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Executive Summary
The rapidly evolving field of catalysis research generates 
a vast spectrum of data, necessitating innovative approa-
ches to data management, interoperability, and utiliza-
tion. This White Paper, “Ontology Mapping and Interope-
rability: Insights from Catalysis Research Data,” emerges 
from comprehensive discussions and expert contributions 
during the dedicated workshop in November 2023 hosted 
by NFDI4Cat. It encapsulates collective insights aimed at 
harnessing the power and applicability of ontologies and 
related tools to navigate the complex landscape of cata-
lysis and catalysis related research data and the method 
transfer to other domains. Together with scientific, do-
main-specific vocabulary and standard metadata, know-
ledge graphs can be generated allowing to handle and 
store data in a structured and FAIR manner (Findable, 
Accessible, Interoperable, Reusable). This does not only 
enable consistent data handling in research data manage-
ment but also leaves the data in a format ready for data 
analysis via advanced methods. Exemplary, the data 

management is shown for literature search, experimental 
and simulation data entry, analysis, and storage as well as 
research planning. 

To enhance accessibility for individuals with varying levels 
of data literacy, the examples provided cater to different 
skill sets and interests. While the document extensively 
elucidates the overarching semantic framework, the ap-
plication instances are tailored towards researchers with 
a practical orientation. For those seeking an introduction 
to this evolving landscape of Research Data Management 
(RDM), platforms like the Lara Suite, ELN FURTHRmind, or 
local Digital Labs offer valuable insights into data infras-
tructure and automation solutions. Advanced users can 
delve deeper into platforms such as LARAsuite or Nomad, 
while experts can actively integrate specialized applicati-
ons like ADACTA, NOMAD, or the Cross Domain Meta Onto-
logy into their projects.



Table of Contents
Executive Summary 2

1 Introduction 4

2 Semantic Starting Point of Data Management in Catalysis 7

3 Criteria that any Functional Solution Must Meet: Academia and Industry 9

4 Constructing the Research Data Engine:  Components, Pipelines, and User Interface 9

4.1. Where to Start: Bits and Pieces of the Research Data Machine 10

4.1.1. Vocabularies and Guidelines 10

4.1.2. Electronic Lab Notebooks 10

4.1.3. Inherently Heterogeneous Research Data 11

4.2. Putting Everything Together: Pipelines of the Engine Room 12

4.2.1. Persistent Identifiers 13

4.2.2. Semantic Enrichment Pipeline 14

4.2.3. Metadata Validation Pipeline 15

4.2.4. Semantic Development Pipelines 15

4.2.5. Knowledge Graphs and Triple Stores for Querying	 16

4.3 Bringing the Machine to Life: Interfaces for Researchers 17

4.3.1. Electronic Laboratory Notebooks 17

4.3.2. Querying Knowledge Graphs 17

4.3.3. Metadata for Domain Specific Search Engines 18

4.3.4. Metadata for Large Search Engines	 19

4.3.5. Metadata Quality Assessment for Increased Research Publications 19

4.3.6. Automating (Meta) Datastreams 19

4.3.7. Software-assisted Generation and Inspection of RDF Metadata 20

4.3.8. Mechanisms for Alignment: The Role of Domain Expert Input 20

5 Application of the RDM-Engine:  Example Solutions and Future Implementations 21

5.1. LARAsuite 21

5.2. ADACTA 22

5.3. Linking Local and Overarching Data Infrastructures in NOMAD 23

5.4. Exemplary ELN - FURTHRmind 24

5.5. Cross Domain Meta Ontology 25

5.6. Research Data Management Tool for Catalysis Laboratory Courses	 26

5.7. Envisioned Future Implementations 26

6 Conclusion 25

7 References 27



|  WHITE PAPER  ONTOLOGY-BASED DATA MANAGEMENT AND INTEROPERABILITY3

1. Introduction
In an era characterized by the widespread adoption of 
machine learning tools, including Large Language Mo-
dels (LLM) such as ChatGPT, the imperative for trust in the 
methods and results of science and research has signi-
ficantly intensified, in particular to the data content and 
handling process. Ensuring the reliability of information 
and navigating through a growing volume of publications 
and research data are current challenges, where organiza-
tions such as Germany’s National Research Data Initiative 
(NFDI) aim to support researchers in producing qualitative 
and trusted publications. The focus is on making data FAIR 
(Findable, Accessible, Interoperable, Reusable) [1] and to 
the core aligned to open science and its principles by pro-
viding shared vocabularies.
To increase trust in data, self-describing and FAIR datasets 
can be created using semantics. Semantics, indicating the 
internal relations and meaning of content, facilitates 

human understanding through definitions, descriptions, 
and comments. Complementing semantics with logical 
rules and mathematical informatics establishes semantic 
webs that enable machines to read and “comprehend” the 
knowledge stored within the semantic web. These repre-
sentations, which enable the semantic web, can be desig-
ned and constructed in different ways and with different 
(re-)usability. Starting from a simple list, e.g. a recipe, 
which is already self-describing thanks to its title, author, 
date, and structure, the semantic description improves 
through the use of thesauri, leading to complex descrip-
tion logic such as ontologies.
The semantic spectrum of knowledge organization sys-
tems is depicted in Figure 1, starting on the lowest com-
plexity with a list, going to an ontology. Figure 1 also gives 
an overview on the commonly used syntaxes and formats 
for given semantic structures.

List
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• Glossary,

dictionaries

Informal 
Hierarchy

• XML
• Informal 

parent-child
relations

• Directories,
table of
contents
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instance-of,
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• OWL, TTL
• Description 

logic,
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Structural and syntactic 
interoperability

Semantic interoperability

Strong semantics

Low complexity 

Figure 1: Semantic spectrum from simple lists over annotated thesauri and semantically described conceptual models 
to ontologies with full semantic descriptions and connections [2, 3].

Developing semantic methods for research data requires 
shared, community-based vocabularies and terms. To utili-
ze these concepts, persistent identifiers (PID) for building 
references to data and terminologies such as ontologies, 
are deployed in a research data management framework 
and are used throughout the semantic tools to develop a 
semantic web. Ontologies represent advanced forms of se-
mantic representations as they facilitate description logic 
capable of specifying real-world concepts using set theory 
and aforementioned PIDs to model domains. This allows 
connecting the bits and pieces of data and knowledge in a 

graph structure set up by information triplets (subject-pre-
dicate-object). The nodes in this graph represent classes 
or individuals, which can be related by predicates. An on-
tology adds semantics to this graph by formally defined 
class axioms (e.g. SubClassOf or DisjointClasses) and pro-
perty axioms (like SubPropertyOf or TransitiveProperty). 
Individuals are related to this conceptualization by Indivi-
dual axioms (like InstanceOf or SameIndividual). Based on 
these formally defined axioms, automated reasoning and 
inference over the knowledge graphs is enabled. As the 
complexity of class and predicate definitions increases, so 
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Figure 2: Illustration of an example ontology and the function of reasoning engine, in which an Individual (green ellip-
se) is reclassified under a different class (blue ellipse) due to its relations (gray, black, and red directed arrows). 

does the mathematical complexity of possible inferences.

As described above, the logic of an ontology can be used 
to check the logic and data of a knowledge graph for cor-

rectness and thus strengthen confidence in a data set. In-
ference engines are the tools that are able to draw logical 
conclusions and thus perform this check. A brief descrip-
tion of how this works can be found in Figure 2.

In Figure 2, a simplified ontology example is depicted fea-
turing several key classes and individuals. These include 
Reaction, Catalytic Reaction, Substance, and Catalyst, re-
presented by the entities Reaction_R1 and Iron Catalyst. 
The connections between these entities are depicted 
using directional arrows in black and gray. The red dashed 
lines signify rules governing relationships between clas-
ses, such as the requirement that a reaction must involve 
reactants from the Substance class. Additionally, thanks 
to the rule stipulating that a catalytic reaction must invol-
ve a substance classified as a catalyst, an inference en-
gine can deduce that Reaction_R1 is not merely a standard 
reaction but a catalytic one. 
This inference is indicated in Figure 2 by both the gray ar-
row representing the relation and the red double-dashed 
arrow symbolizing the subclassification as a catalytic re-
action.

Ontologies thereby serve as a structured set of rules, 
which define the structure of knowledge graphs, provi-
ding both constraints and opportunities for discovering 
and establishing additional relationships based on these 
rules.
Beyond the rules embedded within the description logic, 
the ontology level also encompasses semantic informati-
on aimed at enhancing the comprehensibility of data and 
its relationships through descriptive narratives and expla-
nations. While in practical data description, the boundar-
ies between data, metadata, and ontology may be blur-
red, functionally, these concepts merge to form a cohesive 
structure. When utilizing and creating new semantic struc-
tures, it is essential to adhere to these conceptual ideas to 
ensure that functionalities can be seamlessly built upon 
each other.
Achieving the expressiveness, an ontology yields, might 
increase methodical complexity but also improves inter-
operability of data. The gained expressiveness helps in 

understanding and trusting data, while interoperability 
is important for the findability and reuse of data in other 
applications. Good semantic representations, such as 
having the idea of a reaction modeled and related in an 
ontology, not only allow a machine to access all resources 
more easily but also enable cross-referenceable data. The-
refore, steps such as harvesting, data cleaning, and pro-
gramming as well as the corresponding data analysis can 
be supported in the future, for example by using ontolo-
gies for consistency checking.

Ontologies also contribute to enhancing the consistency 
of metadata standards, which in return enable structu-
red handling and storage of data in suitable repositories. 
Ontology-based metadata enriched with data from expe-
riments, simulations, or linked databases from the web 
lead to knowledge graphs, which are the base for consis-
tent research data management. The focus lies on the in-
tegration and application of semantic aspects and tools 
to everyday research data workflows in the frame of NFDI-
4Cat (NFDI for Catalysis-Related Sciences).
To be able to design ontologies more efficiently, they are 
classified according to their function into three levels: on 
a very fundamental top level, on a generic domain and 
task level, and on the specific application level. On the 
top level ontologies aid modeling by guiding the general 
setup up of other ontologies and enabling the coexistence 
and interoperability of domains. On domain level, onto-
logies are used for covering the domain specific require-
ments and expert language, similar to the generic task le-
vel, which both are interoperable. In certain cases and for 
specific needs, application-level ontologies are derived, 
which allow for even more detailed semantic specificati-
ons tailored to a specific use case. Application ontologies 
are not necessarily fully compatible with other application 
ontologies, but by embedding them in common domain 
ontologies, they become at least semantically compatible 
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Figure 3: Different layers of data representation and structuring in an ontology (top layer), metadata structure (mid 
layer) and data containers (bottom layer). 

at the generic level that the domain ontology provides.
Ontologies serve as a means to establish consistent and 
standardized data structures known as knowledge graphs. 
These graphs, governed by the principles and guidelines 
outlined in an ontology, encapsulate details about data 
sources, their organization, and distinguish metadata 
from primary data points. They function as a comprehen-
sive repository for data within a particular domain. By le-
veraging knowledge graphs, the contents of data structu-
res can be articulated and interconnected, facilitating the 

linking of various information entities. For instance, one 
might connect a broad-scale measurement dataset with a 
research paper, which characterizes specific observations 
within that measurement.

Figure 3 illustrates the conceptual framework for linking 
and describing data. Starting from left to right, a way of 
how the interconnectivity of data can be increased, is de-
scribed. To easily present the increased semantic required 
to have a coherent linkage, the semantics are modeled 
from the bottom to the top with increasing semantic ex-
pressivity. 
At the foundational layer, data generated directly from re-
search activities can be found, including measurements 
by researchers, outputs from AI networks using the same 
data, (automatic) numerical simulations, and their resul-
ting data sets, depicted as a data store. This data store 
can manifest in various forms, from local file storage to de-
centralized cloud storage. It also can be stored in various 
forms ranging from a simple file-based storage, over tradi-
tional relational databases to object-oriented databases, 
graph databases, and triple stores, which can represent 
knowledge graphs themselves. As data can be stored and 
induced into all of the above mentioned storage methods, 

a problem of uniformity often occurs. Different databases 
for example apply different rules for storing data, from a 
schema-based approach to unique SQL rules in relational 
databases. 
To overcome these communication barriers generated by 
different rules, knowledge graphs and the respective me-
tadata serve as an interconnection and translational layer. 
They link the data via aforementioned PIDs directly from 
a storage space through the modelled relations to other 
data points, which have their own respective PIDs. Meta-
data hereby serves as a method to capture not only how 
information is interlinked, but also the content it repre-
sents. Moving up, the next ontological level is reached, 
where a standardized vocabulary is established, and rules 
are defined regarding the linkage and permissible linkage 
of metadata. 
In summary, these tools contribute to FAIR data manage-
ment and bolster confidence in datasets, while also ena-
bling context-based analysis of the contained data. 



The different consortia of the NFDI deal with their speci-
fic domains, resulting in different wishes and needs to 
address the research data of their respective community. 
While many of the domains, such as the chemistry domain 
(addressed, e.g. by NFDI4Chem consortium), can reuse es-
tablished semantic artifacts, other domains need to start 
with more pioneering work. The domain of catalysis re-
search is multi-disciplinary and very heterogeneous with 
regard to the type of research data. These data range from 
the operando measurements of, e.g., reactions on solid 
state or molecular catalysts, over molecular simulations 
of reactions on surfaces of heterogeneously catalytic re-
actions, to multi-step-biocatalysis, and electrochemistry. 
This demonstrates the large domain of catalysis research 

with many niche areas and resulting (meta) data to cover. 
Through its multi-disciplinary nature, many links to other 
knowledge domains, which are represented by different 
NFDI consortia, exist. So are, e.g., process descriptions 
important in NFDI4Ing or surface analysis of materials wit-
hin FAIRmat.
Therefore, NFDI4Cat has been searching for established 
semantic artifacts since its early days and has already re-
corded these in an initial report [4]. As depicted in Figure 
4, the domain of catalysis was divided into three topics 
that build on each other, spanning from catalyst data, heat 
and mass transfer and the associated kinetics, to process 
description and simulation.

2. Semantic Starting Point of Data Management in Catalysis

Figure 4: Preliminary landscape of ontologies and vocabulary relevant to the data value chain of catalysis research [4]. 
This represented the first overview on semantic artifacts relevant to catalysis research.

As the project work in the consortium progressed, howe-
ver, some of the initially considered vocabularies and on-
tologies turned out to be either outdated, incomplete or 
designed with a strong bias, rendering them useless for 
most of the envisioned tasks. Thus, a second screening 
round was conducted for the ontologies that should cover 
the wide knowledge domains of catalysis research. In this 
second, more structured, screening, stringent criteria for 
the selection of ontologies have been applied which lead 
to a classification of ontologies in 13 subdomains of know-
ledge important to catalysis research. 
With this approach, 30 ontologies were investigated in the 
second screening, resulting in not only an actively main-

tained ontology collection and its documentation, but also 
in a workflow that is agnostic to its knowledge domain. [5] 
Figure 5 shows an overview of the domains of knowledge 
and the number of ontologies that cover these domains, 
showing also the cross-domain nature of catalysis re-
search. 
Here, the green line indicates the number of ontologies, 
which contain the respective domain of knowledge of 
catalysis research. This shows the poor coverage of the 
whole domain of catalysis research by existing ontologies 
and with them by shared vocabularies.
Another major challenge arises in the linking and map-
ping of ontology classes between multiple ontologies. 
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This is necessary to be able to map the rather complex 
knowledge represented in ontologies on their heteroge-
neous real-world data representations, without having to 
compromise between one domain or another. 
NFDI4Cat’s aim is to build on existing ontologies and in-
frastructure. Therefore, it appears to be more efficient and 
effective to establish a comprehensive semantic architec-

ture. This architecture should encompass the diverse array 
of ontologies and research data in the catalysis domain, 
along with their interconnections in contrast to a selective 
approach that focuses solely on specific applications and 
semantics.

Figure 5: Radar plot for the number of ontologies that address the respective domains of catalysis research. The speci-
fic fields of catalysis are denoted in blue, while the fields more directed to modeling are colored purple. Fields regar-
ding general catalytic data are written in black. Graph taken from [5].



The architecture of any database structure should adopt a 
(meta) data-focused approach following the simple guide-
line:	
“A rooted network system is wanted and open space to 
grow in soft malleable soil, where the developing roots 
have easy access to nutrient-rich data spots, and services 
should not be like a plant seed on rocky terrain, having 
trouble finding cracks to soil in the rocks.”
The strategy involves molding the service architecture 
around knowledge graphs, allowing flexible connections 
to a variety of databases (differing in content or even 
type). Additionally, the complete and inherent integration 
of the FAIR principles, simplicity of use paired with an ac-
ceptance of expressivity, complexity, extendibility, and 
scalability are emphasized. Furthermore, the limitation to 
designing all workflows and demands towards serving a 
single database or data provider are rejected, opting for a 
more versatile and democratic approach. Moreover, a mo-
nolithic approach based on a single ontology is avoided 
based on the previous experiences made and discussed 
above. Instead, it appears to be a viable strategy to go for-
ward based on a common top level ontology. Subsequent-
ly the creation of a set of domain and task specific ontolo-
gies appears important, which refer to a set of (meta) data 
structures and related databases. 
The database structure‘s architecture is designed to satis-
fy key criteria, including its impact on science and techno-
logy. It is tailored to be relevant to catalytic science and 
process technology, encompassing areas such as reac-
tion engineering, separations, product purification, and 
formulation. Emphasis is placed on usability, ensuring a 
user-friendly experience for researchers engaged in expe-
rimental, analytical, and numerical work. Additionally, the 
design prioritizes consistency and coherence across vari-
ous disciplines. The sustainability of the database struc-

ture is emphasized, focusing on long-lived solutions and 
robust connectivity.
While developing solutions for the catalysis-related scien-
ces community, several critical aspects must be conside-
red to ensure their effectiveness and impact. Firstly, so-
lutions must be relevant, meeting the demands of both 
individuals and the community while addressing scien-
tific challenges. This necessitates a focus on societal 
needs and the practical application of tools in real-world 
scenarios. Additionally, the developed solutions should 
adhere to the FAIR principles, promoting the Findability, 
Accessibility, Interoperability, and Reusability of data, 
thus enhancing their usability and sharing capabilities. 
Furthermore, it is imperative to support the Open Science 
Principles, fostering transparency, collaboration, and ac-
cessibility in research endeavors. While simplicity of use 
is important, it must be balanced with an acceptance of 
the inherent complexity of the subject matter. Solutions 
should be user-friendly while retaining the expressivity re-
quired for handling intricate scientific data and processes. 
Moreover, they should be extendable and scalable to ac-
commodate future advancements and growing user bases 
without requiring significant redevelopment efforts. Final-
ly, solutions should not be confined to a single technology 
provider but should be open-source and available for pub-
lic use under a creative commons license. This encourages 
innovation, collaboration, and accessibility, ultimately 
contributing to the broader advancement of catalysis-re-
lated sciences. By integrating these principles and consi-
derations into solution development, the community can 
ensure the sustainability, impact, and longevity of tools 
and resources for present and future generation of resear-
chers.

3. Criteria that any Functional Solution Must Meet: 
     Academia and Industry
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4. Constructing the Research Data Engine: 
     Components, Pipelines, and User Interface
Having outlined the foundational techniques for a FAIR 
data approach and depicted the essential criteria to be re-
cognized, an insight into an implementation of a structure 
that fulfills these criteria will be given. To start of the basic 
components, methodologies with which most researchers 
are already quite familiar with, will be presented. Subse-

quently, an overview of the internal pipelines, which serve 
as an in-depth description for those interested in building 
on these is given. Finally, the achieved interaction met-
hods and the anticipated benefits resulting from this ap-
proach are presented.

4.1. Where to Start: Bits and Pieces of the Research Data Machine
After a first overview, it is presented how a vocabulary with 
terms, definitions, and relations helps us to link data, and 
how this vocabulary can be used in electronic lab note-
books to make data recording with direct linking simple 
and convenient. The needs of individual research groups 
as well as aspects of the datasets that need to be consi-
dered are then briefly discussed. Data sets in catalysis 

research pose some interesting challenges that are often 
overlooked in other research areas, not only because of 
the need for confidentiality but also because of the wide 
range of studies that can be represented in them. This 
leads to different requirements for the databases in which 
data is deposited and thus requires flexible ways to inter-
connect data via knowledge graphs.

4.1.1. Vocabularies and Guidelines
Catalysis is at its core a multidisciplinary field of research. 
Before the NFDI4Cat initiative, no catalysis-specific vo-
cabulary existed. The development of such a vocabulary, 
Voc4Cat [6], aims to fill this gap and eventually lead to the 
creation of the respective ontologies. Vocabularies are “li-
ving organisms”, evolving alongside the field they repre-
sent, and are crucial for fostering interoperability and data 
sharing. They provide a standardized foundation for data 
exchange and collaboration, enhancing findability and re-
usability. Voc4Cat encompasses a three-part framework: 
the vocabulary itself, the guidelines on how the communi-
ty can contribute, and a developed Continuous Integration 
(CI) pipeline. These three parts, work together to enhance 
the usage of the vocabulary to “real-life” research appli-
cations. The Voc4Cat vocabulary includes concepts from 
various subfields of catalysis: heterogeneous, homoge-
neous, biocatalysis, electrocatalysis, photocatalysis, re-

action engineering, etc. Voc4Cat provides the specificati-
on of a Preferred Label (standardized name for a concept), 
explicit definitions, alternate labels (e.g., synonyms or 
alternative spellings), and hierarchical (parent/children) 
relationships between concepts. In addition, it allows the 
formation of collections to be used in more specific cases. 
URIs (via w3id.org) accompany each concept and are con-
figured for both machine (turtle [7] file format) and human 
(HTML documentation) using content negotiation. 
The Voc4Cat guidelines [8] follow closely the ANSI/NISO 
Z39.19 (R2010) standard [9]. These guidelines provide 
instructions for maintaining coherence and consistency 
across various aspects, including spelling, hyphenation, 
punctuation, and abbreviations, thus promoting a stan-
dardized approach to the growth of VoC4Cat.
The developed CI pipeline is discussed in more detail in 
chapter 4.2.4.

4.1.2. Electronic Lab Notebooks
In the Research Data machine room, ELNs log the rese-
archer’s actions in planning, executing, and evaluating 
scientific experiments. Just the same as conventionally 
used handwritten or printed laboratory notebooks, the 
purpose of an ELN is to document research work to make 
it comprehensible and reproducible for others in a digital 
format. However, ELNs exceed the potential of traditional 
laboratory notebooks as they assure a more collaborati-
ve and easily accessible work environment as well as a 
sustainable longtime storage of information. By creating 
a metadata mask in advance all important experimental 

data is documented completely and the risk of transfer er-
rors to the computer and information loss is eliminated. 
In addition, raw data from the experiments can be directly 
imported and linked with the metadata. Moreover, ELNs 
allow digital linking of information and data, editability, 
and search functions. With this the daily work of resear-
chers is simplified and reproducibility is greatly increased. 
Even by students generated experimental data can be tra-
cked across hierarchies and information can be forwarded 
between generations of researchers [10–12]. Ontology-ba-
sed ELNs enable seamless integration of heterogeneous 



4.1.3. Inherently Heterogeneous Research Data

data sources, such as experimental protocols, materials 
databases, and analytical instrument outputs. By map-
ping experimental data to ontology terms, researchers can 
link related information and uncover hidden relationships 
between experimental variables [13].
Besides the numerous benefits of ELNs, some of their 
downsides should be mentioned. ELNs are more costly 
than hardcover notebooks and not user-friendly, making 
the hurdle to using ELNs much higher. Another disadvan-
tage of ELNs is that different researchers often use diffe-
rent wording and metadata structure, especially among 
different institutions. Therefore, publications are often 
difficult to reproduce due to the lack of completeness and 
comparison of experimental results is not possible [10, 
14]. Additionally, lack of terminology standardization and 
interoperability between different ELN systems may hinder 
data sharing and collaboration among research groups, 
especially in multidisciplinary research environments [15].

Usually, ELNs act as interfaces into Laboratory Information 
Management Systems (LIMS), which store the data and 
offer further capabilities such as planning of workflows, 
versioning, data analysis or data export. To further increa-
se the capabilities of the ELN, LIMS can offer semantically 
structured data storage solutions and, therefore, exposing 
the benefits of ontologies and semantics to ELNs users. 
Metadata, pipelines, and data management can then be 
backed by semantically rich information.
To enable such integrations, ELNs must be considered as 
part of the framework of a RDM ontology, just as in the 
machine room, where a gearwheel alone has no function 
if it´s not connected to the whole system. Additionally, wi-
despread usage of ELNs requires an intuitive user inter-
face with little complexity, which still enables flexible 
handling of data and thus similar functionalities as the 
paper notebooks [12]. 

Managing the quite heterogeneous data landscape of 
catalysis research poses some challenges for data pro-
viders. Usually, a broad variety of tools for data storage 
is employed in the industry. Historically, these tools also 
change over time, based on change of providers or tech-
nology reasons. Long-term data storage solutions often 
relate to document information systems for the storage of 
written, language-based reports. These may lack machine 
readability and interoperability, as the documents are at 
least in part not machine-readable. 
Typically, toolsets tend to be harmonized within one or-
ganization - but not within a whole industry or academia 
branch. Thus, an overview of the toolsets used is hardly or 
not available as information is seen as “internal”, hinde-
ring efforts of cross-company standardization. Furthermo-
re, typical industry demands encompass easy usability, 
maximum cost-benefit, and effectiveness. Open-source 
and customizable, clear and well described interfaces are 
key technology for a wider user-acceptance of tools for 
data providers. Data solutions should contain all the data 
relevant to the respective industry and provide the data in 
data spaces, ideally free to access or at least with low use 
fees, in order to achieve the envisioned democratization 
of research data. 
Although academic research must consider these require-
ments, they often have lower priority compared to other 
requirements. This also results in more heterogeneous 
toolsets, elevating the complexity of the problem. 

Scientific User Groups/Data Providers 
At this stage of digitalization development, scientists are 
not inclined to get involved with semantic modelling. Ex-
perimental science involves a multitude of complex facets, 
from device interoperability to manual lab work. Particu-
larly in catalysis research, numerous manual steps such as 
sample preparation and configuring reactor components 

significantly influence experimental outcomes. In an ef-
fort to capture scientists‘ perspectives on describing their 
work, a thesis study within the laboratory was conducted 
with the aim to extract a formalized schema and, equal-
ly important, a metadata schema. Through an iteratively 
developed questionnaire, it was discovered that the expe-
rimental scientists conceptualized their experiments as 
dynamic workflows rather than fixed objects. Leveraging 
this insight, a skeleton for the methanol synthesis pro-
cess was built as a case study, subsequently interrogating 
the necessary metadata that is associated with produced 
data. Recognizing the complexity of directly implementing 
an ontology encompassing all relevant entities, a more ac-
cessible approach is taken by designing a less formalized 
semantic model using a SKOS vocabulary, e.g. with Voc-
4Cat [6] (s. chapter 4.1.1) or VocPopuli [16]. The goal is to 
have a stable description that serves scientists in a non-
intrusive way while lowering the barrier to integrate data 
with established semantic models from NFDI4Cat.

Chemical Process Engineering 
It is the very nature of research to generate a heteroge-
neous collection of data to decipher the multiple aspects 
of a research question. Especially in catalysis, the tho-
rough investigation of catalysts across their entire life-
cycle, from manufacturing to operation and end-of-life 
treatment, requires various methods and techniques that 
provide information about the catalyst’s physicochemical 
properties and process-relevant performance indicators. 
The number of possible characterization and analysis 
methods commonly applied in catalysis emphasizes the 
heterogeneity and amount of data and data formats (.xlsx, 
.csv/.txt, .pdf, .log, .tif, .png, .mp4, .stl) that researchers 
have to analyze and evaluate - a puzzle of findings that 
must be put together to understand the complexity of 
catalysis and optimize it in a targeted manner. In the aca-
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demic world, the research data is often collected in self-
created folder structures and processed manually in Excel 
sheets or semi-automated with stand-alone applications 
implemented in Python or MatLab. Moreover, at universi-
ties, research work is oftentimes conducted by different 
students, each with its own individual “RDM strategy”. 
Hence, the status quo makes data handling and analysis 
time-consuming and unsustainable for publishing and 
reuse. Recent developments at universities [17] tackle the 
challenge of making heterogeneous data more accessible 
by integrating data collection and processing tools and 

thus automatizing research routines. Besides more FAIR 
data handling approaches, embracing open science prin-
ciples is paramount in today‘s rapidly advancing world of 
research and discovery. By adhering to transparent me-
thodologies, sharing data openly, and fostering collabo-
rative environments, academic research efforts should 
contribute to the ethos of open science and amplify its 
value attribution. Through this commitment, researchers 
advance knowledge collectively and promote inclusivity, 
reproducibility, and innovation, driving progress for faster 
and more sustainable research.

4.2. Putting Everything Together: Pipelines of the Engine Room
To be able to fulfill the goals set by the criteria for an ac-
ceptable solution, not only the needs and basics must be 
understood. In addition, an “engine room“ needs to be 
build, that can be adapted to the new basics and future 
tasks over the years. Since NFDI4Cat aims to develop reu-
sable methods and tools, the „engine room“ should not 
remain unique. Thus, it is envisioned that the tools can be 
adapted and modified by different stakeholders, making 
it even more important to draw on the principles of good 
design at an early stage. Here, too, the developed structu-
res are divided into two primary functional principles that 

must be fulfilled. The first function is the extensibility of 
established semantic artifacts, coupled with the ability to 
incorporate new ones. The second functionality is the rea-
lization and application of these semantic artifacts to data 
records to obtain linked and enriched data. An overview of 
the structures can be seen in Figure 6, which shows the 
path from different data sources and interfaces, through 
the processing level, to the services and applications that 
can be realized with them. The sub-functions are descri-
bed in more detail in the following individual chapters.

Figure 6: Structure of the “engine room” of semantic research data management, focusing on the general interplay of 
internal components and pipelines.



4.2.1. Persistent Identifiers

Managing research objects like catalysts, datasets, mo-
dels etc. can be challenging if they should be shared with 
others. This is where Persistent Identifiers (PIDs) come 
into play, which provide a globally unique resolvable per-
sistent identifier for entities. Well-known examples for 
PIDs are the Digital Object Identifier (DOI), the Open Re-
searcher and Contributor IDentifier (ORCID) for uniquely 
identifying researchers or the ROR identifier for Research 
ORrganizations. While DOIs were initially created as PID 
for publications, they can now be also used for data sets, 
software and since recently also for samples and devices 
[18]. For DOIs certain metadata are mandatory (see Data-
Cite schema [19]). The use of DOIs also comes with certain 
costs per DOI. Due to the metadata obligations but also 
due the costs, alternative, more “lightweight” solutions 
such as ePIC exist [20]. For resolving a PID, ePIC uses the 
same underlying technology as is used for DOIs: the hand-
le-system [21]. In contrast to DOIs, the metadata of ePIC 
handles are stored in the handle record itself which sim-
plifies the system. For some application, even ePIC PIDs 
cause too much overhead (e.g. each PID requires a regis-
tration). Due to this, handle-based PIDs are hardly ever 
used for terms or classes in ontologies and vocabularies. 
Storing metadata about the PID itself or the distributed 
resolver of the handle system are of little benefit for this 
use case. Instead, redirect-services are used that simply 
offer a redirect from a stable URL to the URL describing the 
resource (which may change) but store no information ab-
out the individual PID. Examples for such services, which 
are managed by communities and typically backed-up by 
larger organizations, are w3id.org [22], purl.org [23] or 
pida.org [24]. 
To reflect the different use cases NFDI4Cat has been using 
and developing the following PID services:

•  Simple redirect service offered by w3id.org 
	‣ This is used for URIs of terms in ontologies or 

vocabularies, e.g. for the concepts and collections 
defined in Voc4Cat (a vocabulary for the catalysis 
disciplines):  

Example: “photocatalyst” has URI https://w3id.
org/nfdi4cat/voc4cat_0000002  
(note, the concept has a numeric ID since it 
is independent of the language, the German 
“Photokatalysator” has the same IRI)

•  Digital Object Identifier (DOI)
	‣ Zenodo-provided DOIs are used for software or 

linked-data artefact developed on GitHub. Examples 
can be found in Voc4Cat (SKOS-vocabulary):	 
https://doi.org/10.5281/zenodo.8313341

	‣ Datacite-provided DOIs are used for data sets 
published in Repo4Cat the NFDI4Cat data portal.

•  NFDI4Cat-provided handle-based identifiers
	‣ PIDs for data sharing before data publishing in 

NFDI4Cat´s Repo4Cat data portal or similar local 
data portals

•  NFDI4Cat-provided handle-based PID4Cat identifiers
	‣ PID4Cat identifiers are similar to ePIC. They also 

store metadata in the handle record itself. In 
contrast to ePIC a more extensive metadata schema 
is suggested [https://github.com/nfdi4cat/pid4cat-
model] which is available as LinkML model [25]. 

	‣ PID4Cat identifiers can be used for a variety 
of entities, e.g. samples, devices, or models. 
Partners can own and control sub-namespaces 
of identifiers. This allows to create PIDs locally 
(in their own sub-namespace) and register them 
later in the PID4Cat service. Existing globally non-
unique IDs e.g. from ELNs can be converted to full 
PID by registering them as PID4Cat identifier with 
a namespace for the source ELN.

In addition, ORCID and ROR are used in various RDM ser-
vices to identify researchers and organizations, respecti-
vely.

4.2.2. Semantic Enrichment Pipeline
At the core of the internal components and pipelines lies 
the semantic enrichment pipeline. This pipeline aims to 
accelerate the creation and extension of ontologies, lea-
ding to fast ways to transform a dataset into a knowledge 
graph and to ease the mapping of ontological terms to the 
dataset. As Figure 7 shows, documents like ELNs, scien-
tific theses, or books give in general a good overview of 
the terms, which describe a specific domain. Applying Na-
tural Language Processing (NLP)-based tools, these terms 
can be extracted and already clustered or set in relation to 
each other. With this vocabulary for a description of a do-

main, the terms can be searched for in existing ontologies 
and other semantic artefacts. This helps domain experts 
to choose a proper ontology for extension by the concepts 
not yet present in the ontology. Furthermore, this yields a 
database of ontologies and other semantic artefacts for 
catalysis research. Finally, the extended ontologies can 
be brought to life by the data they are describing in a last 
step of metadata and research data processing, genera-
ting knowledge graphs of the research data and extended 
ontologies for further (re)use.
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Figure 7: Overview on the overall semantic enrichment pipeline, modified from [4].

4.2.3. Metadata Validation Pipeline
Moving towards linked FAIR data from simple data entails 
not solely relying on optimal storage practices or placing 
the burden entirely on researchers. Especially when dea-
ling with intricate ontological structures, ensuring accura-
te (meta) data becomes paramount. For instance, an error 
might occur where a catalyst, along with its relations like 
„hasMolecularComposition“, is mistakenly categorized as 
a member rather than being identified as a catalyst exami-
ned by the NFDI due to a typographical mistake. Identify-
ing such errors can be challenging within the intricacies 
of an ontology, and individually inspecting each data re-
cord is impractical. While tools like ELNs may incorporate 
validation checks, there is a necessity for complementary 
methods within a semantic infrastructure that operate be-
yond specific input interfaces.
Consider simulation software and its outcomes as an illus-
tration. As depicted in Figure 8, the current plan outlines 
three primary interface options aligned with the seman-
tic structure. Firstly, a fully automated interface ensures 
efficiency but maintains flexibility by accommodating po-
tential adaptations throughout its development stages. 
Secondly, a semi-automated input interface caters to re-

searchers with advanced modeling skills or those requi-
ring a higher level of detail, aiding them in aligning their 
data with desired ontologies. Yet, recognizing that even 
this might lack adequate flexibility, provision is made for 
researchers to engage with semantic experts who will tai-
lor support to their specific needs, integrating any enhan-
cements into the validation processes of both semi-auto-
matic and automatic metadata checks.
Focusing on the most utilized tool, the automatic inter-
face, a more comprehensive overview reveals its capabili-
ties. Beyond assessing the structural integrity of a know-
ledge graph, it is imperative to evaluate the FAIRness of 
data intended for storage. One approach involves utilizing 
databases structured using the dataverse architecture, 
which can be harvested with tools such as Piveau Metrics 
[26], for validating the quality of the given metadata. Pi-
veau Metrics can utilize the terminology defined via DCAT 
and DCAT-AP, a widely adopted metadata schema in the 
EU, that is used in the dataverse, and evaluates it against 
the Data quality Vocabulary [27] to assess its quality, a 
process already in use within EU data platforms [28]. 
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Figure 8: Overview on the metadata validation pipeline.

4.2.4. Semantic Development Pipelines 
A user-friendly vocabulary contribution workflow (Conti-
nuous Integration -CI- pipeline) has been developed and 
extensively tested, facilitating community contributions to 
the vocabulary coupled with an effective vocabulary cura-
tion procedure and the automatic creation of the relevant 
resulting documentation, as shown in Figure 9. 
The developed tool is hosted in the NFDI4Cat GitHub re-
pository (https://github.com/nfdi4cat/voc4cat) and uses 
the SKOS standard. Leveraging GitHub and Excel, the CI 
pipeline facilitates community-driven contribution and 
curation. This approach combines the efficiency of GitHub 
features with the familiarity of Excel, making it accessi-
ble to a wide audience. The enabling Python package is a 
universal xlsx to SKOS converter [6]. A GitHub-repository 
template is offered to be re-use by other communities for 
their vocabularies [29]. Voc4Cat is built on this repository 
template.
Contributions can be submitted as an Excel file (through 
the developed template: https://github.com/nfdi4cat/
voc4cat/tree/main/templates) or as a SKOS/turtle file. 
Eventually, the submitted xlsx file is removed and con-
verted to a SKOS/turtle file, but the tool is able to convert 

on request between .xlsx and SKOS/turtle formats (in 
both directions). After submission, the CI pipeline starts 
automatically (typically runs for less than a minute) and 
initially checks for errors and suggests corrections. When 
all issues (if any) are addressed, and through an iterative 
improvement loop containing peer review and discussion 
with the maintenance team, the suggested changes reach 
an expert editor. The editor is charged with approving or 
rejecting the proposed request leading to the publication 
of an updated vocabulary.
To track the contributors, each interested community 
member requests an ID range and the respective contribu-
tions will be attributed via the researcher’s ORCID number. 
This also allows independent work and avoids using the 
same ID repeatedly.
When a new version of the vocabulary is released, it is au-
tomatically published in Zenodo (latest release: https://
doi.org/10.5281/zenodo.8313340). Voc4cat is available 
via the TIB Terminology Service [30], appears in FairS-
haring.org [31], and the European Open Science Cloud 
(EOSC) – portal [32].
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Figure 9: The continuous integration (CI) pipeline.

4.2.5. Knowledge Graphs and Triple Stores for Querying
In the context of NFDI4Cat, knowledge graphs and triple 
stores play a crucial role in organizing and querying data. 
Knowledge graphs are semantic networks that describe 
objects and their interrelationships, aiding in improving 
data search and understanding of context. As the founda-
tion of knowledge graphs, triple stores manage large data 
sets in the form of triples (subject, predicate, object).
 As noted in the Architecture Document [33], metadata de-
scribing the respective experiments are encapsulated into 
metadata sets, transformed into RDF (Resource Descrip-
tion Framework) format, and integrated into triple stores. 
This process includes data transformation, maintaining 
semantic consistency through ontologies, and selecting 
appropriate triple store technology for scalability and ef-
ficient query processing. Moreover, such organization of 
meta-sets facilitates compatibility and interaction among 
all project participants.
Using triple stores allows each metadata set to be iden-
tified by its unique URI, ensuring direct accessibility to 
research results and easy navigation between metadata 
sets. Effective storage and navigation of data in the form 
of RDF triples in triple stores enable SPARQL to perform 

complex queries and data analysis. This combination all-
ows for high-level queries for data extraction, updating, 
and manipulation, which is important within the NFDI4Cat 
project, where data are often interconnected and multi-
layered.
However, selecting the appropriate knowledge graph sto-
rage solution is a complex task that requires thorough 
testing. The testing procedure involves analyzing admi-
nistrative requirements, documentation, licenses, and 
ensuring user-friendliness. Additionally, the integration 
of the selected storage solution into the overall project 
structure shown in Figure 6 is a critical factor. As part of 
the NFDI4Cat project, testing the triple store‘s suitability 
and applicability is conducted. The results of this evalua-
tion will be published following a comprehensive analysis 
of all requirements and community feedback review.
Thus, knowledge graphs and triple stores become tools 
that assist in efficiently managing user data in catalysis, 
providing a deeper understanding of complex chemical 
processes and contributing to the advancement of scienti-
fic research in this area.



4.3. Bringing the Machine to Life: Interfaces for Researchers
Besides the theoretical implications of research data ma-
nagement and semantic workflows, researchers need in-
terfaces to implement the solutions in a practicable way. 

Thus, this chapter highlights contact points with the pre-
sented workflows.

4.3.1. Electronic Laboratory Notebooks
Most ELNs offer somehow solutions that can be aligned 
with semantic techniques. The interface of the ELN is an 
inseparable element of the researchers’ everyday work-
flow, therefore, needs to provide the flexibility to formula-
te the entries in an intuitive manner. At the same time the 
interface should include a large number of functionalities 
to support the variety of aspects of the experimental work 
even of a single researcher, e.g. catalyst synthesis steps 
in comparison to a catalyst performance test, let alone wit-
hin a research group or an institution. Alternatively, a re-
search group leader could create customizable interfaces 
or forms for each type of experiment that fits to the group 
which would provide to junior scientists, which, however, 
has the drawback of increasing the effort and workload.
In order to avoid the researchers being hindered by the 
complexity of an interface, it is often preferred by instituti-
ons to use multiple solutions that are specialized in a field 

such as catalyst synthesis or catalytic performance tests. 
Holistic integration of ELNs, RDM software and even ex-
perimental process control units by collaboration between 
providers of such tools could not only reduce complexity 
in the user’s daily interaction with them but it also allows 
for more automated research routines. The automatizati-
on of the data handling process from collection to storage 
can significantly reduce the initial hurdle for researchers 
to use ELNs and RDM tools and thus facilitate their contri-
bution to the FAIR research data principles. These holisti-
cally integrated approaches are currently under develop-
ment and will provide a platform for further applications in 
catalysis and beyond [17]. In this case, the interconnection 
between the RDM tools and automation scripts as well as 
the use of PIDs assigned to each catalyst become of high 
importance [34]. 

4.3.2. Querying Knowledge Graphs
Since knowledge graphs can represent complex, not even 
explicitly formulated, relations between semantic ent-
ities, querying these highly structured graphs is on the 
one hand highly desired and on the other hand challen-
ging. The challenges are on the one side, that a questioner 
needs to know parts of the structure (like terms, relations) 
of the knowledge graph to submit a query and on the other 
side that the current implementations cannot cope with 
natural language (English) queries - this is still a subject 
of research. To highly structure and define queries, many 
attempts have been undertaken, e.g. GraphQL [35], Cy-
pher [36], GQL [37] and SPARQL [38]. All of them have their 
own syntax and range of applications, but require a high 
degree of expertise. For querying RDF triples based know-
ledge graphs, stored in triple stores, the W3C consortium 
specified [38].
SPARQL is a powerful query (and also knowledge graph 
manipulation and generation) language, syntactically roo-
ted in SQL. In contrast to other query languages, SPARQL 
allows federated queries, combining different data re-
sources across the web. 
Listing 1 shows a (working) simple example that queries 
solubilities of substances from wikidata [39]. It illustrates 
the complexity of the language and the necessity of prior 

knowledge of the structure of the triple store: e.g., all the 
terms, starting with wikibase as prefix need to be known 
at query time.
Similar to the advances made for databases, similar ad-
vances can be assumed to happen in the field of SPARQL 
queries. While large search engines such as Google, 
Yahoo, and Bing have an eye on using knowledge graphs 
in their search mechanics [40], they still have the problem 
of writing precise queries which is still a little bit unwieldy 
and thus use their more refined search techniques. Ho-
wever, developments in NLP show promising results for 
translating simple questions into pre-formulated SPARQL 
queries.
Since knowledge graphs, which are currently the primary 
focus of NFDI4Cat, are just a very specific way of construc-
ting a graph database, several other methods of querying 
graphs are also applicable. While SPARQL has a large set 
of features that are specific to RDF graphs, translating a 
knowledge graph into another graph format allows for 
querying with tools such as GraphQL and Cypher. This is 
currently an applicable way to circumvent some of the syn-
tactic as well as the computational complexity of SPARQL 
querying.
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SELECT DISTINCT ?chemicalLabel ?value ?unitsLabel ?solventLabel WHERE {
  ?chemical ?propp ?statement .
  ?statement a wikibase:BestRank ;
   ?proppsv [
    wikibase:quantityAmount ?value ;
    wikibase:quantityUnit ?units
   ] .
  OPTIONAL {
   ?statement prov:wasDerivedFrom/pr:P248 ?source .
   OPTIONAL { ?source wdt:P356 ?doi . }
  }
  ?property wikibase:claim ?propp ;
      wikibase:statementValue ?proppsv ;
      wdt:P1629 wd:Q170731 ;
      wdt:P31 wd:Q21077852 .
   OPTIONAL {
   wd:P2178 wikibase:qualifier ?qualifierS .
   ?qualifierS a owl:ObjectProperty .
   ?statement ?qualifierS ?solvent .
  }
 SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
 } LIMIT 10

4.3.3. Metadata for Domain Specific Search Engines
A pertinent consideration lies in the extraction of metada-
ta from scholarly text providers, such as Scopus. Using the 
content presented in such vast repositories offers a bene-
ficial base for enrichment of the knowledge base. Utilizing 
structured querying techniques via API endpoints allows 
for automated and systematic retrieval of the articles, 
texts, and metadata. Through programmatic access to the 
data records, relevant metadata (such as which reactants 
were used or which reaction was investigated in the re-
spective publications) can be analyzed and extracted from 
these texts. This can then be used to enrich ontologies 
with contextual information. Employing NLP methodolo-
gies and pre-trained information extraction (IE) models, 
such as catalysisIE [41], metadata can be extracted from 

textual publications. Here, information such as catalysts, 
reactions, and products can be extracted from scholarly 
works, subsequently organizing this data into an ontology 
by the help of NLP and IE. Making the resulting knowledge 
graph accessible for example via SPARQL queries or Pro-
tégé‘s graphical user interface can then give deeper and 
faster insights in current state of the art of scientific lite-
rature. While this approach works in principle, more data 
labelling and further training of the models is needed to 
obtain more powerful IE models, focusing on more and 
more concepts that are also described in ontologies. Ho-
wever, with this metadata for domain specific search en-
gines can be retrieved and stored in a knowledge graph 
automatically.

Listing 1: Exemplary SPARQL-query for querying solubilities of substances from wikidata, illustrating the complexity of 
SPARQL and the necessity of prior knowledge of the structure of the knowledge graph. 

4.3.5. Metadata Quality Assessment for Increased Research Publications
As described in previous chapters, such as metadata for 
domain-specific- and large search engines, metadata de-
posited together with a publication does not only increase 
the visibility of a research publication for other resear-
chers and the public, but it also demonstrates how viable 
information extraction is for a specific publication. In this 
context, measures and awards from funding agencies, pu-
blishers and other institutions and initiatives have been 
proposed and partially established in order to promote 

and guarantee a liberal and comprehensive data sharing 
approach among scientists. Publishers, for example, are 
now implementing the open science badges [https://
www.cos.io/initiatives/badges], which show directly how 
accessible a certain dataset is. Although these badges do 
not quantify the metadata quality directly, they still have 
the potential to act as an inherent quality control measure. 
Also, institutions and organizations, such as the EU, al-
ready measure the metadata quality of contributors [28] 



against a set of criteria using metadata specifications like 
DCAT-AP [43]. While this is currently more of an incentive, 
it might become mandatory for some publications, espe-
cially for publicly funded research projects. Within the 
German NFDI landscape also field specific quality control 
measures are implemented to ensure and assess meta-
data quality. Within NFDI4Cat, for example, a tool based 

on the FAIR principles (Piveau metrics) is currently being 
integrated into the NFDI4Cat Metaportal. Predictive anno-
tation with metadata can thereby help to ensure that data 
remains relevant in the future. Additionally, when it comes 
to trust in data and trustworthy data, quality assurance is 
essential, too, which can be enhanced or made measura-
ble through ontologies.

4.3.6. Automating (Meta) Datastreams
Most scientists cannot spend a lot of time on enriching 
their data with proper metadata, therefore, 
the success of the FAIR principle will only be achieved, 
when the “boring repetitive” work will be automated. A 
very powerful technology to automatically generate know-
ledge content, like individuals, offer open source, royalty 
free and vendor agnostic lab-automation communication 
protocols, like SiLA [44] and OPC-UA/LADS [45]. They ena-
ble an abstract and generalized control of lab devices and 

services, like machine learning services or lab workflow 
orchestration. They further help to channel data in a la-
boratory network, interact with ELNs and LIMS systems, 
and assist to enrich data with metadata in an automated 
fashion. This reduces the burden of the scientist to track 
all the data and automate many repetitive steps. Well com-
bined and structured they have the potential to form the 
data transport backbone of semantically enriched data 
streams and a data exploration infrastructure.

4.3.7. Software-assisted Generation and Inspection of RDF Metadata
In general, the translation of the ontology-based model 
into valid RDF metadata for particular research steps is 
associated with significant challenges. Despite a seeming 
simplicity of RDF, manually creating RDF metadata can 
be akin to a programming-like experience, demanding a 
good understanding of both the ontology model and the 
syntactic rules of the chosen RDF serialization format. In 
addition, assigning RDF resources to ontology classes, de-
scribing relationships between resources using ontology 
properties and translating them into RDF triples involve 
meticulous attention to detail. After all, the generated RDF 
metadata have to be syntactically checked, semantical-
ly validated against the ontology, as well as checked for 
completeness. The adoption of linked semantic techno-
logies by the community faces significant hurdles due to 
these challenges.
For circumventing these difficulties, the HLRS team is ac-
tively developing a software suite to assist researchers in 
creating RDF metadata. To achieve this objective, the re-

ference ontology needs augmentation with suitable logi-
cal constructs, facilitating efficient decision-tree support 
through a reasoner-based questionnaire. This program 
is designed to integrate seamlessly with a user-friendly 
web interface for enhanced interaction. Another crucial 
concern involves the representation of RDF data, which, 
in most cases beyond the trivial, are hardly comprehen-
sible in raw form. To address this, automatically transfor-
ming RDF data into accessible HTML or Markdown formats 
would greatly enhance the usability of knowledge graphs 
in the community. The above-mentioned program suite 
will incorporate such a tool. This task is particularly ap-
propriate for RDF data, considering that all resources wit-
hin them are assigned URIs. In this way, the generation, 
processing and visualization of RDF metadata can be per-
formed without demanding advanced skills from resear-
chers. This would consequently enhance the usability of 
semantic technologies within the community.

4.3.8. Mechanisms for Alignment: The Role of Domain Expert Input
The involvement of domain experts is an integral organ in 
the workflow of ontology-based research data manage-
ment. The formal arrangement can be achieved through 
committees for survey of activities and corrective input to 
the RDM system, similarly to a mechanism that has proven 
useful in context of the Wikipedia system. The workflows 
should encompass detailed processes tailored to be nur-
tured by different expert inputs. The input should include 
mechanisms for vocabulary curation utilizing general user 
input derived from literature, experimental, or simulation 

data sources, involving text processing to identify terms 
and relations. Automated methods are currently develo-
ped and should be further fostered and employed to map 
terms to classes and individuals, with alignment activities 
conducted with neighboring NFDI consortia in chemistry, 
engineering, and materials, as well as general semantic 
initiatives like Wikidata. Ontology extension and curation 
are carried out in collaboration with NFDI base services, 
ensuring alignment with top-level ontology and employ-
ing reasoning mechanisms to prevent inconsistencies. 
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The development of the NFDI4Cat toolbox will give more 
information on the concrete user input and far-reaching 
automation of the process.
The automated workflow integrates expert input and pro-
vides regular reporting of key results, managing conflicts 
effectively. PID management and rights management are 
incorporated, with reporting occurring on a monthly, quar-
terly, or annual basis, alongside alignment activities with 
other NFDI consortia and base services. Ontology-based 

metadata functions as a template, seamlessly integrated 
into the RDM architecture. This covers data storage, cura-
tion, quality control, data analysis, and augmentation to 
scientific knowledge. The workflow supports data sharing 
and publication, enabling the reuse of data for research 
planning in experiments and simulations, facilitating ana-
lysis, and connecting with other data sources and infor-
mation. The overarching goal is to close feedback loops 
and continually enhance data management practices.



This chapter aims to describe success stories of NFDI-
4Cat-related applications with focus on APIs and import-
ant interfaces for the workflow. As potential users might 
have different levels of “semantic readiness”, different 
usability is addressed in the following subchapters. Basic 
users might be at the start of using semantic technology 
and more prone to use solutions that offer a low hurdle but 

also low semantic expressivity. Experienced users might 
be able to use semantically more enhanced applications, 
such as querying a semantic data base with SPARQL. Fi-
nally, expert users might see themselves fit enough to 
develop their own semantic RDM workflows based on the 
presented ones and tweak them to their needs.

5. Application of the RDM-Engine: 
    Example Solutions and Future Implementations

5.1. LARAsuite
The LARAsuite [46] is an open source and very modular re-
search data management system and integrated lab auto-
mation environment, designed to cover the full scientific 
workflow in natural sciences (from biosciences, over earth 
sciences to chemical- and physical sciences). For that pur-
pose, it consists of modules that interlink data sources of 
common experimentation, e.g. linking materials, substan-
ces, organisms, processes and processes to performed 
experiments, structuring experiments in projects, etc. It 
assist in structuring core information of experimentation 
and adding automatically a semantic metadata layer to 
the experiment description. Through its modular design 
and microservice architecture, all modules can be expan-
ded to the individual needs of a particular experimenta-
tion. LARAsuite is designed with workflow automation and 

semantic metadata enrichment from the ground up, see 
Figure 10. This means that it generically supports and or-
chestrates SiLA (s. chapter 4.3.6) lab automation servers, 
collects the produced data into an object storage, adds 
the metadata to a triple store (virtuoso) and allows data 
evaluation and visualization with ELT pipelines for ma-
chine learning and AI (e.g., prefect). The triple store can 
be queried through SPARQL (s. chapter 2.3.4). For simple 
data access, a convenience python library is avail, which 
makes the large gRPC API of the LARA database extremely 
simple to use. Several instances of LARA can share data 
through a synchronization protocol. Connectors to public 
data repositories, like dataverse, Zenodo etc. are under 
development.
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5.2. ADACTA
In the context of a specialized solution for management 
of catalytic performance experimental data, the software 
Adacta was developed within NFDI4Cat. The basic concept 
behind Adacta is the efficient data archiving of time-stam-
ped experimental measurements associated by the com-
plex metadata which arise because of the reaction para-
meters and the used devices [17]. Adacta is highly flexible 
in that it does not rely on rigid predefined ‘‘forms’’ to input 
accompanying metadata which lead to high maintenance 
efforts due to the many customized forms needed to sup-
port a wide variety of experimental setups that can evolve 
with time.
In Adacta, each experimental reactor setup within a lab 
has its own digital twin, including all of its components. 
Mass flow controllers, pressure valves, reactor tubes etc. 
are specified along with their technical information such 
as range of mass flow or dimensions. The experimental 

setup configuration is assigned to a point in a time line 
and is easily maintained in case of future changes in the 
physical lab. This provides the possibility to keep track of 
the exact status of the experimental setup at the time of 
each experimental measurement. 
The experimental raw data are also organized based on 
the time-stamp which assure its uniqueness for a specific 
reactor setup. Raw data are also associated with the spe-
cific device that produces them as for example a thermo-
couple measures the reactor temperature or a FTIR gives 
a signal of gas composition. In this way, it is assured that 
no information will be lost and that it can be easily tra-
ced back at any time. A schematic representation of the 
user interface that enables the quick transition between 
Resources (datasets), Device (experimental setups) and 
Samples is depicted in Figure 11.

Figure 11: Schematic representation of the concept of the user interface in Adacta.

Data repositories control the physical location where the 
experimental raw data and related metadata are stored. 
Therefore, depending on user requirements, data can be 
stored locally on a single computer, or remotely on a com-
pany or department server. If data are stored on remote 
servers, then a user can have access to the whole data-
base from multiple computers.
Advanced searching options can filter the datasets ba-
sed on the measurements with a specific sample or the 
measurements within a certain period in time. One more 
option with practical importance is the search of the raw 
data measured by an experimental setup composed of a 

specific device that was discovered at a later time that 
it was malfunctioning. This gives the advantage to trace 
which measurements were actually affected by the tech-
nical problem.
Extended visualization features allow comparison of sig-
nals from different experiments or combined view of sig-
nals within a dataset, filters etc. Additional features are 
the access control, i.e. a mechanism that gives the crea-
tor of the data the possibility to control which other users 
have access (including read-only or read/write permissi-
ons) complying with non-disclosure agreements and cont-
rolling intellectual property.



As the database of information expands, tracing the histo-
ry of catalysts across reactor setups will become feasible, 
to identify the smallest details that impact experimental 
performance, even far into the future when the experimen-
tal test stand is decommissioned, and key personnel have 

moved on to other roles. By linking with ELNs and other 
resource media via common ontology and terminology, all 
documents, reports, and data generated for a particular 
experiment can be stored in a single repository.

5.3. Linking Local and Overarching Data Infrastructures in NOMAD 
Complete and machine readable data sets are an import-
ant requirement for the application of artificial intelli-
gence methods to find new catalyst materials or to better 
understand relationships between material properties 
and performance [47–49]. The basis for the generation of 
AI-compatible data sets is the development of local data 
infrastructures that are adapted to the needs of specific 
research tasks. The connection of initial data collection, 
converting it into open formats, data analysis and pub-
lishing FAIR data completes the full lifecycle of research 
data management (RDM).
NOMAD is a web-based application dedicated to mana-
ging and disseminating data from materials science re-
search and serves as an open repository [50]. It serves 
a broad spectrum of needs within the materials science 
community, for example in computational and experimen-
tal research fields, including heterogeneous catalysis as 
an important use case. At its core, the NOMAD central 
service acts as a comprehensive archive and repository, 
housing over 13 million entries from thousands of contri-
butors. This wealth of data is not only stored but made rea-
dy for AI applications through its structured format, rich 
metadata, and adherence to FAIR (Findable, Accessible, 
Interoperable, Reusable) data principles. Such organi-
zation ensures that the information is both machine and 
human-readable, facilitating seamless access and ana-
lysis through robust Application Programming Interfaces 
(APIs). By integrating general and example data schemas 
for heterogeneous catalysis, and ensuring data items 
such as sections and quantities are semantically enriched 
and interoperable (referencing community standards like 
ontology definitions or Voc4Cat with unique internationa-
lized resource identifiers (IRIs)), NOMAD is positioned to 
facilitate advanced and interoperable RDM for catalysis-
based research. 
Standard operating procedures (SOPs), which are docu-
mented in machine-readable handbooks [51, 52], increa-
se the reproducibility and comparability of experimental 
catalysis data. In order to comply with standardized data 
acquisition and storage, a local RDM concept was develo-
ped at the Department of Inorganic Chemistry at the Fritz 
Haber Institute of the Max Planck Society, which focuses 
on the automated execution of experiments. The automati-
on of laboratory reactors, routine and advanced characte-
rization techniques is implemented using EPICS, an open-
source system that provides tools for experiment control 

[53–55]. A database (AC/CATLAB Archive) was established 
to store, visualize and retrieve the data and metadata [56]. 
The database functions both as a data archive and as an 
electronic laboratory notebook. The scientist develops 
measurement methods that are entered via graphical user 
interfaces (GUIs) and automatically stored in the database 
in the form of JSON and HDF5 files, where they can be re-
accessed at any time. In this way, machine-readable hand-
books are generated via GUIs also for manual experiments 
[57]. Routines developed based on EPICS carry out the ex-
periments [58, 59]. Raw data and data evaluated with the 
help of Python scripts in a standardized way are automati-
cally uploaded to an S3 server and into the database in dif-
ferent formats including the HDF5 format [60]. The unique 
feature of the present RDM solution is that the data and 
metadata are automatically linked to the catalyst sample 
and other relevant information in the database, such as 
the measurement method, the reactor and the chemicals 
used in the experiment. Catalyst IDs are also generated 
automatically after automated treatments that chemically 
or physically change the sample and thus lead to a new 
sample, such as a spent catalyst after a catalytic test. The 
development of tools using Python, with which the data-
base entries and connections can be displayed graphically 
as nodes and edges, is in progress. The structured HDF5 
format enables easy comparison between data sets. The 
API allows the data to be used directly for machine lear-
ning algorithms or to be uploaded to overarching reposi-
tories such as NOMAD.
Another local data management and storage solution de-
veloped in FAIRmat is NOMAD Oasis [50]. A high level of 
adaptability allows institutions to customize data sche-
mas to fit their unique research setups and experiments 
with controlled vocabulary, including options for automa-
ted processing and analysis. This customization extends 
to faceted search interfaces, enhancing the discoverabili-
ty and accessibility of research data. Furthermore, NOMAD 
Oasis integrates Electronic Laboratory Notebook (ELN) fea-
tures, allowing for a hybrid approach to data entry - combi-
ning manual input with automatic parsing - to ensure the 
creation of consistent, structured datasets. A distinctive 
feature of NOMAD Oasis is its ability to connect with the 
central NOMAD service, enabling researchers to publish 
their data seamlessly.
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5.4. Exemplary ELN - FURTHRmind
RWTH Aachen University is also working on the implemen-
tation of RDM solutions such as the integration platform 
for research data Coscine („Collaborative Scientific Integ-
ration Environment“). This is currently in the pilot phase 
and is intended to support researchers in organizing, sto-
ring and sharing their research data. Established services 
such as the research data repository (FDS.NRW) and Git-
Lab are already being used and external services such as 
Sciebo will also be used in the future. Coscine is an open 
source solution of the IT Center of the RWTH and tries to im-
plement data storage according to the FAIR principle. Ab-
ove all, the software works according to the principle that 
no single solution can be found that fits all researchers, 
which is why Coscine pursues an integrative approach. As 
already described in chapter 4.3.1, there are many soluti-
ons for ELNs. The spin-off founded at AVT.CVT at RWTH Aa-
chen University focuses on a different approach. FURTHR-

mind is a state-of-the-art software solution to manage all 
research data, meaning all samples, measurements, ex-
periments, metadata, and raw data of the researchers. Ad-
ditionally, data can be analyzed directly in FURTHRmind or 
from other software for data analysis via the REST-API. The 
test stands at the AVT.CVT are controlled via control boxes 
from the spin-off ZUMOLab. These contain a direct integ-
ration with the data management software FURTHRmind, 
whereby the metadata set during an experiment and the 
measured experimental data are stored directly in memo-
ry and uploaded for further analysis. Templates were crea-
ted for a wide range of application areas that can be used 
for any application and reduce the workload. The template 
database is constantly updated, which means that a large 
pool of metadata, a standardized vocabulary and a stan-
dardized storage of metadata can be operated across all 
levels from students to professors.

5.5. Cross Domain Meta Ontology
This chapter introduces ontologies utilized to represent 
various aspects of research data within different NFDI 
NFDI-MatWerk. The focus lies on the NFDIcore ontology 
[61], serving as a generic framework for representing re-
search resources across consortia. The modular approach 
is employed to extend core concepts based on the requi-
rements of each consortium, enhancing consistency, cla-
rity, and reusability of representations, and facilitating 
knowledge discovery across diverse domains. NFDIcore is 
developed to represent research resources such as data 
sets, providers, persons, and areas of expertise across 
NFDI consortia, forming the basis for further domain-spe-
cific ontologies, such as the NFDI4Culture [62] and NFDI-
MatWerk [63] ontologies, which address specific domain 
needs for NFDI4Culture and NFDI-MatWerk respectively 
[64]. This modular approach establishes standard vocabu-

laries and structures, boosting reusability and uncovering 
new relationships and insights across different domains. 
The current version of the NFDIcore ontology comprises 
33 classes and 60 properties covering various aspects of 
research data management, guided by established stan-
dards and best practices, including the FAIR Data Princi-
ples. To ensure interoperability, NFDIcore links to around 
20 external vocabularies. Additionally, extensions cater to 
unique requirements of different research fields, such as 
the NFDI4Culture and NFDI-MatWerk ontologies. Develop-
ment follows a user-centered design and evaluation me-
thodology, with incremental and iterative requirements 
development for different user groups. As NFDI ontologies 
are intended to be dynamic and evolving to adapt to chan-
ging community needs, every version is accessible and 
referential online.

5.6. Research Data Management Tool for Catalysis Laboratory Courses
The Department of Chemistry at the Technical University of 
Munich (TUM) offers the „Technische Chemie Praktikum“ 
Laboratory Course to Chemistry (CHEM) and Chemical En-
gineering (CIW) undergraduate students. The laboratory 
coursework includes catalysis-related experiments (e.g., 
homogeneous catalysis, heterogeneous catalysis, bio-
catalysis) that are performed by students. The course typi-
cally has ~100 students enrolled each semester and each 
student performs at least eight different experiments. This 
results in more than 800 experimental datasets and re-
ports generated each year that are evaluated by the super-
visors (typically PhD students and Postdocs). A Research 
Data Management tool has been developed, „RDM4Lab“, 
for systematically storing the data generated in this Labo-
ratory Course in compliance with FAIR (Findable, Accessi-

ble, Interoperable, and Reusable) storage principles. The 
tool incorporates features like visualization of the current 
and historic data and automated data analysis to help the 
supervisors grade the reports. It is plan to make this tool 
compatible with ontologies, vocabularies, and metadata 
standards developed as a part of NFDI4Cat. The future is to 
use this tool as a real-world test case for the implementa-
tion of other tools developed at NFDI4Cat. The implemen-
tation of RDM4Lab at undergraduate level will also enable 
training of students with research data management. This 
tool will be implemented in full scale at TUM from summer 
terms 2024. Due to its modular nature, it can be imple-
mented in other universities and institution for their (cata-
lysis) laboratory related courses.



5.7. Envisioned Future Implementations
Future applications of the tools and workflows discussed 
and presented encompass crucial areas of cooperation 
within the catalysis-related sciences. One important ele-
ment is the focus on creation and development of speci-
fic knowledge graphs tailored to collaboration topics of 
interest among collaborating entities. This is envisioned 
to enhance data FAIRness and also to improve workflows 
cost- and time-wise, as these tailored knowledge graphs 
serve as dynamic repositories of specialized information. 
Future developments will encompass the structured que-
rying of knowledge graphs with SPARQL-queries formed 
by Natural-Language-Processing tools. 
Moreover, the scale-up of these infrastructures involves 
the interlinkage of knowledge graphs, yielding organic 
connections, enabling complex ways of knowledge repre-
sentation. On the other hand, this also makes data sto-
rage, e.g. in a dataverse, a more complicated task. Here, 

methodologies are to be determined to populate reposito-
ries in a meaningful and trustful fashion, to enable the full 
potential of the pipelines presented in this work.
In order to arrive at data spaces for catalysis related scien-
ces and be able to link open science with a data economy, 
the creation and use of data spaces tailored for catalysis 
related sciences are to be investigated more. Further pa-
thways must be identified and established focusing on the 
population of a data space via linked knowledge graphs. 
In future, applications, the tools and pipelines presented 
in this work aim to enable the researchers for enhanced re-
search data FAIRness with minimal or no additional work-
load during data uptake and recording. On top of that, the 
creation of data repositories and knowledge graphs will 
allow for faster data retrieval, also increasing efficiency for 
the researchers of catalysis related sciences.
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This White Paper represents a current overview on the 
landscape of semantic applications in the domain of cata-
lysis research and related sciences. After the introduction, 
important criteria for the RDM landscape are defined and 
some major findings from the last three years are summa-
rized. 
Technical insights in catalysis research involve the utiliza-
tion of vocabularies and Electronic Laboratory Notebooks 
(ELNs) to structure, record, and organize diverse research 
data. The recent insights include the interplay between 
various technical solutions such as Persistent Identifiers 
(PIDs), semantic enrichment pipelines, metadata validati-
on pipelines, and knowledge graph setups. The applicati-
on of these solutions extends to ELNs, querying knowled-
ge graphs, metadata applications, and software-guided 
generation of knowledge graphs, enhancing research effi-
ciency and data organization in catalysis studies. Selected 
application showcases are highlighted for currently alrea-
dy working examples of the semantic techniques. These 
include LARAsuite, the ELN FURTHRmind, and ADACTA as 
mature RDM software, thus enabling for semantic RDM 
with good FAIR practice. Furthermore, a way of setting 
up an own, local data infrastructure is shown, as well as 
the implementations of NOMAD and NOMAD Oasis, which 
provide web-interfaces for highly semantic databases. To 
connect existing and future developed ontologies, a cross-
domain meta ontology is presented, that aims to connect 
the semantics of the different research domains for better 

alignment of FAIR data workflows. Finally, an exemplary 
laboratory course shows the implementation of the FAIR 
principles in a hands-on teaching environment.
In the near future, the following tasks are envisaged to 
complete the picture: 

	‣ further development of the vocabularies for catalysis 
research, refining the selection of ontologies by help 
of competency questions,

	‣ use-case oriented design of ontologies,
	‣ pilot applications for showcasing the benefit of 

ontologies, and
	‣ enhanced querying systems for natural language - 

based queries on knowledge graphs will/should be 
developed to ease data retrieval from knowledge 
graphs.

As a final vision, an overall research data management 
workflow is necessary with user input from researchers 
including literature and patent survey, gathering experi-
mental and simulation data, integrated data curation and 
analysis with information extraction, data storage and 
sharing (partly), publications and re-usage by different 
user groups. Different contact points are important for end 
users within the presented workflows and pipelines. Here, 
more experience with different applications is necessary 
in the near future.

6. Conclusion
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