU2     0.0951 0.0493 Inf   0.03309    0.2442
##  EU3     0.2354 0.0907 Inf   0.10284    0.4526
## 
## bloodmeal_titer = low:
##  lineage   prob     SE  df asymp.LCL asymp.UCL
##  EU2     0.0632 0.0418 Inf   0.01664    0.2119
##  EU3     0.0216 0.0163 Inf   0.00483    0.0912
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
## bloodmeal_titer = high:
##  contrast  odds.ratio    SE  df null z.ratio p.value
##  EU2 / EU3      0.342 0.163 Inf    1  -2.246  0.0247
## 
## bloodmeal_titer = low:
##  contrast  odds.ratio    SE  df null z.ratio p.value
##  EU2 / EU3      3.055 2.185 Inf    1   1.562  0.1184
## 
## Tests are performed on the log odds ratio scale
trglm<-emmeans(tr_glm,pairwise~bloodmeal_titer|lineage,type="response",p.adjust.methods="bonf")  
data_glm_tr<-summary(trglm$emmeans)
## quartz_off_screen 
##                 2

## quartz_off_screen 
##                 2

Viral load :

Data :

#data frame pour tests stats (facteur multipl. commun de 10^7) :

data_pos_ent<-data_pos%>% mutate(c_virus = c_virus * 10^7)


########## DATA POUR ANALYSES CHARGES ####
M_ent<-subset(data_pos_ent,tissu=="z_midguts")
X_ent<-subset(data_pos_ent,tissu=="thorax")
S_ent<-subset(data_pos_ent,tissu=="saliva")

Midgut analysis :

All tissues together

CV<-glmmTMB(c_virus~(lineage+bloodmeal_titer+tissu)^3+(1|replicate),family=nbinom2,data=data_pos_ent,na.action = na.omit)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; false convergence (8). See vignette('troubleshooting'),
## help('diagnose')
summary(CV)
##  Family: nbinom2  ( log )
## Formula:          
## c_virus ~ (lineage + bloodmeal_titer + tissu)^3 + (1 | replicate)
## Data: data_pos_ent
## 
##      AIC      BIC   logLik deviance df.resid 
##  10593.7  10645.4  -5282.8  10565.7      282 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 0.002027 0.04503 
## Number of obs: 296, groups:  replicate, 6
## 
## Dispersion parameter for nbinom2 family (): 0.135 
## 
## Conditional model:
##                                              Estimate Std. Error z value
## (Intercept)                                   18.0453     0.9488  19.018
## lineageEU3                                    -1.5468     1.1579  -1.336
## bloodmeal_titerlow                            -2.4232     1.3215  -1.834
## tissuthorax                                    6.0959     1.0669   5.714
## tissuz_midguts                                 5.9574     1.0769   5.532
## lineageEU3:bloodmeal_titerlow                  1.3318     2.1452   0.621
## lineageEU3:tissuthorax                         0.9933     1.3437   0.739
## lineageEU3:tissuz_midguts                      1.6243     1.3527   1.201
## bloodmeal_titerlow:tissuthorax                 3.4647     1.4883   2.328
## bloodmeal_titerlow:tissuz_midguts              1.5778     1.4780   1.067
## lineageEU3:bloodmeal_titerlow:tissuthorax    -13.2422     2.3600  -5.611
## lineageEU3:bloodmeal_titerlow:tissuz_midguts -14.3336     2.3433  -6.117
##                                              Pr(>|z|)    
## (Intercept)                                   < 2e-16 ***
## lineageEU3                                     0.1816    
## bloodmeal_titerlow                             0.0667 .  
## tissuthorax                                  1.10e-08 ***
## tissuz_midguts                               3.17e-08 ***
## lineageEU3:bloodmeal_titerlow                  0.5347    
## lineageEU3:tissuthorax                         0.4598    
## lineageEU3:tissuz_midguts                      0.2298    
## bloodmeal_titerlow:tissuthorax                 0.0199 *  
## bloodmeal_titerlow:tissuz_midguts              0.2858    
## lineageEU3:bloodmeal_titerlow:tissuthorax    2.01e-08 ***
## lineageEU3:bloodmeal_titerlow:tissuz_midguts 9.55e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(CV,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: c_virus
##                                  Chisq Df Pr(>Chisq)    
## (Intercept)                   361.6914  1  < 2.2e-16 ***
## lineage                         1.7844  1    0.18162    
## bloodmeal_titer                 3.3622  1    0.06671 .  
## tissu                          35.5729  2  1.886e-08 ***
## lineage:bloodmeal_titer         0.3854  1    0.53472    
## lineage:tissu                   1.4950  2    0.47355    
## bloodmeal_titer:tissu           7.0063  2    0.03010 *  
## lineage:bloodmeal_titer:tissu  38.2843  2  4.860e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CV2<-glmmTMB(c_virus~(lineage+bloodmeal_titer+tissu)^3+(1|replicate)+(1|infos),family=nbinom2,data=data_pos_ent,na.action = na.omit)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; non-positive-definite Hessian matrix. See vignette('troubleshooting')

## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; false convergence (8). See vignette('troubleshooting'),
## help('diagnose')
car::Anova(CV2,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: c_virus
##                                  Chisq Df Pr(>Chisq)    
## (Intercept)                   406.9251  1  < 2.2e-16 ***
## lineage                         0.2299  1  0.6315645    
## bloodmeal_titer                 3.2903  1  0.0696889 .  
## tissu                          31.1959  2  1.682e-07 ***
## lineage:bloodmeal_titer         0.1715  1  0.6787436    
## lineage:tissu                   7.2058  2  0.0272453 *  
## bloodmeal_titer:tissu           6.7114  2  0.0348843 *  
## lineage:bloodmeal_titer:tissu  17.1509  2  0.0001887 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Midgut analysis:

# -> Reduced model
CVM<-glmmTMB(c_virus~lineage*bloodmeal_titer+(1|replicate),family=nbinom2,data=M_ent,na.action = na.omit)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; false convergence (8). See vignette('troubleshooting'),
## help('diagnose')
summary(CVM)
##  Family: nbinom2  ( log )
## Formula:          c_virus ~ lineage * bloodmeal_titer + (1 | replicate)
## Data: M_ent
## 
##      AIC      BIC   logLik deviance df.resid 
##   4747.0   4764.5  -2367.5   4735.0      130 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance  Std.Dev.
##  replicate (Intercept) 0.0003865 0.01966 
## Number of obs: 136, groups:  replicate, 6
## 
## Dispersion parameter for nbinom2 family (): 0.127 
## 
## Conditional model:
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    23.99686    0.52104   46.06   <2e-16 ***
## lineageEU3                      0.08518    0.70442    0.12    0.904    
## bloodmeal_titerlow             -0.83484    0.68850   -1.21    0.225    
## lineageEU3:bloodmeal_titerlow -13.01190    0.96750  -13.45   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(CVM,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: c_virus
##                             Chisq Df Pr(>Chisq)    
## (Intercept)             2121.1601  1     <2e-16 ***
## lineage                    0.0146  1     0.9038    
## bloodmeal_titer            1.4703  1     0.2253    
## lineage:bloodmeal_titer  180.8735  1     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thorax analysis :

Maximum model :

# -> Reduced model
CVX<-glmmTMB(c_virus~lineage*bloodmeal_titer+(1|replicate),family=nbinom2,data=X_ent,na.action = na.omit)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; false convergence (8). See vignette('troubleshooting'),
## help('diagnose')
summary(CVX)
##  Family: nbinom2  ( log )
## Formula:          c_virus ~ lineage * bloodmeal_titer + (1 | replicate)
## Data: X_ent
## 
##      AIC      BIC   logLik deviance df.resid 
##   4649.8   4666.7  -2318.9   4637.8      117 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance  Std.Dev.
##  replicate (Intercept) 0.0002335 0.01528 
## Number of obs: 123, groups:  replicate, 6
## 
## Dispersion parameter for nbinom2 family (): 0.129 
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    24.1479     0.5071   47.62   <2e-16 ***
## lineageEU3                     -0.5624     0.6966   -0.81    0.419    
## bloodmeal_titerlow              1.0323     0.7067    1.46    0.144    
## lineageEU3:bloodmeal_titerlow -11.8976     1.0067  -11.82   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(CVX,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: c_virus
##                             Chisq Df Pr(>Chisq)    
## (Intercept)             2267.3831  1     <2e-16 ***
## lineage                    0.6518  1     0.4195    
## bloodmeal_titer            2.1336  1     0.1441    
## lineage:bloodmeal_titer  139.6802  1     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Saliva analysis :

Maximum model :

CVS<-glmmTMB(c_virus~lineage*bloodmeal_titer+(1|replicate),family=nbinom2,data=S_ent,na.action = na.omit)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; false convergence (8). See vignette('troubleshooting'),
## help('diagnose')
summary(CVS)
##  Family: nbinom2  ( log )
## Formula:          c_virus ~ lineage * bloodmeal_titer + (1 | replicate)
## Data: S_ent
## 
##      AIC      BIC   logLik deviance df.resid 
##   1197.0   1206.7   -592.5   1185.0       31 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance  Std.Dev.
##  replicate (Intercept) 2.909e-06 0.001706
## Number of obs: 37, groups:  replicate, 5
## 
## Dispersion parameter for nbinom2 family (): 0.226 
## 
## Conditional model:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    18.0759     0.7436  24.309   <2e-16 ***
## lineageEU3                     -1.5889     0.9017  -1.762   0.0781 .  
## bloodmeal_titerlow             -2.4785     1.0220  -2.425   0.0153 *  
## lineageEU3:bloodmeal_titerlow   1.4188     1.6671   0.851   0.3947    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(CVS,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: c_virus
##                            Chisq Df Pr(>Chisq)    
## (Intercept)             590.9122  1    < 2e-16 ***
## lineage                   3.1049  1    0.07806 .  
## bloodmeal_titer           5.8814  1    0.01530 *  
## lineage:bloodmeal_titer   0.7243  1    0.39474    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reduced model :

CVS1<-glmmTMB(c_virus~lineage+bloodmeal_titer+(1|replicate),family=nbinom2,data=S_ent,na.action = na.omit)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; false convergence (8). See vignette('troubleshooting'),
## help('diagnose')
summary(CVS1)
##  Family: nbinom2  ( log )
## Formula:          c_virus ~ lineage + bloodmeal_titer + (1 | replicate)
## Data: S_ent
## 
##      AIC      BIC   logLik deviance df.resid 
##   1195.8   1203.9   -592.9   1185.8       32 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance Std.Dev.
##  replicate (Intercept) 1.05e-06 0.001024
## Number of obs: 37, groups:  replicate, 5
## 
## Dispersion parameter for nbinom2 family (): 0.223 
## 
## Conditional model:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         17.7933     0.5852  30.406   <2e-16 ***
## lineageEU3          -1.1395     0.7019  -1.623   0.1045    
## bloodmeal_titerlow  -1.8530     0.7473  -2.480   0.0131 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(CVS1,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: c_virus
##                    Chisq Df Pr(>Chisq)    
## (Intercept)     924.5204  1    < 2e-16 ***
## lineage           2.6351  1    0.10452    
## bloodmeal_titer   6.1489  1    0.01315 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(CVS1,CVS)
## Data: S_ent
## Models:
## CVS1: c_virus ~ lineage + bloodmeal_titer + (1 | replicate), zi=~0, disp=~1
## CVS: c_virus ~ lineage * bloodmeal_titer + (1 | replicate), zi=~0, disp=~1
##      Df    AIC    BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
## CVS1  5 1195.8 1203.9 -592.9   1185.8                         
## CVS   6 1197.0 1206.7 -592.5   1185.0 0.8008      1     0.3709
CVS2<-glmmTMB(c_virus~bloodmeal_titer+(1|replicate),family=nbinom2,data=S_ent,na.action = na.omit)
## Warning in finalizeTMB(TMBStruc, obj, fit, h, data.tmb.old): Model convergence
## problem; false convergence (8). See vignette('troubleshooting'),
## help('diagnose')
summary(CVS2)
##  Family: nbinom2  ( log )
## Formula:          c_virus ~ bloodmeal_titer + (1 | replicate)
## Data: S_ent
## 
##      AIC      BIC   logLik deviance df.resid 
##   1196.3   1202.8   -594.2   1188.3       33 
## 
## Random effects:
## 
## Conditional model:
##  Groups    Name        Variance  Std.Dev.
##  replicate (Intercept) 6.139e-06 0.002478
## Number of obs: 37, groups:  replicate, 5
## 
## Dispersion parameter for nbinom2 family (): 0.214 
## 
## Conditional model:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         17.2968     0.4321   40.03   <2e-16 ***
## bloodmeal_titerlow  -1.7393     0.7587   -2.29   0.0219 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(CVS2,type="III")
## Analysis of Deviance Table (Type III Wald chisquare tests)
## 
## Response: c_virus
##                     Chisq Df Pr(>Chisq)    
## (Intercept)     1602.5220  1    < 2e-16 ***
## bloodmeal_titer    5.2556  1    0.02188 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(CVS1,CVS2)
## Data: S_ent
## Models:
## CVS2: c_virus ~ bloodmeal_titer + (1 | replicate), zi=~0, disp=~1
## CVS1: c_virus ~ lineage + bloodmeal_titer + (1 | replicate), zi=~0, disp=~1
##      Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)
## CVS2  4 1196.3 1202.8 -594.17   1188.3                        
## CVS1  5 1195.8 1203.9 -592.90   1185.8 2.529      1     0.1118

##Viral load Estimates

## $emmeans
##  lineage bloodmeal_titer response       SE  df asymp.LCL asymp.UCL
##  EU2     high            2.64e+10 1.38e+10 Inf  9.51e+09  7.33e+10
##  EU3     high            2.88e+10 1.37e+10 Inf  1.13e+10  7.31e+10
##  EU2     low             1.15e+10 5.16e+09 Inf  4.74e+09  2.77e+10
##  EU3     low             2.79e+04 1.36e+04 Inf  1.07e+04  7.27e+04
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the log scale 
## 
## $contrasts
##  contrast               ratio       SE  df null z.ratio p.value
##  EU2 high / EU3 high 9.00e-01      0.6 Inf    1  -0.121  0.9994
##  EU2 high / EU2 low  2.30e+00      1.6 Inf    1   1.213  0.6188
##  EU2 high / EU3 low  9.47e+05 678200.2 Inf    1  19.226  <.0001
##  EU3 high / EU2 low  2.50e+00      1.6 Inf    1   1.405  0.4962
##  EU3 high / EU3 low  1.03e+06 704011.0 Inf    1  20.292  <.0001
##  EU2 low / EU3 low   4.11e+05 273167.5 Inf    1  19.456  <.0001
## 
## P value adjustment: tukey method for comparing a family of 4 estimates 
## Tests are performed on the log scale
## $emmeans
##  lineage bloodmeal_titer response       SE  df asymp.LCL asymp.UCL
##  EU2     high            3.07e+10 1.56e+10 Inf  1.14e+10  8.30e+10
##  EU3     high            1.75e+10 8.36e+09 Inf  6.86e+09  4.46e+10
##  EU2     low             8.62e+10 4.24e+10 Inf  3.29e+10  2.26e+11
##  EU3     low             3.34e+05 1.79e+05 Inf  1.17e+05  9.54e+05
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the log scale 
## 
## $contrasts
##  contrast               ratio       SE  df null z.ratio p.value
##  EU2 high / EU3 high 1.75e+00 1.22e+00 Inf    1   0.807  0.8510
##  EU2 high / EU2 low  3.60e-01 2.50e-01 Inf    1  -1.461  0.4615
##  EU2 high / EU3 low  9.18e+04 6.77e+04 Inf    1  15.505  <.0001
##  EU3 high / EU2 low  2.00e-01 1.40e-01 Inf    1  -2.325  0.0923
##  EU3 high / EU3 low  5.23e+04 3.75e+04 Inf    1  15.154  <.0001
##  EU2 low / EU3 low   2.58e+05 1.87e+05 Inf    1  17.145  <.0001
## 
## P value adjustment: tukey method for comparing a family of 4 estimates 
## Tests are performed on the log scale
## $emmeans
##  lineage bloodmeal_titer response       SE  df asymp.LCL asymp.UCL
##  EU2     high            70835538 52673112 Inf  16493015  3.04e+08
##  EU3     high            14460466  7376423 Inf   5320790  3.93e+07
##  EU2     low              5941042  4165168 Inf   1503485  2.35e+07
##  EU3     low              5011373  6085302 Inf    463814  5.41e+07
## 
## Confidence level used: 0.95 
## Intervals are back-transformed from the log scale 
## 
## $contrasts
##  contrast            ratio    SE  df null z.ratio p.value
##  EU2 high / EU3 high  4.90  4.42 Inf    1   1.762  0.2918
##  EU2 high / EU2 low  11.92 12.19 Inf    1   2.425  0.0724
##  EU2 high / EU3 low  14.13 20.13 Inf    1   1.860  0.2454
##  EU3 high / EU2 low   2.43  2.11 Inf    1   1.026  0.7342
##  EU3 high / EU3 low   2.89  3.80 Inf    1   0.805  0.8523
##  EU2 low / EU3 low    1.19  1.66 Inf    1   0.121  0.9994
## 
## P value adjustment: tukey method for comparing a family of 4 estimates 
## Tests are performed on the log scale

Graphical representation :

## Warning: Removed 48 rows containing missing values or values outside the scale range
## (`stat_bindot()`).
## quartz_off_screen 
##                 2
## Warning: Removed 48 rows containing missing values or values outside the scale range
## (`stat_bindot()`).