Machine learning for weather and climate prediction
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What is the European Centre for Medium-Range Weather Forecasts (ECMWEF)?

www.ecmwf.int

» Research institute.

» 24/7 operational weather service for medium-range, monthly and seasonal forecasts.
» Independent, intergovernmental organisation supported by 34 states.

» Based in Reading, Bologna and Bonn; =350 member of staff.

 Home of two supercomputers.

« Home of the Integrated Forecast System (IFS).



Numerical weather predications Special thanks to Simon Lang

Control forecast Perturbed forecast 1 Perturbed forecast 2

Observations Data assimilation Numerical weather
forecasts

é———————— High-performance and (big) data processing infrastructure =——————




Archive Growth

Machine Learning — Why did it start in 2018?
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Machine Learning — Why in Earth System modelling

machine learning
Inputs g Outputs

Earth system science is difficult as the Earth
system is huge, complex and chaotic, and as the
resolution of our models is limited

However, we have a huge amount of observations
and Earth system data

» There are many application areas for machine
learning in Earth system science




And there is more to come in Destination Earth

m Kb m

A digital twin of Earth for the green transition

For its green transition, the EU plans to fund the development of digital twins of Earth. For these twins to be more
than big data atlases, they must create a qualitatively new Earth system simulation and observation capability
using a methodological framework responsible for exceptional advances in numerical weather prediction.

Peter Bauer, Bjorn Stevens and Wilco Hazeleger

he European Union (EU) intends to
T become climate neutral by 2050, and

the set of policies designed to bring
about this green transition — the European
Green Deal — was announced in December
2019 (ref. ). Accompanied by €1 trillion of
planned investment, Green Deal policies aim
to help the world’s second-largest economy
sustainably produce energy, develop
carbon-neutral fuels and advance circular
products in energy-intensive industrial
sectors with zero waste and zero pollution.

A key element of the Green Deal is its
dependence on the digital transformation’
— an openly accessible and interoperable
European dataspace as a central hub
for informed decision making. The EU
1den\med twol ]andmark actions to support

h, a n systems:

change in the physical content of Earth
system models is making them amenable
to approaches that harmonize the physical
laws they encode with ever more extensive
observations to provide the best possible
estimate of the state of our planet. Hence,
digital twins must focus exactly on how best
to realize this convergence of the modelling
and observation worlds.

A methodological framework for the
twin’s architecture already exists in the
form of data assimilation, which numerical
weather prediction has developed with
success over decades'’. Data assimilation
combines data from different observational
sources with physical Earth system model
simulations to derive an estimate of the state

Time and energy to solution

Code portability «¢--

PERSPECTIVE

https://doi.org/10.1038/543588-021-00023-0

nature
computational
science

M) Check for updates

The digital revolution of Earth-system science

Peter Bauer ©'%, Peter D. Dueben’, Torsten Hoefler?, Tiago Quintino @3, Thomas C. Schulthess* and

Nils P. Wedi'

Computational science is crucial for delivering reliable wuﬂlcr and climate predi F despite decades of

high-performance eomputmg experience, llnn is serious

i "Illyoﬂﬁls licationi the post-Moore/

Dennard era. Here, we di the p
able and more adaptable to future, yﬂ k

the
m the ﬁcld and propose the design of a novel infrastructure that is scal-

¢ dity parallel processing. Moore's law drove the economics of

_I_he human impact on greenh gas jons in the
atmosphere and the effects on the climate system have been
documented and explamed by a vast resource of scnenhﬁ«.
publications, and the conclusi that

gas emissions need to be drastically reduced mthm a few decades
to avoid a climate catastrophe—is accepted by more than 97% of the
Earth-system science community today'. The pressure to provide

computing by stating that every 18 months, the number of transis-
tors on a chip would double at approximately equal cost. However,
the cost per transistor starts to grow with the latest chip genera-
tions, indicating an end of this law. Therefore, in order to increase
the performance while keeping the cost constant, transistors need to
be used more efficiently.

Technology <

> Science

Spatial resolution

Individual contributions from:
* Numerical methods, algorithms and data

structures
* Machine learning

* Domain-specific programming languages
* Heterogeneous processing and memory

architectures

Earth-system
process complexity

System resilience

< Uncertainty estimate
of Earth-system view



Phase I: 2018-2021 — Explore the space

Improve understanding

Fuse information content from different datasources
Unsupervised learning

Causal discovery

Al powered visualisation

Uncertainty quantification

Speed up simulations and green computing

Emulate model components

Port emulators to heterogeneous hardware

Use reduced numerical precision and sparse machine learning
Optimise HPC and data workflow

Data compression

Improve models

Learn components from observations

Correct biases

Quality control of observations and observation operators
Feature detection

Link communities

Health — e.g. for predictions of risks

Energy — e.g. for local downscaling

Transport — e.g. to combine weather and loT data
Pollution — e.g. to detect sources

Extremes — e.g. to predict wild fires



Phase II: 2022-2026 — Hybrid machine learning towards operational use

We already had great success stories when using machine
learning in operational weather and climate predictions in:

- Some decision trees in ensemble post-processing...
- Some neural networks in observation operators...

-> We will need to do more and fast!

Most promising candidates for machine learning applications
for operational use:

e Parametrisation emulation

* Observation operators

* Post-processing pointwise/ensembles/S2S

* Parameter optimisation

* Online bias correction




Science example 1: Downscaling with Generative Adversarial Networks
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Input: IFS Model Simulation fields on
coarse (9 km) grid

Output: Precipitation observation on
fine (1 km) grid

Harris, McRae, Chantry, Dueben, Palmer JAMES 2022
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Science example 2: Transformer networks for ensemble post-processing
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https://jalammar.github.io/illustrated-transformer/
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Let’s use transformers in the ensemble dimension

following the work of Tobias Finn

"Self-Attentive Ensemble Transformer: Representing Ensemble
Interactions in Neural Networks for Earth System Models." arXiv
preprint arXiv:2106.13924

Let’s test this for hindcast ensembles in a
collaboration between Microsoft and ECMWF

Ben Bouallegue, Weyn, Clare, Dramsch, Dueben, Chantry arXiv 2023



Science example 2: Transformer networks for ensemble post-processing

=== 3x3 convolution
== 2x2 average pooling
===) 2x2 up-sampling
=) skip connection

Transformers at all
levels of the U-net

CRPS[°C]

Better

0.35

In comparison to the ENS-10 benchmarks from https://arxiv.org/abs/2206.14786
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Ben Bouallegue, Weyn, Clare, Dramsch, Dueben, Chantry arXiv 2023



Science example 3: Improve results via emulation

To represent 3D cloud effects for radiation (SPARTACUS) within simulations of the Integrated Forecast Model is
four time slower than the standard radiation scheme (Tripleclouds)
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Can we emulate the difference between Tripleclouds and SPARTACUS using neural networks?
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Meyer, Hogan, Dueben, Mason JAMES 2022



Learn how to combine operational models and machine learning

* During data-assimilation the model trajectory is “synchronised” with observations «D
» lItis possible to learn model error when comparing the model with (trustworthy) observations
Approach: Learn model error from a direct comparison of the model trajectory and observations NVIDIA.

Benefit: Correct for model error and understand model deficiencies
Question: What happens when the model is upgraded and the error pattern change?
b) NN prediction
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Laloyaux, Kurth, Dueben, Hall JAMES 2022



We need to make developments comparable via benchmark datasets for Phase Il

Benchmark datasets include:

A problem statement

Data that is available online

Python code or Jupyter notebooks

A reference machine learning solution
Quantitative evaluation metrics

Visualisation, diagnostics and robustness tests

Computational benchmarks

Benchmark datasets are useful because:

They allow a quantitative evaluation of machine
learning approaches

They reduce data access and help scientists to get
access to relevant data

They allow for a separation of concerns between
domain sciences and machine learning experts

They allow for a separation of concerns between
domain sciences and HPC experts



Missing machine learning benchmark datasets for atmospheric sciences

Transfer learning

Online and
reinforcement learning

Trustworthy Al,

explainable Al, physical

consistency

Training of machine
learning tools in a
changing climate

Unstructured grids on
the sphere

Multi-scale interactions
in space and time

Dataflow and handling
of huge datasets

Hybrid modelling and
coupling

Uncertainty
quantification and
representation

Weather and climate
predictions based on
machine learning

Modelling

£

The emulation of model
components

Physical,

turbulent
systems

Benchmarks

needed

Post-processing and
down-scaling

Site-specific
characteristics of
observations

Composite
distributions of
observations

Obser-
vations

Extreme value
predictions

Missing data and
irregular spacing of
monitoring sites

Auto correlation and
periodic patterns

Physical constraints

Data anonymity

Fusion of diverse
datasets

Air-quality applications

Nowcasting
applications

Uncertainty estimates

Dueben, Schultz, Chantry, Gagne, Hall, McGovern AIES 2022

Feature detection




Learn how to use machine learning at scale — The MAELSTROM project

MAELSTROM Partner Country
ECMWF Member and Cooperating States in Europe

Norwegian

uuuuuuuuuuuuuuuu

Weather & climate ML WORKFLOW
APPLICATIONS & SOFTWARE

& ML SOLUTIONS | benchmarking
development

SSECMWF

Co-design cycle

i I

UNIVERSITE DU
LUXEMBOURG

HARDWARE
benchmarking &
bespoke system

design

COMPUTER™ ~
ENGINEERING <7

PMEADLETROM

Mpy; DES\G‘\
MAchinE Learning for Scalable meTeoROlogy and cliMate E SYSTEM
Our datasets have been published!
https://www.maelstrom-eurohpc.eu/ @MAELSTROM_EU




Phase X: A full machine learning model for weather and climate
€he New YJork Times | susscruse Ff

ChatGPT:

THE SHIFT

An A.L-Generated Picture Won an Art
Prize. Artists Aren’t Happy.

“I won, and [ didn’t break any rules,” the artwork's creator says.

If Hamlet were a musical comedy, rather than a tragedy, how would it have en
Describe the plot.

£ eretisanice &> [] 0 1sk

If Hamlet were a musical comedy, rather than a tragedy, the ending would like
happier and more lighthearted. Instead of ending in a violent and tragic show
the deaths of several major characters, the play would likely have a more con

satisfying resolution.

For example, the play could end with Hamlet successfully avenging his father
then choosing to forgive and reconcile with his uncle, the new king. This woul
Hamlet to put aside his grudges and bitterness, and to find peace and happin §

As part of this resolution, there could be a big, energetic finale song, where ti |
characters sing and dance together, expressing their newfound sense of joy ¢
This could be a lively and upbeat number, with a catchy and infectious melod
that reflect the themes and events of the play, while also expressing a sense

optimism for the future.

Overall, a musical comedy version of Hamlet would likely have a more upliftin
optimistic ending, with the main character achieving a sense of closure and r¢
and moving on with his life in a positive and fulfilling way.

olorado State Fair. via Jasor

rst place in the digital category at the



Phase X: A full machine learning model for weather and climate

FourCastNet

MILLION-X

¥ T

NVIDIA.

NIVIDA’s Earth-2 is coming with FourCastNet



Can we replace conventional Earth System models by deep learning?

Nowcasting: E.g. via Google’s MetNet or by Deepmind in Ravuri et al. Nature 2021

NOAA forecast Ground truth Machine learning:
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Deep learning for multi-year ENSO forecasts: E.g. Ham, Kim, Luo Nature 2019
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Phase X: A full machine learning model for weather and climate

v PL Normalized RMSE difference ]

SIS L L L L[] S .

GraphCast from Google/Deepmind is beating conventional
weather forecast model in deterministic scores.

But how do these models actually work?

They are trained for a small Root Mean Square Error.
— They smear out for large lead times.

Initial conditions

. R | They get the best results when using very large timesteps
> j .l (6h vs. 600s) and a couple of the previous timesteps as input.

- Implicit? Explicit?

ERA5, 24 hours ML forecast, 24 hours

They do not model the physical equations,
they learn to please the scores.

Can they extrapolate? Learn uncertainty? Learn from
observations? Fill the state vector? Learn all important
processes?

ERAS5, 72 hours ML forecast, 72 hours Images from Keisler (2022)



Phase X: A full machine learning model for weather and climate

AN .
=] I'X:LV > physics > arXiv:2307.10128

Physics > Atmospheric and Oceanic Physics
[Submitted on 19 Jul 2023]
The rise of data-driven weather forecasting

Zied Ben-Bouallegue, Mariana C A Clare, Linus Magnusson, Estibaliz Gascon, Michael Maier-Gerber, Martin Janousek, Mark Rodwell, Florian Pinault, Jesper S
Dramsch, Simon T K Lang, Baudouin Raoult, Florence Rabier, Matthieu Chevallier, Irina Sandu, Peter Dueben, Matthew Chantry, Florian Pappenberger

Data-driven modeling based on machine learning (ML) is showing enormous potential for weather forecasting. Rapid progress has been made with impressive results for
some applications. The uptake of ML methods could be a game-changer for the incremental progress in traditional numerical weather prediction (NWP) known as the 'quiet
revolution' of weather forecasting. The computational cost of running a forecast with standard NWP systems greatly hinders the improvements that can be made from
increasing model resolution and ensemble sizes. An emerging new generation of ML models, developed using high-quality reanalysis datasets like ERA5 for training, allow
forecasts that require much lower computational costs and that are highly-competitive in terms of accuracy. Here, we compare for the first time ML-generated forecasts with
standard NWP-based forecasts in an operational-like context, initialized from the same initial conditions. Focusing on deterministic forecasts, we apply common forecast
verification tools to assess to what extent a data-driven forecast produced with one of the recently developed ML models (PanguWeather) matches the quality and attributes
of a forecast from one of the leading global NWP systems (the ECMWF IFS). The results are very promising, with comparable skill for both global metrics and extreme events,
when verified against both the operational analysis and synoptic observations. Increasing forecast smoothness and bias drift with forecast lead time are identified as current
drawbacks of ML-based forecasts. A new NWP paradigm is emerging relying on inference from ML models and state-of-the-art analysis and reanalysis datasets for forecast

initialization and model training.

Subjects: Atmospheric and Oceanic Physics (physics.ao-ph)
Cite as:  arXiv:2307.10128 [physics.ao-ph]
(or arXiv:2307.10128v1 [physics.ao-ph] for this version)
https://doi.org/10.48550/arXiv.2307.10128 @

Submission history

From: Zied Ben Bouallegue [view email]
[vl] Wed, 19 Jul 2023 16:51:08 UTC (18,531 KB)



Phase X: A full machine learning model for weather and climate

How will the forecast system of the future look like?
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How will ML for weather and climate evolve in a public/private partnership?

Predominantly
private sector

Symbiosis

Predominantly public
sector

Protocols and standards
e Internationally agreed climate scenarios and data
generation protocols

e [mpact-driven requirement collection
e Standards for verification, validation, uncertainty

quantification

Reference data lakes

e Frequent refresh,
high-quality, federated
dataspaces

e FAIR principles

e User-driven reference text
repositories

v

Foundation models

e Interactive, text-based
interfaces

e Transparent and quality
assured adaptation to
users of weather and
climate information

v

Alon top

e Emulated prediction
systems targeting
applications with societal
relevance

e User friendly interpretation
and output provision

Physical
systems

Data

Information

Earth-system models and

observations

e Emulation of physics-based
model components

e Global-to-local observation
exploitation

e Assimilation of
observations into models

e Integration of impact
sector models and data

e Acceleration of high-
performance computing

e Data compression

Alinside

e Hybrid machine learned
-physical models

e Simulation-observation
fusion

e Research-to-production
transfer

Knowledge and insights

nature reviews earth & environment

Explore content v  About the journal v  Publish withus v Subscribe

nature > nature reviews earth & environment > comment > article

Comment | Published: 01 August 2023

Deep learning and a changing economy in weather and
climate prediction

Peter Bauer &, Peter Dueben, Matthew Chantry, Francisco Doblas-Reyes, Torsten Hoefler, Amy

McGovern & Bjorn Stevens

Nature Reviews Earth & Environment 4, 507-509 (2023) | Cite this article

638 Accesses | 34 Altmetric | Metrics

The rapid emergence of deep learning is attracting growing private interest in the
traditionally public enterprise of numerical weather and climate prediction. A public-
private partnership would be a pioneering step to bridge between physics- and data-
based methods, and necessary to effectively address future societal challenges.




You want to learn more? — Have a look at our MOOC material

ECMWEF Massive Open Online Course (MOOC) on Machine Learning in Weather & Climate:
https://Ims.ecmwf.int/course/index.php?categoryid=1

40h of content, >9000 registered participants, 159 countries, 60 experts, 47 videos

SSECMWF

Y

MOOC Machine
Learning in Weather

& Climate

Starting on 09/01/2023



https://lms.ecmwf.int/course/index.php?categoryid=1

What is the direction? — Imagine if...

...we could collect and centralise most datasets of observations from the past and presence, as
well as model output and reanalysis data

« ...we would have mapping tools from any point in time and space to any point in time and
space for all datasets available

« ...we would have interpretation tools for physical reasoning including the extraction of physical
laws and the understanding of causality

« ...we would have a tool to estimate uncertainties of all datasets based on the interpretation of
mappings between different datasources

« ...all of these tools were scalable and easy to use from Python, Jupyter, Julia...

Many thanks! Peter.Dueben@ecmwf.int @PDueben



The strength of a common goal




