The Medley Interlisp Revival

Andrew Sengul
andrew@interlisp.org
Interlisp.org

]
| Medley

INTERLISP
COMMON LISP

Figure 1: A screenshot from Medley featuring compact graphical software applications.

ABSTRACT

The Medley Interlisp revival is a project to restore Medley Interlisp
for use on modern computers. Interlisp began as a Lisp environ-
ment for researchers sponsored by DARPA, and after gaining dis-
play capabilities it was renamed Interlisp-D. Xerox spun out sales
and development of Interlisp-D with the “Medley” software release,
which eventually became the product name. Medley development
ended in the 1990s and was revived in 2021 by a team including
some of the original PARC developers. Their effort is aimed at both
preserving the Interlisp software created in the past and expanding
the scope of what these tools can do to further realize the promises
of interactive, graphically augmented development.

CCS CONCEPTS

« Software and its engineering — Open source model; Soft-
ware evolution; Maintaining software; Documentation; Software
reverse engineering; « Theory of computation — Interactive
computation; « Human-centered computing — Interaction de-
sign theory, concepts and paradigms.

KEYWORDS

Lisp, Interlisp, GUI, interactive programming, software archaeol-
ogy, software restoration, education, nonprofit, FOSS

ACM Reference Format:

Andrew Sengul. 2024. The Medley Interlisp Revival. In Proceedings of the
17th European Lisp Symposium (ELS’24). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.5281/zenodo0.11090093

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’24, May 6-7 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxXX-X/YY/MM.

https://doi.org/10.5281/zenodo.11090093

1 INTRODUCTION

Interlisp.org, a US non-profit organization, is working to resurrect
and restore the Medley Interlisp system and has made progress in
modernizing and enhancing it. Medley Interlisp was the last ver-
sion of the Interlisp system developed by Xerox Palo Alto Research
Center (PARC). Accomplishments thus far have included reducing
barriers to entry, making it easier to build versions for modern
computing platforms, the creation of an online Medley system us-
able through a web browser, and one-click installers for major op-
erating systems. The Medley software has been released under a
free open source, downloadable at https://interlisp.org.

The system’s original release came near the end of a fruitful pe-
riod for interactive software development stretching from the late
1960s through the early 1990s. In the mid-1980s, Xerox PARC ta-
pered off development of Medley and moved the project to Xerox
Al Systems (a Xerox subsidiary). In the late 1980s XAIS moved the
system to Envos, which closed shortly thereafter and led to a com-
pany called Venue acquiring the rights to Medley Interlisp. Circa
2018, Ron Kaplan and Nick Briggs resurrected Medley Interlisp and
began transporting it to modern computing platforms to support
work in natural language research.

In 2020, the Medley Project was formed with the goal of mod-
ernizing the Interlisp ecosystem, opening the way for present-day
developers to experience it on modern computing platforms like
Windows, MacOS and Linux. Interlisp.org was formed to organize
these efforts, provide versions of Medley Interlisp to interested
users and provide a repository for source code and documenta-
tion. Interlisp.org has been successful in this endeavor as Medley
Interlisp now runs on the indicated platforms as well as through a
browser-accessible online interface and on ARM systems. A Docker
container release is available for added portability. Interlisp.org
has also resurrected several applications including ROOMS, Note-
cards, LOOPS and others. It has assembled an online Zotero repos-
itory collecting Lisp documentation along with Interlisp papers,
books, and technical material. Selected source code is also avail-
able for contributed programs.

https://doi.org/10.5281/zenodo.11090093
https://doi.org/10.5281/zenodo.11090093
https://interlisp.org

ELS’24, May 6-7 2024, Vienna, Austria

2 THE PROJECT

Interlisp.org received the source code for Medley Interlisp and its
applications from Venue Corporation. Interlisp.org consists of a
group of volunteers — original developers, former users, comput-
ing historians interested in software preservation, and people in-
terested in software archaeology. This group has focused on:

Modernizing Medley’s infrastructure and source code;
Adapting the system to run on modern platforms;
Reducing the barrier to entry for new users;

Resurrecting and restoring Medley Interlisp applications of
historical interest; and

e Conducting outreach to potential users, students, software
historians, and others to foster better understanding of how
symbolic computing evolved.

Notable is Medley’s support for two Lisp dialects: Common Lisp
(CL) and Interlisp. These are implemented as compilers for the re-
spective dialects supporting interaction through a read-evaluate-
print loop, or REPL. While the functions in these dialects are im-
plemented in different ways their data structures are identical, so
numbers, symbols, linked lists and some other data types can be
shared between the two dialects. This makes it possible to create
blended applications in which data is passed between functions
written in either dialect.

2.1 Adaptation to Modern Platforms

Interlisp.org is engaged in restoring the Medley Interlisp ecosys-
tem, including tools, utilities, and applications, and provides pub-
lic versions of source and binary code for modern computing plat-
forms along with documentation. All of these artifacts are available
through Interlisp.org’s GitHub and Zotero repositories. The open
source version for modern computing platforms consists of:

e Maiko: the emulation software that implements the Interlisp
Virtual Machine;

e Medley: source and compiled versions of Medley Interlisp,
its tools and utilities, and selected applications;

e Installers for modern computing platforms: Windows 10+,
MacOS and Linux, including WSL and ARM; and

o https://online.interlisp.org: a browser-accessible online ver-
sion of Medley Interlisp.

Additionally, Interlisp.org provides public access to its Zotero
repository, which contains a collection of documentation for In-
terlisp and other Lisp dialects.

2.2 Reducing Barriers to Entry

Easy access to Medley Interlisp will help (re)introduce potential
users to Interlisp in a way that allows them to explore its features
while building their expertise. Since Interlisp was developed be-
fore current conventions for mouse and window-based interaction
as well as Unicode standards for text encoding, Medley has been
modernized to give users a look and feel that will be more familiar
in the context of today’s computer interfaces.

Interlisp.org created an online version of Medley Interlisp using
Docker and Amazon Web Services, providing for users to experi-
ence the system through a web browser without running any of the
Medley system’s components on their local computing platform.

Andrew Sengul

When they are ready, if they choose they can install a version of
Medley Interlisp onto a local computer system and download files
created using the online platform to be used on the same system.
During 2023, online Interlisp had 428 registered users account-
ing for 1,685 sessions, along with 2,588 anonymous guest sessions.

3 INTERLISP IN PERSPECTIVE

The history of Interlisp is interwoven with the early history of
artificial intelligence as many Al researchers had access to DEC
PDP-10/DECsystem-10 computers which could run relatively large
programs on a platform with 256K words of real memory [1]. In-
terlisp provided a residential programming environment in which
the software development functions of edit, compile, link, and exe-
cute could be performed without leaving the Interlisp environment
[16], along with a suite of tools for writing documentation.

In Interlisp, a user edits and evaluates Lisp objects that reside in
an image in memory. The code is saved to files that are more like
code databases than traditional source files. Users do not modify
the files but load their contents into memory to edit, compile, and
execute. The File Manager provides a simple interface that saves
code in a memory image to disk, along with archiving unsaved
code changes when a user closes a session so unfinished work can
be resumed later. The beginning of a file specifies metadata de-
scribing the “file environment” and readtable associated with the
file. The File Manager coordinates the development tools and read-
able code management tasks. It notices the changes to Lisp objects
edited with SEdit or manipulated in memory, tracks what changed
functions and objects need to be saved to symbolic files, and carries
out the actions for building programs such as compiling or listing
them (working in some ways like Unix’s make).

This model is unique even today, with a few programming sys-
tems like Smalltalk and Symbolics Genera offering similar capa-
bilities but nothing exactly matching Medley’s model. Although
Interlisp was not the first version of Lisp (there were several on
mainframes and early minicomputers), it is safe to say that it influ-
enced most succeeding versions. Medley’s development coincided
with the creation of the Common Lisp standard and its design in-
fluenced decisions by the CL committee, which included Medley
developer Larry Masinter. Records of their thought process can be
found in their email threads [8]. Interlisp was implemented on top
of a virtual machine, preserving vertical integration, and many of
its utilities were also written in Interlisp. Conversely, most other
Lisp systems were written in imperative programming languages
like C for performance reasons.

3.1 A Model of Interactive Software
Development

Medley Interlisp was created to provide a computing environment
for research into and development of large-scale applications. To
this end, Xerox PARC users as well as others developed tools to
facilitate software development through an interactive graphical
user interface (GUI) in a collaborative environment [6]. Among
these utilities were MasterScope, Spy, DWIM, CLISP, and LOOPS.
Over 100 such tools are collected in the LispUsers library of con-
tributed software, some of which have yet to appear in modern
software development toolsets.

https://online.interlisp.org

The Medley Interlisp Revival

Numerous utilities were developed at institutions apart from Xe-
rox PARC, such as NASA, several DARPA contractors and commer-
cial firms. We are searching to identify these tools, acquire source
code where possible, adapt them to run on modern computing plat-
forms and make them available along with appropriate licenses
and documentation through the GitHub and Zotero repositories.

4 MEDLEY INTERLISP ECOSYSTEM
Components of the Medley Interlisp Ecosystem include:

e Maiko: the emulator software for the Interlisp virtual ma-
chine;

o Medley Interlisp: the Interlisp source code and its utilities
and tools;

o Applications: including several Interlisp applications, such
as ROOMS, Notecards, LFG, STRADS, IDA, as well as other
Lisp system applications; and

e Documentation: a comprehensive collection of books, pa-
pers, technical memoranda, and manuals regarding Interlisp,
and extending to other Lisp variants.

Interlisp.org welcomes contributions of source code and docu-
mentation to add to its repositories. The following sections briefly
describe these components and work done to restore them.

4.1 Maiko

Maiko is the emulator implementing the virtual machine within
which Interlisp runs.! Maiko was initially developed by Fuji Xe-
rox but acquired by Xerox PARC, which continued to maintain
and enhance it. Written in Kernighan and Ritchie C, Interlisp.org
developers have modernized it, making it ANSI C compatible. A
few of these modifications included resolving issues of signed vs.
unsigned characters, adding prototypes for functions, ensuring all
parameters have types, fixing some incorrect translations of Lisp
code to C code and optimizing all virtual machines’ opcodes.

A major goal of this modernization process was to facilitate
moving the Medley Interlisp ecosystem to modern computing plat-
forms. Numerous programming changes were made to ensure that
Maiko could run on Windows 10/11, recent MacOS versions and
Linux and WSL-based platforms, as well as in the form of a hosted
public installation accessible through web browsers.

4.1.1 Running Natively on Windows 10/11. Previously, running on
Windows required the use of the Medley Docker container or WSL.
Both involved significant effort to set up along with knowledge not
possessed by most Windows users. Native support was developed
using Cygwin and SDL2, allowing the use of a one-click installer
in the form of an .exe file.

4.1.2 Support for AArch64. The build scripts for the Maiko virtual
machine were extended to support the AArch64 (ARM) platform.
This effort established a model for generating build scripts for other
platforms, such that any system which has an ANSI C compiler can
host a version of Medley Interlisp.

4.1.3 Major Platform Installers. Installing Medley was formerly a
multi-step process requiring a degree of expertise with the admin-
istrative tools of a given platform. A single-step installer using a

Thttps://github.com/Interlisp/maiko

ELS’24, May 6-7 2024, Vienna, Austria

“one-click” approach was developed for MacOS, Windows (native),
Windows running WSL and Cygwin and many Linux distributions,
allowing a user to quickly and easily install a Medley release and
do meaningful work.

4.2 Medley Interlisp

Medley Interlisp includes the basic functions implementing the In-
terlisp language and environment as well as a selection of develop-
ment tools. Because these utilities were written in Interlisp, many
were found to run without major changes once the basic system
became operational.

4.2.1 Common Lisp Support. With the groundswell of support for
Common Lisp in the mid-1980s, Xerox PARC extended the Interlisp
environment to support Common Lisp, specifically as of Common
Lisp: The Language, Version 1 (CLtL1), along with CLOS and CL’s
condition system. The infrastructure supporting Interlisp and Com-
mon Lisp is fully integrated such that functions from both dialects
are available within the same system in separate software pack-
ages, albeit with some rough edges we are working out.

77+ (BETQ ABG *(+ 1 2 3))
i+ 1 2 3

q7a+ (EVAL ABG)

46

a0 ABG

40+ 1 7 3

qa4+ (EVAL ABG)

411

qa5+«

2/78> (eval il::abc)

E I

42/51: (setf (nth 2 il::abc) 7)
17

2s/82> (eval il::abc)
q1

Figure 2: Code evaluated in both Interlisp and Common Lisp
addressing a common data structure.

For example, Figure 2 shows two Exec windows — one using
the Interlisp readtable addressed through the package IL: and one
using the Common Lisp readtable addressed through the package
CL:. The pictured code creates a list in Interlisp, modifies it in Com-
mon Lisp and evaluates it in both dialects.

The Common Lisp integration with the Interlisp tools was in-
complete. Substantial work has made it easier to use some of the
Interlisp tools like HELPSYS and MasterScope with CL. Also, some
of the functions and directives in CLtL2 are not available (such as
‘declaim’ versus ‘proclaim’). As we discover these we are determin-
ing how to provide the missing functionality, but some might not
be available until later in 2024.

4.2.2 Editing and Browsing Support. Since the early 1980s Medley
Interlisp has used a 16-bit internal representation of characters in

https://github.com/Interlisp/maiko

ELS’24, May 6-7 2024, Vienna, Austria

strings and atoms in the form of Xerox XCCS codes [9], which
were mapped into appropriate glyphs for display and printing. We
have since generalized character reading/writing functions as part
of our external formatting project. If a file’s external format is spec-
ified as Unicode when a stream is opened, Unicode byte sequences
are read into 16-bit Unicode codes, which are translated into their
XCCS equivalents before being delivered to the calling function.
Support for ISO8859 and certain Japanese conventions are also pro-
vided. This system removes the need for most programmers using
Medley to directly deal with character encoding.

TEdit, the text editor, was extended with Unicode support in a
way providing for better efficiency, reliability, and maintainability
of the system [14]. TEdit reads all characters into an internal edit-
ing buffer and creates pointers to the bytes on the file that repre-
sent those characters. It only interprets those bytes when it needs
to display that section of the file, move characters from one place
to another in the file, or copy them to some other application. Thus
a TEdit session on a large file opens quickly and only occupies a
small amount of memory.

Work on TEdit has encompassed a major portion of the modern-
ization effort over the past three years because assumptions about
the XCCS file format were threaded all through the core TEdit im-
plementation. Every location of XCCS code usage had to be tracked
down and this revealed a variety of bugs, inconsistent behaviors
and maintainability issues, which required substantial refactoring.
As of Spring 2024 this work is finally coming to the end, bring-
ing significantly greater robustness and reliability to the Medley
Interlisp system.

Additional changes allowed the ingestion of Xerox Alto Bravo-
format files, making it possible for legacy documents to be con-
verted to PDF through invocation of an external converter. Also,
HELPSYS was extended to allow lookup and display of the Com-
mon Lisp Hyperspec and other Medley documentation.

4.2.3 UnixUtils. Medley was enhanced to allow it to reach out to
the host environment platform to accomplish system-level tasks
that are not available in Medley. These include ShellBrowser, which
opens a URL in the specified browser, and ShellOpen, which opens
a host-resident viewer for a specified file.

4.2.4 PDFStream. Medley incorporated a native imagestream im-
plementation for producing PostScript™ hardcopy files. The PDF
format is not supported as it was not yet invented when this sys-
tem was developed, but an interim PDF solution from 2023 allows
creating a PS file and executing a UnixUtils shell script to convert it
to PDF via Ghostscript’s ps2pdf utility. Medley’s FileBrowser was
extended to automatically open PDF files in a separate window us-
ing a host-resident PDF viewer.

4.2.5 Github Integration. Github is being used to manage the co-
ordination of multiple developers across several time zones and
countries in extending Maiko, Medley, and the tools and utilities.
A major effort was the integration of Github functions with the
Interlisp File Manager. GITENS is a set of functions that includes
amenu-driven interface to compare Lisp source files on a function-
by-function basis, supporting Interlisp’s characteristic “residential”
approach to development.

Andrew Sengul

4.2.6 Mouse and Keyboard Usage. Originally, Interlisp supported
the three-button mice available with many Xerox computers. These
have largely disappeared so the interface APIs have been extended
to support mice with two buttons (as often used with Windows),
one button (as with Macs) or a touchpad. Function keys on several
popular keyboards have been mapped to codes emitted by Xerox-
type mice to allow access to the original functionality; a “meta”
key allows emulation of the middle mouse button of a three-button
mouse. Work is ongoing to implement more scroll wheel and mid-
dle mouse button functionality.

Only a few keyboard models were available when Interlisp was
developed and every application had a unique way of associating
input keycodes with program functions. This is impossible now;
users want uniform treatment, no matter what keyboard they use.
Interlisp.org is working to broadly organize keyboard encoding
and communication because keyboard handling is buried in sev-
eral different locations within Maiko and Medley. Different utili-
ties interpret certain keystrokes in a variety of ways.

Our goal is to build a unified keyboard model that will accommo-
date a large number of commercial keyboards and unify keyboard
handling across tools and applications. This is likely to involve
translators interpreting “niche” keyboard types as more common
keyboards and/or translators from actual keycodes to an internal
model. We expect this to increase the speed with which we can
port Medley to different computing platforms.

4.3 Applications

Numerous applications have been built using versions of Interlisp
including many early Al tools as well as ROOMS[4], NoteCards[15],
a workbench for writing LFG grammars([7], Intelligent Database
Assistant (IDA), LOOPS, and the Strategic Automated Discovery
System (STRADS) [5]. Recently, an affiliate of Interlisp.org discov-
ered an archive of the Stanford Al Laboratory containing sources
for Doug Lenat’s AM and Eurisko programs?, written in an early
version of Interlisp. Interlisp.org has demonstrated they can be
loaded into a Medley Interlisp environment with minimal changes
and are documenting steps to make them usable again.

Interlisp.org is also collecting open source Common Lisp pro-
grams and using them to test the Medley Common Lisp implemen-
tation, with some changes to make them easier to use, and provid-
ing them through our GitHub repository for public use. Some of
these applications include ATMS, BB1 and NIKL. Work will con-
tinue throughout this year to get them running in Medley reliably
and provide minimal documentation (or more, if possible).

4.4 LOOPS

The Lisp Object-Oriented Programming System (LOOPS) is unique
among programming systems in that it combines four different
paradigms for software development:

o Imperative/Functional Programming
e Object-Oriented Programming

o Aspect-Oriented Programming

e Rule-Based Programming

Zhttps://white-flame.com/am-eurisko.html

https://white-flame.com/am-eurisko.html

The Medley Interlisp Revival

The integration of these paradigms provides the software archi-
tect and developer with a comprehensive toolkit for building large
applications [2], allowing for the choice of a data representation
and problem solving approach that best meets the needs of a given
application. The Medley Interlisp tools and utilities were extended
to operate with the LOOPS constructs seamlessly, and Medley’s in-
terface tools allow the creation of graphical displays reflecting the
values of variables to which they are attached.

Researchers at PARC developed the Truckin’ game to help users
understand how to program in a multiparadigm environment and
visualize what was happening as the game evolved [13]. Truckin’
simulated the activity of truck drivers working to make deliveries
on time, accounting for geography, varying types of goods and the
need to refuel [12]. LOOPS is documented in three books that ad-
dress the Basic System, the Tools and Utilities, and the Rule-Based
System,; the latter volume details Truckin’ and its development.

4.5 Documentation

Interlisp.org has access to a wide variety of documentation about
Interlisp and Common Lisp, including original Xerox PARC manu-
als, memoranda and program and application documentation from
the Computer History Museum’s PARC archive. Much of this doc-
umentation was written by the original developers who already
knew how to use the system and can be obtuse for new users. In-
terlisp.org has released additional volumes on the usage of Medley
Interlisp and LOOPS since 2021, all of which are available at In-
terlisp.org. These include:

o Interlisp: The Language and its Usage
o Medley Interlisp: The Interactive Programming Environment
e Medley Interlisp: Interactive Programming Tools
e LOOPS Volume I: The Basic System T
LOOPS Volume II: Tools & Utilities T
o LOOPS Volume III: Rule-Based Systems T

More work documenting Interlisp and Common Lisp applica-
tions is planned for the next two years, with a focus on supporting
new users.

4.5.1 Community Outreach. We revamped the Interlisp.org web-
site over the past year to make it easier to navigate, offering visi-
tors an array of options to support further Medley Interlisp devel-
opment. The website provides access to most of the material that
Interlisp.org has collected, with more information being added as
we locate sources. Our collection of new and recovered documents
extends beyond the website to the GitHub and Zotero repositories.

Interlisp.org continues its outreach to the broader Lisp and com-
puter science community through technical presentations. Three
talks were presented in 2023:

e BALISP: In March 2023, the project’s efforts were presented
to the Bay Area Lisp meetup group. The slides are available
on the project’s Google Drive® and the talk on Youtube®.

o Software Preservation Network (SPN): On Nov. 2, 2023 Larry
Masinter presented to the SPN Idea’s Workshop technical

T Draft available at Interlisp.org

In progress, forthcoming
3https://drive.google.com/file/d/1xpXSoEnc5PPnla7BHcionBbc8v-
Nxp7N/view?usp=sharing
4https://www.youtube.com/watch?v=N1MobfEaoWY

ELS’24, May 6-7 2024, Vienna, Austria

details of our work as well as suggesting future collabora-
tive projects across the community.

e BCS Computer Conservation Society (CCS): Steve Kaisler
presented a talk entitled “Software Archaeology: The Med-
ley Restoration Project” to the CCS Monthly Meeting on
Nov. 16, 2023 in London, England. It included a brief his-
tory of Interlisp, a review of some applications, and discus-
sion of challenges in in modernizing Medley Interlisp (some
of which have been presented in this paper).

Articles on the Medley Interlisp project have appeared in The
Register [11], Hackaday [10] and Hacker News [3].

ACKNOWLEDGMENTS

We acknowledge the leadership and historical perspective of some
of the original developers - Larry Masinter, Nick Briggs, Frank Ha-
lasz, Ron Kaplan and the other members of Interlisp.org. We also
acknowledge the estate of John Sybalsky for granting rights to use
and distribute the source code for Medley Interlisp, and Eric Kalt-
man and his students at UC Channel Islands for efforts in organiz-
ing the Zotero repository. Funding for this effort has been provided
by members of Interlisp.org.

REFERENCES

[1] Daniel G. Bobrow and Bertram Raphael. New programming languages for artifi-
cial intelligence research. ACM Comput. Surv., 6(3):153-174, sep 1974. ISSN 0360-
0300. doi: 10.1145/356631.356632. URL https://doi.org/10.1145/356631.356632.

[2] Daniel G. Bobrow and Mark Stefik. The LOOPS Manual. Xerox Corporation, Palo
Alto, CA, USA, 1983.

[3] Paolo Amoroso et al. My encounter with Medley Interlisp., January 2023. URL
https://news.ycombinator.com/item?id=34300806.

[4] D. Austin Henderson and Stuart Card. Rooms: the use of multiple virtual
workspaces to reduce space contention in a window-based graphical user in-
terface. ACM Trans. Graph., 5(3):211-243, Jul 1986. ISSN 0730-0301. doi:
10.1145/24054.24056. URL https://doi.org/10.1145/24054.24056.

[5] Stephen H. Kaisler. A knowledge based system for geopolitical analysis. In

Proceedings of the 57th MORS Symposium. Military Operations Research Society,

Jun 1989.

Stephen H. Kaisler. Medley Interlisp: The Interactive Programming Environment.

Interlisp.org, Palo Alto, CA, USA, 2021.

Ronald M. Kaplan and John T. Maxwell. LFG Grammar Writer’s Workbench. Xe-

rox Corporation, Palo Alto, CA, USA, Mar 2003.

[8] David Moon, Kent M. Pitman, Larry Masinter, Brad Miller, Scott Fahlman,
Warren Harris, and Jon L White. Issue: Eval-other (version 1), 1988. URL
https://github.com/masinter/parcftp-cl/blob/main/cl/cleanup/old-mail/eval-
other.mail.

[9] Greg Nuyens. Font/Character documentation. Xerox Corporation, Palo Alto, CA,
Mar 1986.

[10] Maya Posch. Reviving Interlisp with the Medley Interlisp project,
July 2023. URL https://hackaday.com/2023/07/09/reviving-interlisp- with-the-
medley-interlisp-project/.

[11] Liam Proven. Revival of Medley/Interlisp: Elegant weapon for a more civilized

age sharpened up again, November 2032. URL https://www.theregister.com/

2023/11/23/medley _interlisp_revival/.

Mark Stefik. Truckin’ and the knowledge competitions, 2017. URL https://www.

markstefik.com/?page_id=359.

Mark Stefik, Daniel G. Bobrow, Sanjay Mittal, and Lynn Conway. Knowledge

programming in loops: Report on an experimental course. The Al Magazine,

pages 3-13, 1983.

[14] Xerox Artificial Intelligence Systems. Interlisp-D: A Friendly Primer. Xerox Cor-
poration, Pasadena, CA, USA, Nov 1986.

[15] Xerox Special Information Systems. NoteCards™ Release 1.2 Reference Manual.
Xerox Corporation, Pasadena, CA, USA, Apr 1985.

[16] Warren Teitelman. Interlisp. SIGART Bull., page 8-9, dec 1973. ISSN 0163-5719.
doi: 10.1145/1056786.1056787. URL https://doi.org/10.1145/1056786.1056787.

G

[7

=
&

ey
&

https://doi.org/10.1145/356631.356632
https://news.ycombinator.com/item?id=34300806
https://doi.org/10.1145/24054.24056
https://github.com/masinter/parcftp-cl/blob/main/cl/cleanup/old-mail/eval-other.mail
https://github.com/masinter/parcftp-cl/blob/main/cl/cleanup/old-mail/eval-other.mail
https://hackaday.com/2023/07/09/reviving-interlisp-with-the-medley-interlisp-project/
https://hackaday.com/2023/07/09/reviving-interlisp-with-the-medley-interlisp-project/
https://www.theregister.com/2023/11/23/medley_interlisp_revival/
https://www.theregister.com/2023/11/23/medley_interlisp_revival/
https://www.markstefik.com/?page_id=359
https://www.markstefik.com/?page_id=359
https://doi.org/10.1145/1056786.1056787

	Abstract
	1 Introduction
	2 The Project
	2.1 Adaptation to Modern Platforms
	2.2 Reducing Barriers to Entry

	3 Interlisp in Perspective
	3.1 A Model of Interactive Software Development

	4 Medley Interlisp Ecosystem
	4.1 Maiko
	4.2 Medley Interlisp
	4.3 Applications
	4.4 LOOPS
	4.5 Documentation

	References

