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Numerical weather predications



Half a century of success stories in numerical weather predictions
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Abstract

Advances in numerical weather prediction represent a quiet revolution because they have
resulted from a steady accumulation of scientific knowledge and technological advances over
many years that, with only a few exceptions, have not been associated with the aura of
fundamental physics breakthroughs. Nonetheless, the impact of numerical weather
prediction is among the greatest of any area of physical science. As a computational problem,
global weather prediction is comparable to the simulation of the human brain and of the
evolution of the early Universe, and it is performed every day at major operational centres
across the world.




And there is more to come with km-scale simulations

Number of model grid points
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And there is more to come with km-scale simulations

Simulated visible satellite image from IFS at 9 km Simulated visible satellite image from IFS at 4.4 km
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But progress in km-scale modelling is tough...
TOP500 LIST - JUNE 2023

Compute power?

9 km — 1 km — Factor 93 = 729 compute power

Waiting for Moore's law.
— 29 =512 — Let’s wait for 18 years?

Data and storage?
9km: 6,599,680 points x 137 levels x 10 variables
— 9 billion points — >0.5TB

1.5km: 256,800,000 points x 137 levels x 10 variables
— 352 billion points —» > 20 TB

Uff...

< ECMWF

Rmax and Rpeak values are in PFlop/s. For more details about other fields, check the TOP500 description.

Rpeak values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into
account the Turbo CPU clock rate where it applies.

e

Rank

1-100  101-200 201-300  301-400  401-500 -

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C
2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C
2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100
Infiniband, Atos

EuroHPC/CINECA

Italy

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/Oak Ridge National Laboratory

United States

Cores

8,699,904

7,630,848

2,220,288

1,824,768

2,614,592

Rmax
(PFlop/s)

1,194.00

442.01

309.10

238.70

148.60

Rpeak
(PFlop/s)

1,679.82

537.21

428.70

304.47

200.79

Power
(kW)

22,703

29,899

6,016

7,404

10,096



But progress in km-scale modelling is tough...
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The digital revolution of Earth-system science

Peter Bauer ©'%, Peter D. Dueben’, Torsten Hoefler? Tiago Quintino ®3, Thomas C. Schulthess® and

Nils P. Wedi'
Computational science is crucial for delivering ther and climate predicti F d decades of
high-perf i i thereis seri bout the ility of this application in the post-Moore/
Dennard era. Here, we di thep limitati: in the field and propose the design of a novel infrastructure that is scal-
able and more adaptable to future, yet unk i hi

c dity parallel processing. Moore's law drove the economics of

he human impact on greenh gas conc ions in the

atmosphere and the effects on the climate system have been

documented and explained by a vast resource of scientific
publications, and the conclusi that anthropogenic greenh
gas emissions need to be drastically reduced within a few decades
to avoid a climate catastrophe—is accepted by more than 97% of the
Earth-system science community today'. The pressure to provide
skillful predictions of extremes in a changing climate, for example,
the number and intensity of tropical cyclones and the likelihood of
heatwaves and drought co-occurrence, is particularly high because
the present-day impact of natural hazards at a global level is stag-
gering. In the period 1998-2017, over 1 million fatalities and several
trillion dollars in economic loss have occurred’. The years between
2010 and 2019 have been the costliest decade on record with the
economic damage reaching US$2.98 trillion—USS$1.19 trillion
higher than 2000-2009". Both extreme weather and the potential

computing by stating that every 18 months, the number of transis-
tors on a chip would double at approximately equal cost. However,
the cost per transistor starts to grow with the latest chip genera-
tions, indicating an end of this law. Therefore, in order to increase
the performance while keeping the cost constant, transistors need to
be used more efficiently.

In this Perspective, we will present potential solutions to adapt
our current algorithmic framework to best exploit what new digital
technologies have to offer, thus paving the way to address the afore-
mentioned challenges. In addition, we will propose the concept of
a generic, scalable and performant prediction system architecture
that allows advancement of our weather and climate prediction
capabilities to the required levels. Powerful machine learning tools
can accelerate progress in nearly all parts of this concept.

Technology <

Time and energy to solution

> Science

Spatial resolution

Code portability

Individual contributions from:
Numerical methods, algorithms and data
structures

Machine learning

Domain-specific programming languages
Heterogeneous processing and memory
architectures

Earth-system
process complexity

System resilience

< Uncertainty estimate
of Earth-system view

Benefit beyond the state of the art
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What about the machine learning revolution?



Machine Learning — Why in Earth System modelling

machine learning
Inputs g Outputs

Earth system science is difficult as the Earth
system is huge, complex and chaotic, and as the
resolution of our models is limited

However, we have a huge amount of observations
and Earth system data

» There are many application areas for machine
learning in Earth system science




Explore the space of machine learning for weather and climate modelling

Improve understanding

* Fuse information content from different datasources
* Unsupervised learning

* Causal discovery

* Al powered visualisation

* Uncertainty quantification

Speed up simulations

* Emulate model components

* Port emulators to heterogeneous hardware

* Use reduced numerical precision and sparse machine learning
*  Optimise HPC and data workflow

* Data compression

Link communities

Improve models * Health —e.g. for predictions of risks

* Learn components from observations * Energy —e.g. for local downscaling

* Correct biases * Transport —e.g. to combine weather and loT data
* Quality control of observations and observation operators * Pollution — e.g. to detect sources

* Feature detection * Extremes — e.g. to predict wild fires

Weather and climate modelling centres mostly explore the “hybrid space” coupling machine learning to conventional models.



Science example 1: Downscaling with Generative Adversarial Networks

Noise
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' v
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B
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Input: IFS Model Simulation fields on
coarse (9 km) grid

Output: Precipitation observation on
fine (1 km) grid

Harris, McRae, Chantry, Dueben, Palmer JAMES 2022
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Science example 2: Transformer networks for ensemble post-processing
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https://jalammar.github.io/illustrated-transformer/
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Let’s use transformers in the ensemble dimension

following the work of Tobias Finn

"Self-Attentive Ensemble Transformer: Representing Ensemble
Interactions in Neural Networks for Earth System Models." arXiv
preprint arXiv:2106.13924

Let’s test this for hindcast ensembles in a
collaboration between Microsoft and ECMWF

Ben Bouallegue, Weyn, Clare, Dramsch, Dueben, Chantry arXiv 2023



Science example 2: Transformer networks for ensemble post-processing

=== 3x3 convolution
== 2x2 average pooling
===) 2x2 up-sampling
=) skip connection

Transformers at all
levels of the U-net

CRPS[°C]

Better

0.35

In comparison to the ENS-10 benchmarks from https://arxiv.org/abs/2206.14786

CRPS

2m temperature
Continuous ranked probability score
20210101 00z to 20211201 12z

Global

raw ENS

benchmark
3vlead96

Svar+tcc

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
forecast lead time [d]

7500 [m?s~?] T850 [K] T2m [K]

Metric Model 5-ENS 10-ENS 5-ENS 10-ENS 5-ENS 10-ENS

Raw 81.03 78.24 0.748 0.719 0.758 0.733
" EMOS 79'08:i:0.739 81'74:1:6.131 0.725:t0.002 0.756i0‘052 0.718j:0.003 0.749:1:0.054
2 MLP 75.8450:016 74 63+0:029 0701527 * (0.684F**  (0.6845%* 0.672*%*
O LeNet 75.56=°1°1 74.41+°-19°  (0.689F%°* (0.674F**  0.669F7°* (.659F%*
U-Net T6.66 """ AN ERTVYE GEEFESTTR S0 a0
Transformer  77.30%°:61 7479*0-11%  (,686%°°°2 (.665°-°°%2  (.649°-°°¢ (.626+°°%*

PoET U-net Transformer 73.97 0.650

Ben Bouallegue, Weyn, Clare, Dramsch, Dueben, Chantry arXiv 2023



Science example 3: Improve results via emulation

To represent 3D cloud effects for radiation (SPARTACUS) within simulations of the Integrated Forecast Model is
four time slower than the standard radiation scheme (Tripleclouds)

3D signa
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Can we emulate the difference between Tripleclouds and SPARTACUS using neural networks?
[n]

(o] 3D prediction: change to longwave heating rate (troposphere)
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Meyer, Hogan, Dueben, Mason JAMES 2022



Learn how to combine operational models and machine learning

* During data-assimilation the model trajectory is “synchronised” with observations «D
» lItis possible to learn model error when comparing the model with (trustworthy) observations
Approach: Learn model error from a direct comparison of the model trajectory and observations NVIDIA.

Benefit: Correct for model error and understand model deficiencies
Question: What happens when the model is upgraded and the error pattern change?
b) NN prediction

a) NN Target
i — e
E _ﬁ — %4
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Laloyaux, Kurth, Dueben, Hall JAMES 2022



Dude, when do you finally wake up and do machine learning for the full model?

€he New YJork Eimes m

j If Hamlet were a musical comedy, rather than a tragedy, how would it have ended?
Describe the plot.

THE SHIFT

An A.L-Generated Picture Won an Art
Prize. Artists Aren’t Happy.

“Iwon, and [ didn't break any rules,” the artwork’s creator says.

If Hamlet were a musical comedy, rather than a tragedy, the ending would likely be much

Hovetisanice &[] sk

happier and more lighthearted. Instead of ending in a violent and tragic showdown, with
the deaths of several major characters, the play would likely have a more comedic and
satisfying resolution.

For example, the play could end with Hamlet successfully avenging his father's death, but
then choosing to forgive and reconcile with his uncle, the new king. This would allow
Hamlet to put aside his grudges and bitterness, and to find peace and happiness.

As part of this resolution, there could be a big, energetic finale song, where the
characters sing and dance together, expressing their newfound sense of joy and unity.
This could be a lively and upbeat number, with a catchy and infectious melody, and lyrics
that reflect the themes and events of the play, while also expressing a sense of hope and

optimism for the future.

Overall, a musical comedy version of Hamlet would likely have a more uplifting and
optimistic ending, with the main character achieving a sense of closure and resolution,

and moving on with his life in a positive and fulfilling way.




Can we replace conventional Earth System models by deep learning?
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Can we replace conventional Earth System models by deep learning?

v PL Normalized RMSE difference ]

SIS L L L L[] S .

GraphCast from Google/Deepmind is beating conventional
weather forecast model in deterministic scores.

But how do these models actually work?

Initial conditions

They get the best results when using very large timesteps
(6h vs. 600s) and a couple of the previous timesteps as input.

ERAS, 24 hours ML forecast, 24 hours They are trained for a small Root Mean Square Error.
— They smear out for large lead times.

Can they extrapolate? Learn uncertainty? Learn from
observations? Fill the state vector? Learn all important
processes?

ERAS5, 72 hours ML forecast, 72 hours Images from Keisler (2022)



What results are showing: Time-series of day 6, RMSE over Europe

Same starting point....Similar results

Root mean square error | 500hPa geopotential
Europe
T+144 | od oper 0001

PanguWeather vs
m—  HRES oper i ECMWF

=  PanguWeather

Results extremely
close...

‘forecast busts’ at similar
time

More ‘physical’ than one
might think!
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What the forecasts are showing: Severe Cold / Sodankyla, Finland, 22 Feb 00UTC

To explore the ability of data-driven
models to capture extreme events we
examine a case study from Finland
from earlier this year, when -29C was
observed.

We find that Pangu and FourCastNet
recognised the severity of this event
earlier, however all models
underestimated the temperature
significantly, to a similar degree.

Observation — green hourglass
IFS HRES - red dot

IFS ENS - blue

Pangu — cyan dot
FourCastNet — magenta dot
Climatology — red box plot

Figure from
Zied Ben-Bouallegue
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Can we replace conventional Earth System models by deep learning?
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How will ML for weather and climate evolve in a public/private partnership?

Predominantly
private sector

Symbiosis

Predominantly public
sector

Protocols and standards
e Internationally agreed climate scenarios and data
generation protocols

e [mpact-driven requirement collection
e Standards for verification, validation, uncertainty

quantification

Reference data lakes

e Frequent refresh,
high-quality, federated
dataspaces

e FAIR principles

e User-driven reference text
repositories

v

Foundation models

e Interactive, text-based
interfaces

e Transparent and quality
assured adaptation to
users of weather and
climate information

v

Alon top

e Emulated prediction
systems targeting
applications with societal
relevance

e User friendly interpretation
and output provision

Physical
systems

Data

Information

Earth-system models and

observations

e Emulation of physics-based
model components

e Global-to-local observation
exploitation

e Assimilation of
observations into models

e Integration of impact
sector models and data

e Acceleration of high-
performance computing

e Data compression

Alinside

e Hybrid machine learned
-physical models

e Simulation-observation
fusion

e Research-to-production
transfer

Knowledge and insights

nature reviews earth & environment

Explore content v  About the journal v  Publish withus v Subscribe

nature > nature reviews earth & environment > comment > article

Comment | Published: 01 August 2023

Deep learning and a changing economy in weather and
climate prediction

Peter Bauer &, Peter Dueben, Matthew Chantry, Francisco Doblas-Reyes, Torsten Hoefler, Amy

McGovern & Bjorn Stevens

Nature Reviews Earth & Environment 4, 507-509 (2023) | Cite this article

638 Accesses | 34 Altmetric | Metrics

The rapid emergence of deep learning is attracting growing private interest in the
traditionally public enterprise of numerical weather and climate prediction. A public-
private partnership would be a pioneering step to bridge between physics- and data-
based methods, and necessary to effectively address future societal challenges.




You want to learn more? — Have a look at our MOOC material

ECMWEF Massive Open Online Course (MOOC) on Machine Learning in Weather & Climate:
https://Ims.ecmwf.int/course/index.php?categoryid=1

40h of content, >9000 registered participants, 159 countries, 60 experts, 47 videos

SSECMWF

Y

MOOC Machine
Learning in Weather

& Climate

Starting on 09/01/2023



https://lms.ecmwf.int/course/index.php?categoryid=1

What have we learned?

The quiet revolution (1980-2015):
* Investment into Earth system modelling and Earth system observations can make a huge
difference.

The digital revolution (2015-today):
« Conventional models need to be made future proof via the use of new coding standards.
 Km-scale models are possible today and are starting to make a difference.

The machine learning revolution (2022-today):

* A PhD student can write a machine learning tool of 2,000 lines of Python code that can beat the
best weather prediction model in the world based on hundreds of person years of work and
1,000,000 lines of Fortran code.

« Data needs to be open and easy to use to make progress.



What machine learned models can and cannot do

« Conventional models will not be replaced by machine learning models entirely.

» Machine learned models can predict weather extremes.

« Within the next couple of years most weather predictions will come from machine learning models.

« The availability and quality of data (observations, reanalysis and models) limits the quality of predictions.
 Km-scale models will make a difference for the generation of training datasets.

« Machine learning models will be able to predict the climate despite the current extrapolation problem.

* Not many meteorologists will be replaced by machine learning models.



What will we gain, what will we need?

What will we gain?
Better predictions for local and global weather and climate.
Models will become easier to use and easier to trigger.

It will be easy to build a specific machine learning model for a specific application.
What will we need?

Federated access to weather and climate data.

Projects such as DestinE and EVE to provide the infrastructure.

Many thanks! Peter.Dueben@ecmwf.int @PDueben



The strength of a common goal




