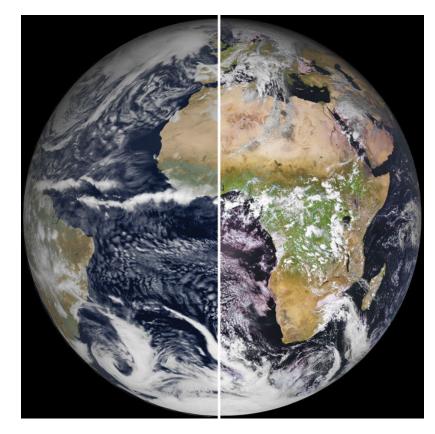
Earth System Modelling

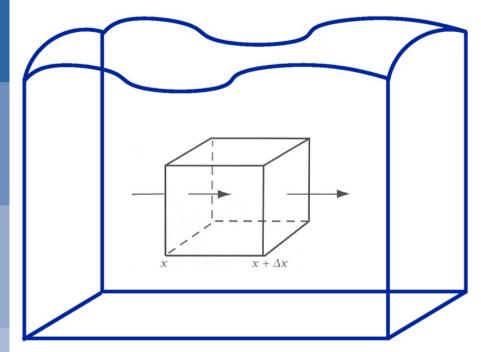
Peter Dueben

Head of the Earth System Modelling Section

The strength of a common goal



The ESIWACE and MAELSTROM projects have received funding from the European Union under grant agreement No 823988 and 955513.


Earth System Modelling and Computational Geometry of Earth System Analysis

- 1. What is the Earth system and why is it difficult to model the Earth system?
- 2. Why do we model the Earth system?
- 3. How do we model the Earth system?
- 4. How good are our models?
- 5. How do we represent uncertainties?
- 6. What geometry is important?
- 7. How do we use high performance computing?
- 8. What information is used? How does information link to geometry?
- 9. What is a good model?

10. What will machine learning do with Earth system modelling?

How to derive the equations?

Let's consider a volume of a fluid with a specific density $\rho(x,y,z,t)$ and velocity $\mathbf{u}(x,y,z,t)$

Resume:

We obtain the continuity equation of mass by evaluating mass conservations

world \rightarrow continuous math description

The total mass inside the volume is given by

$$M = \int_V \rho \, dV.$$

The change of mass in the volume is given by:

$$\frac{dM}{dt} = \frac{d}{dt} \int_{V} \rho \ dV = \int_{V} \frac{d\rho}{dt} \ dV.$$
(1)

We can also evaluate the change of mass by looking at fluxes through the boundaries:

$$\frac{dM}{dt} = -\int_{S} \rho \mathbf{v} \ d\mathbf{S} = -\int_{V} \nabla \cdot (\rho \mathbf{v}) \ dV.$$
(2)

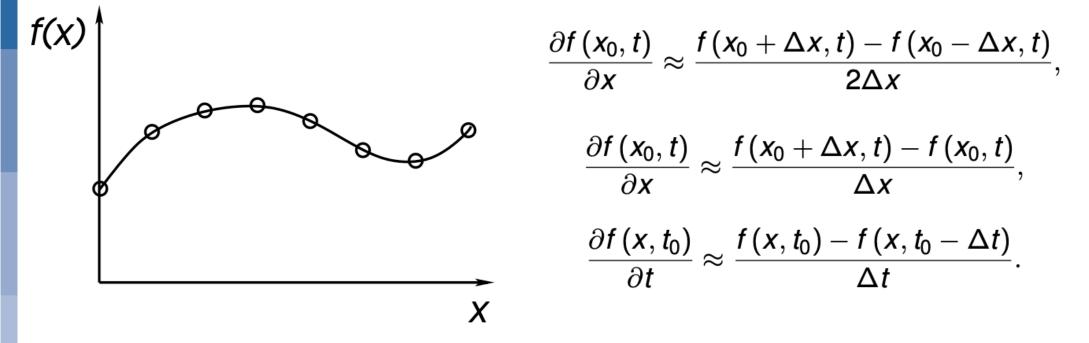
(1) and (2) together form the mass continuity equation

$$\int_{V} \frac{d\rho}{dt} \, dV + \int_{V} \nabla \cdot (\rho \mathbf{v}) \, dV = 0.$$

If we shrink the volume to an infinitesimal small area $(\lim_{\Delta x \to 0}, \lim_{\Delta y \to 0}, \lim_{\Delta z \to 0})$ we end up with the differential form of the continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0}.$$

We know the equations, so what's the problem?

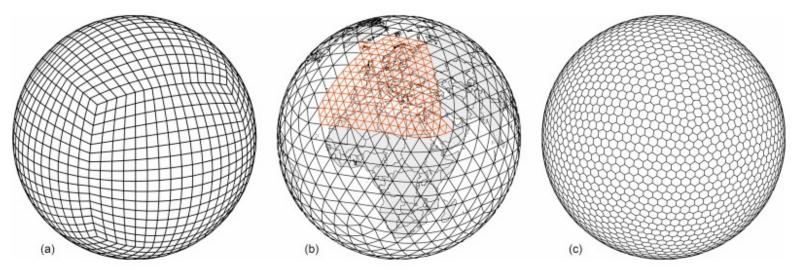

$$\begin{aligned} \frac{\partial \mathbf{v}}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) \mathbf{v} &= -\frac{\nabla \rho}{\rho} + \nu \nabla^2 \mathbf{v} + \frac{\mathbf{F}}{\rho} - 2\mathbf{\Omega} \times \mathbf{v} \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= \mathbf{0} \end{aligned}$$

The equations are non-linear and we cannot solve them...

How do we still make weather predictions?

world \rightarrow continuous math description \rightarrow discretised equations

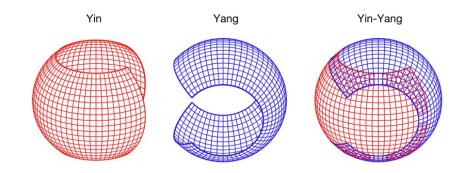
Finite difference method



We discretise our function f(x) at specific grid points f(0), $f(\Delta x)$, $f(2\Delta x)$...

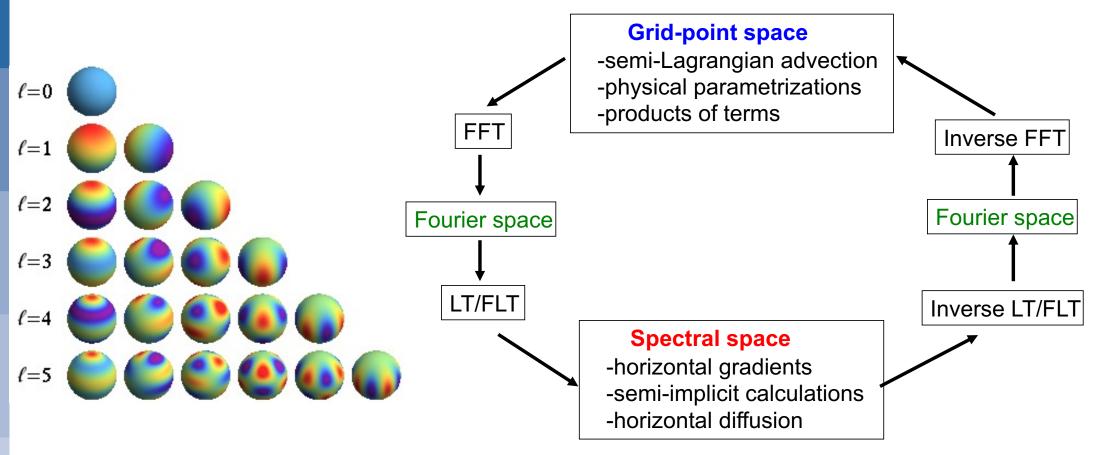
Derivatives are described by differential quotients \rightarrow There are plenty of different discretisation schemes

We need to discretise in both space and time


Popular grids

Cubed sphere

Icosahedral (triangular)


Icosahedral (hexagonal)

See also Annual Seminar 2020, ECMWF https://www.ecmwf.int/en/learning/workshops/annual-seminar-2020

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Spectral discretisation in the Integrated Forecast System (IFS)

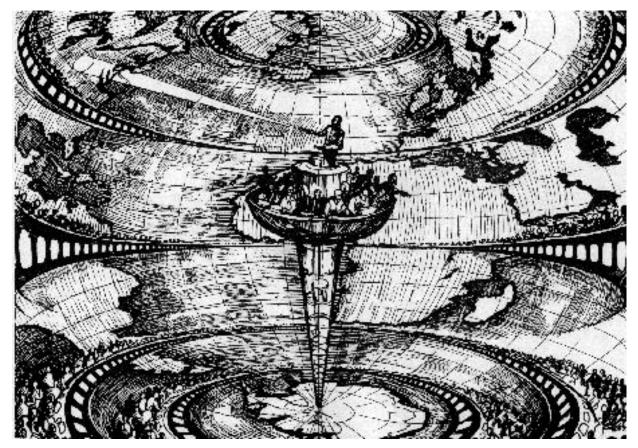
FFT: Fast Fourier Transform, LT/FLT: Legendre Transform

The equations of motion can also be evaluated for spherical harmonics.

There are plenty of options to discretise... and they are used

Short name	Equation set	Prognostic variables	Horizontal grid	Numerical method	Horizontal staggering
ACME-A	H/NH	$\boldsymbol{u}_{\mathrm{h}}, w, \rho_{\mathrm{s}}, \rho_{\mathrm{s}}\theta, \Phi, \rho_{\mathrm{s}}q_{i}$	Cubed sphere (Sect. 3.2)	SE	A grid
CSU	NH (unified)	ζ , D, w, $p_{\rm s}$, $\theta_{\rm v}$, q_i	Geodesic (Sect. 3.4)	FV	Z grid
DYNAMICO	H/NH	$\boldsymbol{v}_{\mathrm{h}}, \rho_{\mathrm{s}} w, \rho_{\mathrm{s}}, \rho_{\mathrm{s}} \theta_{\mathrm{v}}, \Phi, \rho_{\mathrm{s}} q_{i}$	Geodesic (Sect. 3.4)	FV	C grid
FV ³	NH	$u_{\rm h}, w, \rho_{\rm s}, \rho_{\rm s}\theta_{\rm v}, \Phi, \rho_{\rm s}q_i$	Cubed sphere (Sect. 3.2)	FV	D grid
FVM	NH (D)	$\rho_{\rm d}, \boldsymbol{u}_{\rm h}, w, \theta', q_i$	Octahedral (Sect. 3.6)	FV	A grid
GEM	NH	$\boldsymbol{u}_{\mathrm{h}}, w, \dot{\boldsymbol{\zeta}}, T_{\mathrm{v}}, p, q_{i}$	Yin-Yang (Sect. 3.7)	FD	C grid
ICON	NH (D)	$\boldsymbol{u}_{\mathrm{h}}, w, \rho, \theta_{\mathrm{v}}, \rho q_{i}$	Icosahedral triangular (Sect. 3.3)	FV	C grid
MPAS	NH	$\rho_{\rm d} \boldsymbol{u}_{\rm h}, \rho_{\rm d} \boldsymbol{w}, \rho_{\rm d}, \rho_{\rm d} \theta_{\rm v}, \rho_{\rm d} q_i$	CCVT (Sect. 3.5)	FV	C grid
NICAM	NH	$\rho \boldsymbol{u}_{h}, \rho w, \rho, \rho e, \rho q_{i}$	Geodesic (Sect. 3.4)	FV	A grid
OLAM	NH (D)	$\rho \boldsymbol{u}_{h}, \rho w, \rho, \rho \theta_{il}, \rho q_{i}$	Geodesic (Sect. 3.4)	FV	C grid
Tempest	NH	$\boldsymbol{u}_{\mathrm{h}}, \boldsymbol{w}, \boldsymbol{\rho}, \boldsymbol{\rho} \boldsymbol{\theta}_{\mathrm{v}}, \boldsymbol{\rho} \boldsymbol{q}_{i}$	Cubed sphere (Sect. 3.2)	SE	A grid

DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models, Ullrich et al 2016


IFS dynamical core options at ECMWF

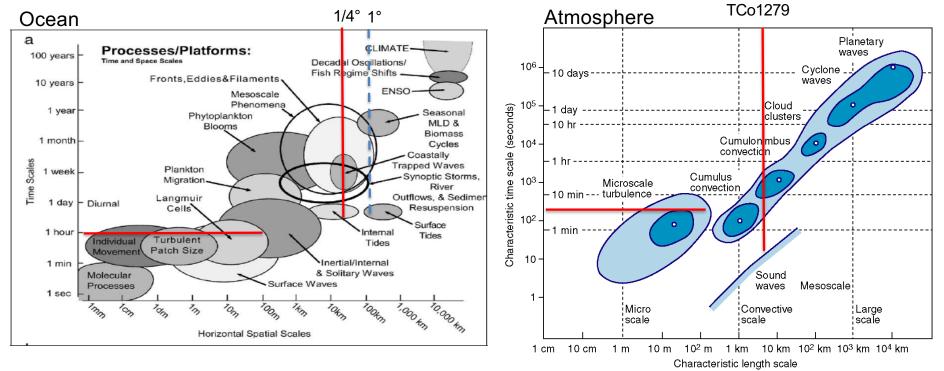
Christian Kuehnlein

		currently operational	
Model aspect	IFS-FVM	IFS-ST	IFS-ST (NH option)
Equation system	fully compressible	hydrostatic primitive	fully compressible
Prognostic variables	$ \rho_{\rm d}, u, v, w, \theta', \varphi', r_{\rm V}, r_{\rm l}, r_{\rm r}, r_{\rm i}, r_{\rm s} $	$\ln p_{\rm S}, u, v, T_{\rm V}, q_{\rm V}, q_{\rm I}, q_{\rm r}, q_{\rm i}, q_{\rm S}$	$\ln \pi_{\rm S}, u, v, d_4, T_{\rm V}, \hat{q}, q_{\rm V}, q_{\rm I}, q_{\rm r}, q_{\rm i}, q_{\rm S}$
Horizontal coordinates	λ, ϕ (lon–lat)	λ, ϕ (lon–lat)	λ, ϕ (lon–lat)
Vertical coordinate	generalized height	hybrid sigma-pressure	hybrid sigma-pressure
Horizontal discretization	unstructured finite volume (FV)	spectral transform (ST)	spectral transform (ST)
Vertical discretization	structured FD–FV	structured FE	structured FD or FE
Horizontal staggering	co-located	co-located	co-located
Vertical staggering	co-located	co-located	co-located, Lorenz
Horizontal grid	octahedral Gaussian or arbitrary	octahedral Gaussian	octahedral Gaussian
Time stepping scheme	2-TL SI	2-TL constant-coefficient SI	2-TL constant-coefficient SI with ICI
Advection	conservative FV Eulerian	non-conservative SL	non-conservative SL

Richardson's forecast factory, 1922

So let's just discretise the equations and all problems are solved...?

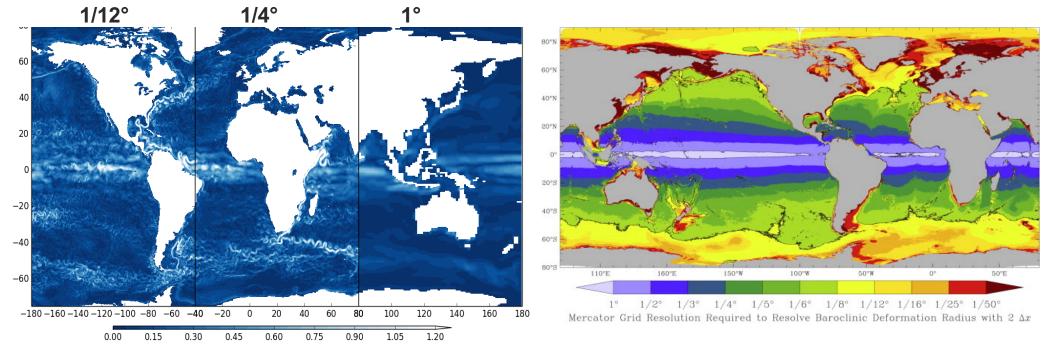
Sketch by A. Lannerback (© Dagens Nyheter, Stockholm) Found at http://mathsci.ucd.ie



Why is it difficult to predict the weather?

- The Earth is huge, resolution is limited and we cannot represent all important processes within model simulations
- We do not know the exact initial conditions
- The Earth System shows "chaotic" dynamics which makes it difficult to predict the future based on equations
- All Earth System components (atmosphere, ocean, land surface, cloud physics,...) are connected in a non-trivial way
- Some of the processes involved are not well understood

The Earth system as a multi-scale problem

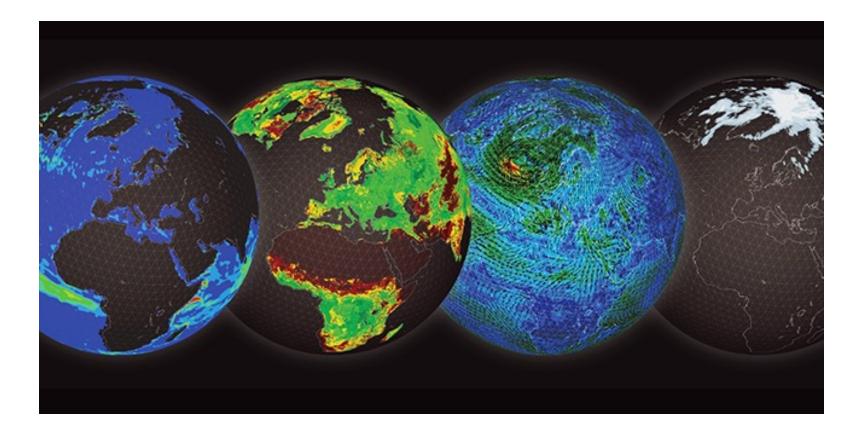


From Dickey (2003)

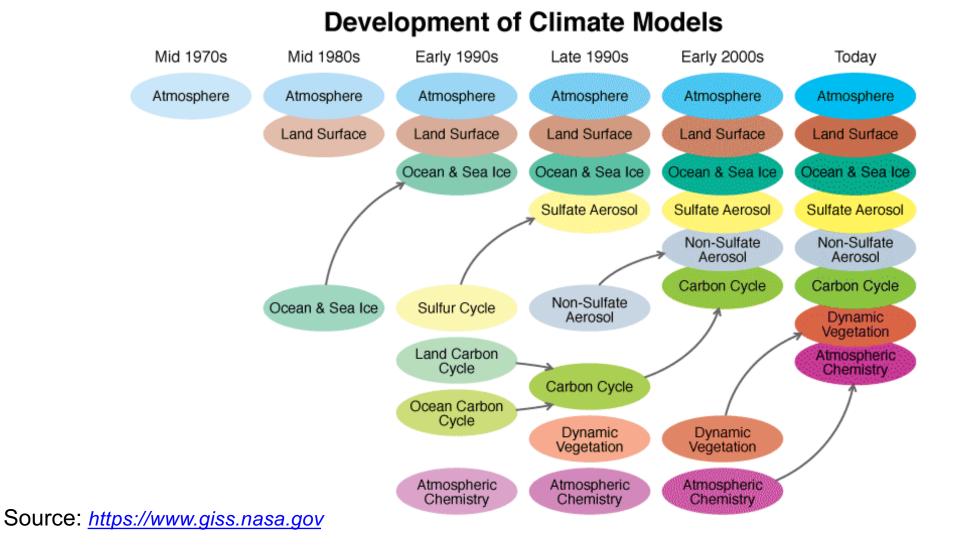
Range of fast and slow waves ...

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Ocean model - resolution



Hewitt et al. (2017)

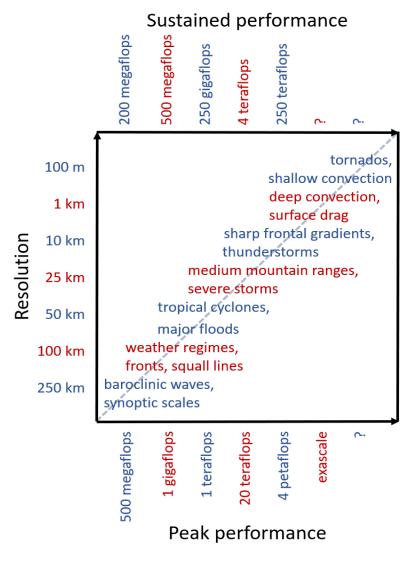

Hallberg (2013)

Ocean – Land – Atmosphere – Sea ice

Earth System model complexity

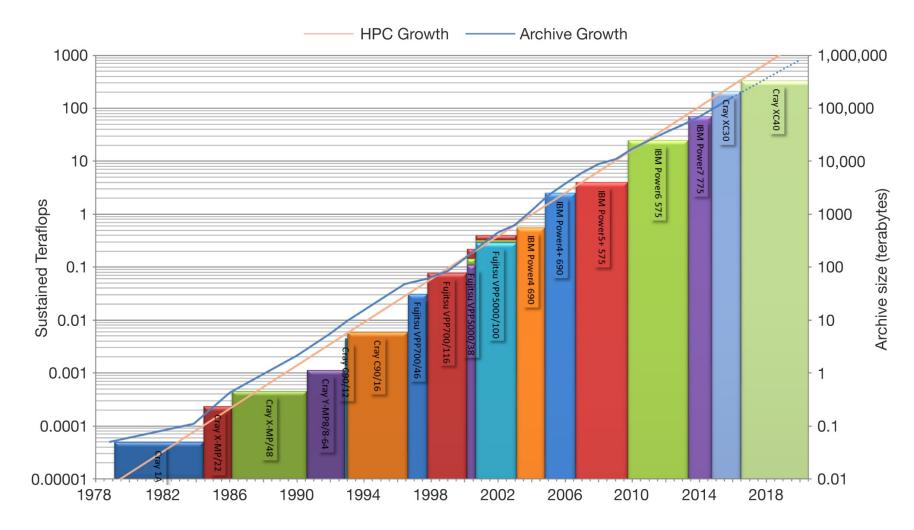
The Earth system as a coupled system

Analysis				Observations				
		Northern hemisphere	Southern hemisphere Tropics			Northern hemisphere	Southern hemisphere	Tropics
	Level	Forecast day	Forecast day	Forecast day	Leve	Forecast day	Forecast day	Forecast day
Parameters	(hPa)	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	(hPa)		5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Geopotential 2 5	100				100			
	250				250			
	500				500			
	850				850			
	100				100			
Temperature	250				250			
lemperature	500				500			
	850				850			
	100				100			
	250				250			
Wind	500				500			
	850				850			
I Rolativo humiditv	200				200			
	700				700			
2 m temperature								
10 m wind								
Significant wave height								


Symbol legend: for a given forecast step...

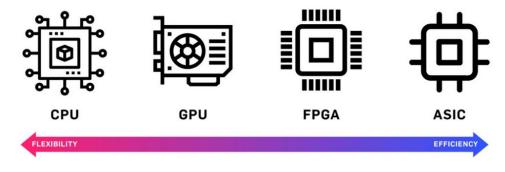
- ▲ SP better than DP statistically significant with 99.7% confidence
- riangle SP better than DP statistically significant with 95% confidence
- SP better than DP statistically significant with 68% confidence no significant difference between DP and SP
- SP worse than DP statistically significant with 68% confidence
- \bigtriangledown SP worse than DP statistically significant with 95% confidence
- ▼ SP worse than DP statistically significant with 99.7% confidence

Dueben et al. ECMWF Newsletter 2018


Beyond the grid...

- Not all processes can be discretised on a given grid
- Sub-grid-scale processes need to be parametrised including very important processes of the Earth system such as clouds, boundary layer turbulence, gravity wave drag, ocean eddies, land/snow/ice processes...

Adjusted from Neumann et al. Phil. Trans. A 2019


HPC and HPDA for weather and climate modelling

Bauer et al. ECMWF SAC paper 2019

Current challenges in high performance computing?

- Individual processors will not be faster
 → Parallelisation / power consumption / hardware faults
- Hardware will be more heterogeneous \rightarrow CPUs / GPUs / FPGAs / ASICs
- Machine learning has strong impact on hardware development
 → High floprate at low precision
- I/O is becoming a nightmare and the optimisation of data movement will be the key

Source: venturebeat.com

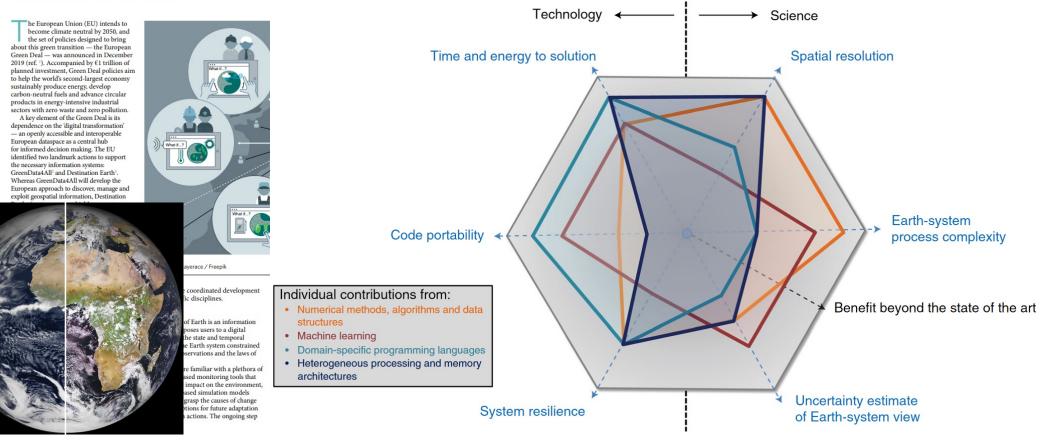
Energy-aware computing

- All 51 ENS members consume about 300KWh, approximately the same as a single (~5km) global 10-day forecast
- The energy consumption of one ENS member is equivalent to leaving the Kettle on for 2 hours !

http://ukbusinessblog.co.uk

Time-to-Solution vs. Energy-to-Solution

ECROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS


Destination Earth at the horizon...

Check for updates Comment

A digital twin of Earth for the green transition

For its green transition, the EU plans to fund the development of digital twins of Earth. For these twins to be more than big data atlases, they must create a qualitatively new Earth system simulation and observation capability using a methodological framework responsible for exceptional advances in numerical weather prediction.

Peter Bauer, Bjorn Stevens and Wilco Hazeleger

PERSPECTIVE

Nils P. Wedi¹

https://doi.org/10.1038/s43588-021-00023-0

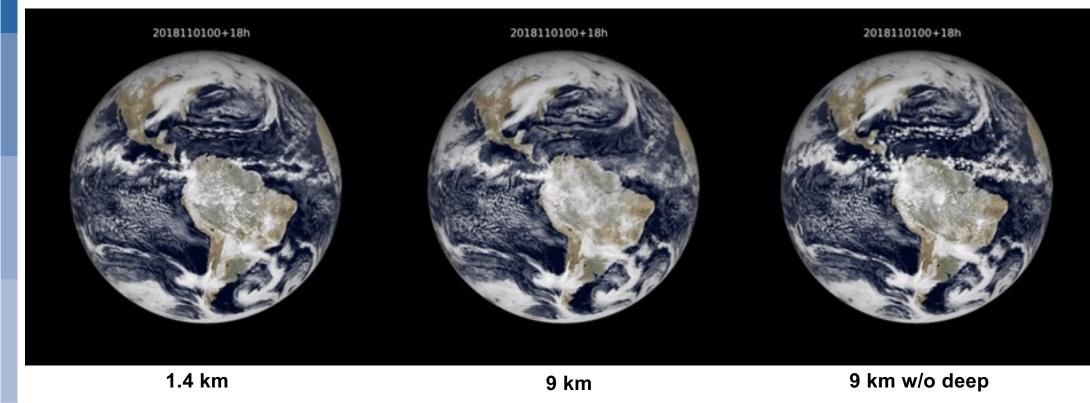
able and more adaptable to future, yet unknown computing architectures.

The digital revolution of Earth-system science

Peter Bauer ^[0]^[2], Peter D. Dueben¹, Torsten Hoefler², Tiago Quintino^[0], Thomas C. Schulthess⁴ and

Computational science is crucial for delivering reliable weather and climate predictions. However, despite decades of

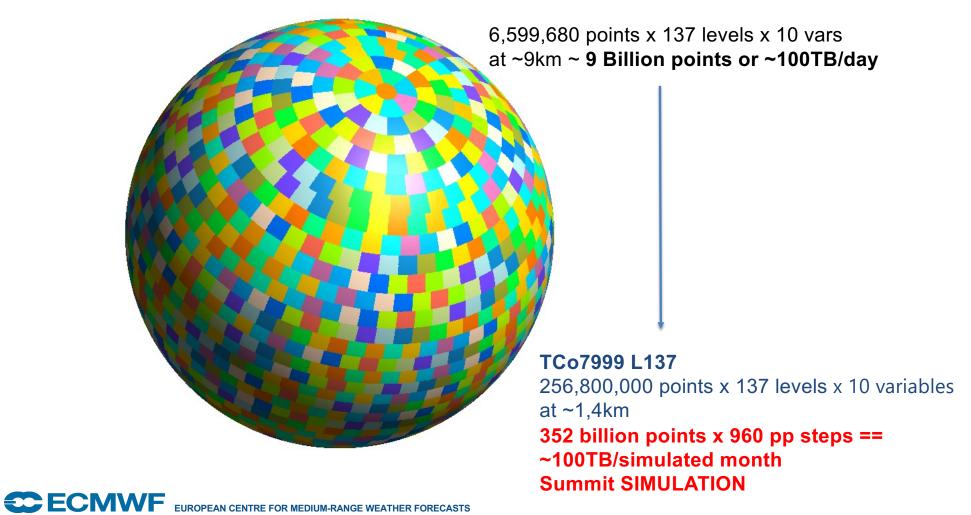
high-performance computing experience, there is serious concern about the sustainability of this application in the post-Moore/


Dennard era. Here, we discuss the present limitations in the field and propose the design of a novel infrastructure that is scal-

nature

computational

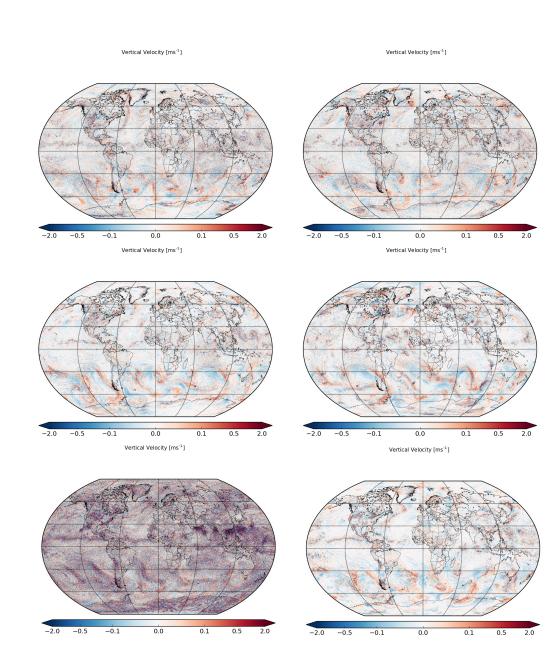
() Check for updates


State-of-the-art: Global storm-resolving models

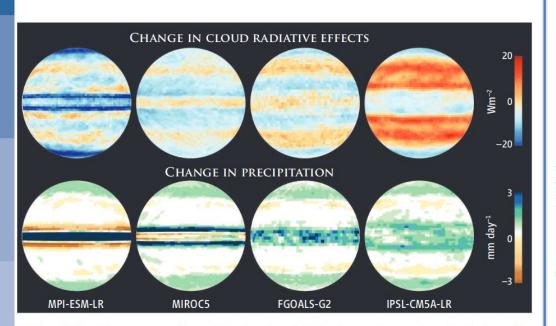
Global weather forecast simulations have O(1,000,000,000) degrees-of-freedom, can represent many details of the Earth System, and show a breath-taking level of complexity.

Simulations can act as a virtual laboratory to understand the Earth system.

Spectral transform based model at global average 1.4 km grid spacing



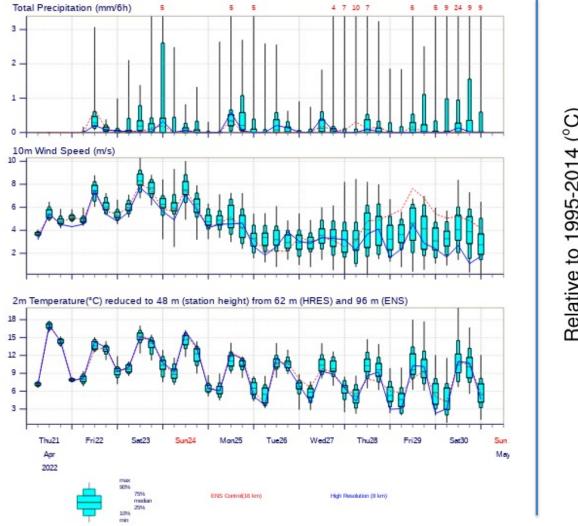
Global storm resolving models


Big steps toward operational use of global storm resolving simulations

- Month-long integration of a number of models at < 5 km grid-spacing as part of DYAMOND
- Season-long integrations of the IFS model at 1.45 km grid-spacing on Summit as part of INCITE
- Year-long coupled ICON integration with 5 km grid-spacing
- 1024-member ensemble data assimilation with 3.5-km grid-spacing with NICAM
- NextGems and DestinE coming

But rather a digital family than digital twins? Figures by Roland Schrödner and Thibaut Dauhut

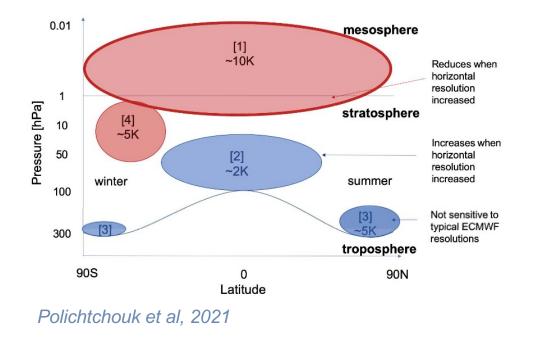
Are our current models up for the challenge?


Wide variation. The response patterns of clouds and precipitation to warming vary dramatically depending on the climate model, even in the simplest model configuration. Shown are changes in the radiative effects of clouds and in precipitation accompanying a uniform warming (4°C) predicted by four models from Phase 5 of the Coupled Model Intercomparison Project (CMIP5) for a water planet with prescribed surface temperatures.


Day 3 SH — Day 5 SH — - Day 7 SH — Day 10 SH 98.5 95.5 90 Forecast skill (%) 80 -70 60 50 40 30 1981 1985 1989 1993 1997 2001 2005 2009 2013 Year

– Day 3 NH ––– Day 5 NH ––– Day 7 NH ––– Day 10 NH

Stevens and Bony, Science, 2013.


A story of uncertainties

Tebaldi et al. Earth System Dynamics 2021

Addressing stratospheric biases in IFS

Technical Memo

877

Stratospheric modelling and assimilation

I. Polichtchouk, P. Bechtold, M. Bonavita, R. Forbes, S. Healy, R. Hogan, P. Laloyaux, M. Rennie, T. Stockdale, N. Wedi, N. Byrne (U. Reading), M. Diamantakis, S. English, J. Flemming, S. Gisinger (DLR), L. Isaksen & F. Vána

(Research & Copernicus departments) January 2021 emo Technical Memo Te Memo Technical Memo T Memo Technical Memo al Memo Technical Memo ical Memo Technical Memo ical Memo Technical Memo chnical Memo Technical Technical Memo Technical Memo

numerics, convection and radiation, opportunities with new observations, assimilation methodology, identifying impact on the troposphere, ...

ECMWF Ensemble Forecasting

Simon Lang

TCo1279L137 51 Ensemble members 20200913 00 UTC + 41 h

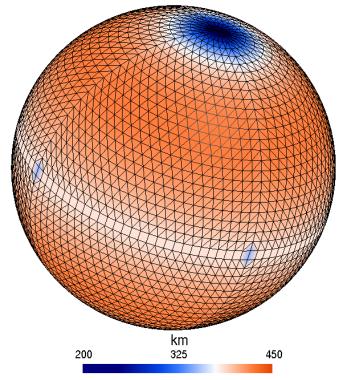
NOAA

Relevant developments:

Ensemble size: How suboptimal is less than infinity? Leutbecher, QJR, 2019

Exploring a representation of model uncertainty in the IFS due to the transport scheme Lock et al (Annual Seminar 2020)

Revision of the SPP model uncertainty scheme in the IFS Lang et al, QJR 2021

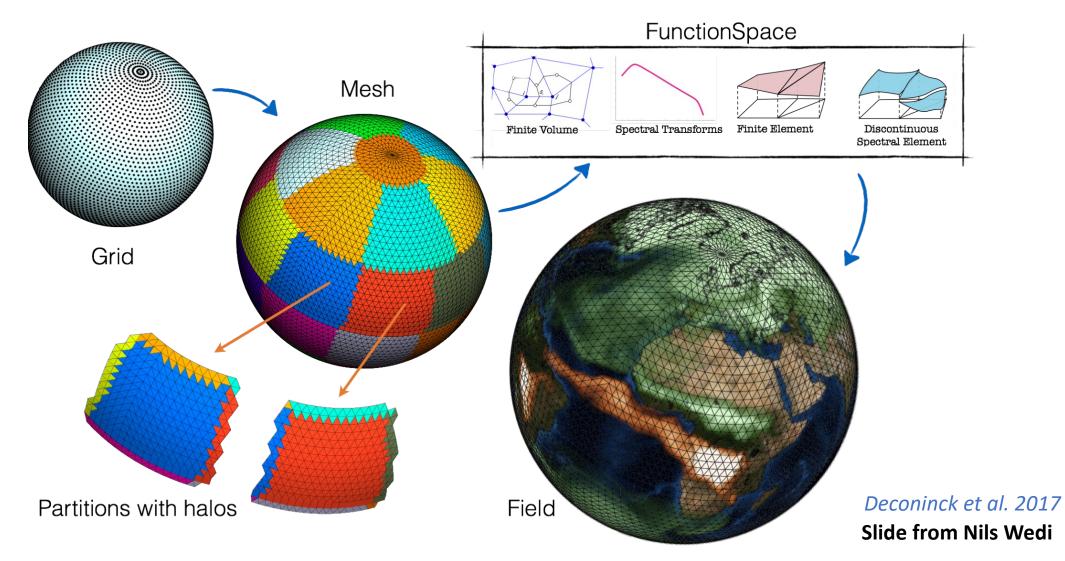

ECCIVIF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

A cubic octahedral grid

What is a uniform grid ?

km 325 200 450 N24 reduced Gaussian grid

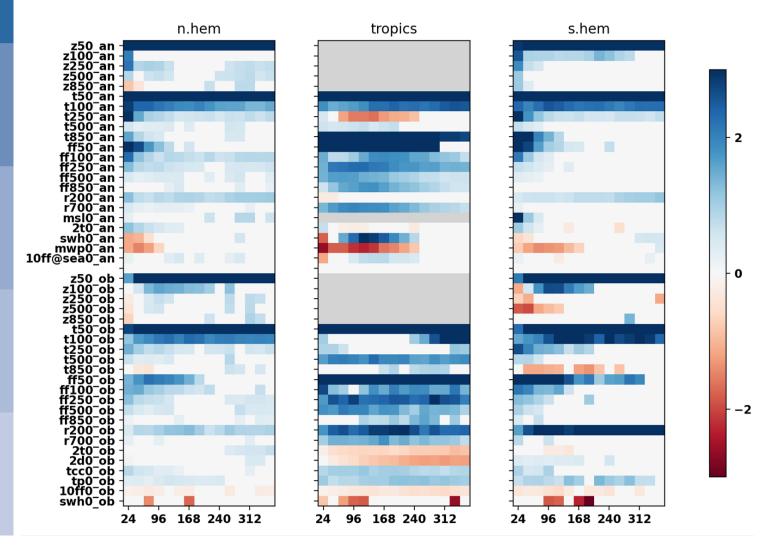
A further ~20% reduction in gridpoints => ~50% less points compared to full grid


N24 octahedral Gaussian grid

(Wedi et al, 2014, 2015)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

E Atlas: a library for NWP and climate modelling European Union



Adaptation to future HPC architectures via ESCAPE Weather and Climate Dwarfs

Reduced numerical precision with single precision as first step 47R2, TCO639L137SP vs. 47R1, TCO639L91DP

Summary

- Equations → Discrete Models → Supercomputing
- Numerical models can act as a virtual laboratory for weather and climate
- Numerical models are not perfect and need to be evaluated critically with quantified uncertainties