
D7.3 On Versioning Living and Programmable Corpora

D7.3
On Versioning Living and Programmable Corpora
(Executable) Report and Prototypes for Reproducible Research

Authors of the Report: Ingo Börner, Peer Trilcke

Concept & Development of the DraCor Prototype: Frank Fischer, Carsten Milling – Ingo Börner,
Mathias Göbel, Mark Schwindt, Daniil Skorinkin, Henny Sluyter-Gäthje, Peer Trilcke

Date: February 27, 2024

1

D7.3 On Versioning Living and Programmable Corpora

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101004984

Project Acronym: CLS INFRA
Project Full Title: Computational Literary Studies Infrastructure
Grant Agreement No.: 101004984

Deliverable/Document Information

Deliverable No.: D7.3
Deliverable Title: On Versioning Living and Programmable Corpora
Authors: Ingo Börner, Peer Trilcke
Review: Henny Sluyter-Gäthje, Maciej Eder, Daniil Skorinkin, Frank Fischer
Dissemination Level: PUBLIC

Document History

Version/Date Changes/Approval Author/Approved by
2024-02-22 Version for Review Ingo Börner, Peer Trilcke
2024-02-27 Version for Submission Ingo Börner, Peer Trilcke

2

D7.3 On Versioning Living and Programmable Corpora

Index

Index 2
List of Figures 1
List of Tables 1
0. About this Deliverable 1
1. Publishable Summary 2
2. Introduction: The Problem of Reproducibility in Dynamic Digital Ecosystems 3
3. Versioning Living Corpora Using Git Commit 6

3.1 How to Better Not Cite a Living Corpus. An Example From Current Research 6
3.2 Citing Corpus Versions Using Git Commit History. Introduction 7
3.3 Retrieving (Technical) Corpus Metadata via GitHub API 10

Exkursus: An Archaeology of a Living Corpus: GerDraCor as a Dynamic Epistemic
Object 12

The “Birth” of GerDraCor 13
A Living Corpus “Growing” 14
Batch Edits as Major Revisions 20

4. Dockerizing DraCor, for Example. On Versioning Programmable Corpora 25
4.1 Containerizing a Research Environment 25
4.2 Case Study: Dockerizing a Complete CLS Study 27
4.3 Simplifying the Workflow: StableDraCor 28

5. Outlook 32

3

D7.3 On Versioning Living and Programmable Corpora

List of Figures
Fig. 1: Landing page of the repository of GerDraCor on GitHub 8
Fig. 2: Links to the most recent commit and commit history 9
Fig. 3 Development of the number of documents in all versions in GerDraCor 15
Fig. 4: Development of the Distribution of the Digital Sources of GerDraCor 16
Fig. 5: Development of the time range (“YearNormalized”) covered by GerDraCor 17
Fig. 6: Development of the sum of all document sizes in all versions in GerDraCor 18
Fig. 7: Development of file size of the play Emila Galotti over all versions in GerDraCor 19

List of Tables
Tab. 1: Plays added to GerDraCor per year 15

0. About this Deliverable
This report is accompanied by a web-based version that includes executable (and therefore fully
reproducible) versions of the analyses in chapter 3. This executable report can be accessed at:
https://github.com/dh-network/clsinfra-d73

In addition to this report (Deliverable D7.3) includes a technical prototype for Programmable
Corpora: the Drama Corpora Platform "DraCor", which has been under construction since 2018
and was most recently further developed within CLS INFRA.
The main access points to the different components of the DraCor system are:

■ Code and Data on GitHub: https://github.com/dracor-org
■ DraCor Front-end: https://dracor.org/
■ DraCor API: https://dracor.org/doc/api

Numerous scholars participate in the development of DraCor and in the curation of the corpora
(the latter is not part of this Deliverable). For an overview, see https://dracor.org/doc/credits.
For the DraCor platform as a whole, these persons are responsible:

● Editor-in-chief: Frank Fischer (Freie Universität Berlin)
● Co-editors: Peer Trilcke (University of Potsdam), Julia Jennifer Beine (Ruhr University

Bochum), Daniil Skorinkin (University of Potsdam)
● Technical lead: Carsten Milling (University of Potsdam)
● Technical co-leads: Ingo Börner (University of Potsdam), Mathias Göbel (University of

Göttingen)
● Tools: Henny Sluyter-Gäthje (University of Potsdam)
● Art director: Mark Schwindt (Freie Universität Berlin)

1

https://github.com/dh-network/clsinfra-d73
https://github.com/dracor-org
https://dracor.org/
https://dracor.org/doc/api
https://dracor.org/doc/credits

D7.3 On Versioning Living and Programmable Corpora

1. Publishable Summary
Digital corpora, which are proving more and more to be the most important epistemic objects of
Computational Literary Studies (CLS), are by no means always static objects. On the contrary, it
is becoming increasingly clear that the digitisation of our cultural heritage needs to be
understood as an ongoing process, which also implies that a number of the epistemic objects of
CLS must be conceptualized as genuinely dynamic. We address this specific quality of some
epistemic objects of the CLS by speaking of "living corpora". Where corpora — as the data of
CLS — are also conceptually combined with code (e.g. in the form of an API) to form more
complex research artifacts, we speak of "programmable corpora", as described in detail in CLS
INFRA Deliverable D7.1 "On Programmable Corpora".

However, both living and programmable corpora usually face a considerable problem when
discussed with regard to the reproducibility of research. This report considers possible solutions
for the stabilization of living and programmable corpora and thus shows ways of making them
available for reproducing research in a sustainable and long-term manner.

By recommending Git commits as a way for versioning living corpora, we rely on a
well-established and proven tool for distributed version control, which, as we show using a
concrete example, can also be used for living corpora. This also offers the possibility of
retrieving additional (technical and performative) metadata about corpora.

For the more complex programmable corpora, on the other hand, we recommend the
containerization of the entire research infrastructure.

In a broader sense, this report is also an exploration of the traces left by a living corpus in the
technical space of a Git-based version control system. The traces are recovered using a method
that we call “algorithmic corpus archaeology” – a method which we recommend to all those who
embark on the epistemological adventure of working with living and programmable corpora.

2

D7.3 On Versioning Living and Programmable Corpora

2. Introduction: The Problem of Reproducibility in Dynamic
Digital Ecosystems

angels sing, and a light
suddenly fills the room.

Linus Torvalds, “git/README”, April 8, 2005

commits shape history
Git Guides, “Git commit”, October 29, 2021

Reproducibility has never been a central methodological problem for traditional literary studies.
Certainly, an interpretation of a poem (for example) should be comprehensible, its arguments
plausible, its evidence empirical. But hardly anyone demands that such an interpretation should
be “reproducible”, let alone by a researcher other than the one who originally provided the
interpretation.

Actually, the claim for reproducibility only enters the field of literary studies when
empirical methods are adopted, for example from sociology or psychology. Thus, with the rise of
Computational Literary Studies (CLS), which are also committed to an empirical methodology, a
new, quite wide field of research has recently opened up in which literary studies are confronted
with the problem of reproducibility. Yet “repetitive research” (to use a broader term, following
Schöch 2023) can take very different forms: One might think of the re-implementation of
methods and scripts in new research projects; of the re-analysis of data sets with optimized
tools; or of the exact re-production of analyses in the course of scientific quality assurance, for
example in peer review. In these and many other respects, Computational Literary Studies (but
also Computational Humanities and Digital Humanities in general) are facing the demand for
reproducibility.

However, according to critical voices, research in the humanities has not adequately met
this demand. Alluding to the so-called "replication crisis" (Open Science Collaboration 2015) in
some empirical sciences (particularly in psychology and medicine), James O'Sullivan, for
example, stated in 2019 that "the humanities have a 'reproducibility' problem" (O'Sullivan 2019).
In her widely discussed critique of CLS, Nan Z Da pointed out that in several cases it was not
possible to reproduce the results of research in this field (Da 2019). And in a paper as relevant
as it is comprehensive, Christof Schöch recently concluded that when it comes to
"reproducibility" there are "serious and relevant challenges for the field of CLS", "starting with
issues of access to data and code, but also concerning questions of lacking reporting standards,
limited scholarly recognition, and missing community commitment and capacity that would all be
needed to foster a culture of [repetitive research] in CLS and beyond" (Schöch 2023: 379).

3

https://github.com/git/git/blob/e83c5163316f89bfbde7d9ab23ca2e25604af290/README
https://github.com/git-guides/git-commit

D7.3 On Versioning Living and Programmable Corpora

This report particularly addresses one aspect of the far-reaching disciplinary
reproducibility challenge, namely the stabilization of living (and programmable) corpora. Before
we address this aspect, we need to briefly explain what we mean when we use the term “living
corpora” (in reference to terms such as “living document”, see Shanahan 2015): Central to any
form of reproductive research is the object to be researched, let's call it the epistemic object. In
CLS, this epistemic object is regularly no longer just an individual text or a small group of
individual texts, but a “corpus” and thus an entity that — “across many research domains in the
humanities and social sciences” — “has emerged as a major genre of cultural and scientific
knowledge” (Gavin 2023: 4).1 Now, there is a large number of corpora that can be fully digitized
with manageable resources, for example authors' corpora (such as all of William Shakespeare's
comedies or all of Henrik Ibsen's plays). On the other hand, there is also a large number of
epistemic objects, i.e. CLS corpora, which cannot be made digitally available so easily. In many
cases, we don't even know exactly which texts would have to be included in such corpora. Not
to mention that some texts aren’t available in digital form. In all these cases, we must assume
that the epistemic object of CLS is currently (and presumably for a long time to come) in the
making – in the process of becoming, of growing and thus, in a certain sense, “living”.
Therefore, speaking of "living corpora" emphasizes that the digitization of our cultural and
literary heritage is not so much a state that is or could be achieved, but rather a process, a
(permanent) mode of transformation that we have entered. One of the consequences is that
these epistemic objects of CLS must be conceptualized as dynamic.2

We address this dynamic nature of the literary data in this report. What we have called
the problem of the "stabilization of living corpora" can be understood — as the title of our report
suggests — as a versioning task: If there is a comprehensive, transparent and fully addressable
versioning mechanism for our dynamic epistemic object, then stabilization can be achieved by
pointing to a particular version. Furthermore, if corpora are coupled with lightweight research
infrastructures in the form of research-driven APIs, as in the case of "Programmable Corpora" (a
concept introduced in Fischer et al. 2019; see the in-depth explanation in Börner, Trilcke 2023),
then containerization can be used as an overarching and integrating versioning mechanism.3

In the subsequent chapters, we will work through this set of problems and our proposed
solutions in the following way:

3 For an approach from computer science that points in a similar direction, see the concept paper
"Establishing the Research Data Management Container in NFDIxCS” (Al Laban et al. 2023).

2 In some sense, this dynamic and instability of the epistemic object is only part of the overarching
dynamic of the CLS digital ecosystem. We have published some reflections on "CLS Research in Digital
Ecosystems between Embeddedness and Instability" in our report “D7.1 On Programmable Corpora”
(Börner, Trilcke 2023: 11–13).

1 Cf. CLS INFRA deliverables 5.1 “Review of the Data Landscape”,
https://doi.org/10.5281/zenodo.6861022 (Mrugalski et al. 2022), and 6.1 “Inventory of existing data
sources and formats”, https://doi.org/10.5281/zenodo.7520287 (Ďurčo et al. 2022).

4

https://doi.org/10.5281/zenodo.6861022
https://doi.org/10.5281/zenodo.7520287

D7.3 On Versioning Living and Programmable Corpora

Chapter 3 (“Versioning Living Corpora Using Git Commits”) will, on the one hand,
introduce Git4 (in its actual implementation in the online service GitHub5), a powerful tool for
distributed version control, as a way of versioning living corpora; on the other hand, using the
GitHub API and the example of the GerDraCor corpus, we will illustrate what kind of additional
(technical) metadata about living corpora can be retrieved.

Following chapter 3, we provide an excursus (“An Algorithmic Archaeology of a Living
Corpus: GerDraCor as a Dynamic Epistemic Object”) in which we illustrate how Git-based
versioning and the metadata that is produced in the course of versioning can be used for what
we call corpus archaeology: an approach to the epistemic objects of CLS that treats them as
technical objects whose genesis itself can be investigated. Crucial for our argumentation is the
excursus because it vividly demonstrates what it means for a corpus to be "living".

Version control using Git is a viable solution for the stabilization of living corpora, as long
as they are "just" data. However, this is not yet a sufficient solution for the stabilization of
programmable corpora, as these are in fact combinations of data and code, whereby both are in
a reciprocal relationship of co-evolution. As a consequence, the independent stabilization by
versioning of data on the one hand and code on the other may not be sufficient in this case.
Therefore, in chapter 4 (“Dockerizing DraCor, for Example. On Versioning Programmable
Corpora”), we present an approach that versionizes an entire programmable corpus as a
bundle, using a containerization mechanism that we call "Dockerizing DraCor".

In the chapter 4 in particular, we will again follow a prototyping approach, as we have already
done in our report "D7.1 On Programmable Corpora" (cf. our explanation in Börner, Trilcke
2023: 9–11). This also implies that the technical solutions we propose have mostly already been
implemented as prototypes in the development work accompanying this report. We indicate
where these technical prototypes can be found at the relevant points in this report. The
information in chapter 0 ("About this deliverable") also provides an overview of the
accompanying technical prototypes. Overall, our work revolves around the overarching "DraCor"
prototype of a programmable corpora ecosystem: “DraCor” is a multicomponent prototype that
includes a number of homogenized corpora and several APIs, some of which are
document-based and some of which are research-driven; in addition, the DraCor prototype
includes exemplary microservices.

5 Cf. https://github.com/

4 Git was originally introduced in 2005 by Linus Torvalds in connection with the development of the Linux
kernel. For the history of Git, see e.g. the article "A Git Origin History" by Zack Brown (2018); for an
introduction to Git, see e.g. Chacon, Straub (2024). The documentation can be found at
https://git-scm.com/docs.

5

https://github.com/

D7.3 On Versioning Living and Programmable Corpora

3. Versioning Living Corpora Using Git Commit
In the following, we show the capabilities of Git for the versioning and change tracking of living
corpora. We will do this by describing and analyzing the evolution of a GitHub repository that
contains a DraCor corpus. While in this PDF version of this report we only document the
analysis, there is a web-based version of this analysis that is executable and fully reproducible.6

In this PDF version of the report, our analysis is conducted with the German Drama Corpus
(GerDraCor), but the method used (and the code implemented in the web-based version) will
be largely applicable to any other DraCor corpus.

3.1 How to Better Not Cite a Living Corpus. An Example From
Current Research
In this first step, we will take a short and exemplary look at an actual CLS research project and
how it deals with the living corpora of DraCor. Our aim is to show that the way DraCor is cited is
insufficient to enable reproducibility of the research.

It has become quite common for research that use DraCor corpora to
1) cite the paper Fischer et al. 20197

2) include the information on how many plays are in the corpus used.
Plays used as examples are mostly referenced by author and title (and not, what we would
recommend, by their DraCor ID8). This can, for example be observed in the following quotations
of a research paper that uses GerDraCor to develop and test a tool using machine learning
methods to detect chiasmi in literary texts:

“We perform two types of experiments. [...] In the second experiment we evaluate how
well our model generalizes to texts from different authors not included in the training
data. To this end we extract PoS tag inversions from the GerDraCor corpus (Fischer et
al., 2019) [...]” The training data set (https://git.io/ChiasmusData) “consists of four
annotated texts by Friedrich Schiller Die Piccolomini, Wallensteins Lager,

8 In the report “On Programmable Corpora” this is the feature P2 play_id, see “Tab. 02: Play Features”,
e.g. ger000086 of the play Die Piccolomini by Friedrich Schiller. These identifiers can be resolved via the
/id/{id} API endpoint or the resolver at https://dracor.org/id/{id}.

7 It is understandable that this paper is cited, as it is listed on the main page of DraCor as a citation
recommendation, as well as in the README file in the Github repository of GerDraCor. This is not
intended as a criticism of the researchers who use DraCor resources, but rather as food for thought for us
as creators of DraCor asking how users can be given a citation recommendation that actively promotes
repeatability of research. This applies to information on the website, auxiliary files in the data repositories
as well as in the design of the API responses: currently even information returned by the API, i.e. the
responses of the endpoints /info, /corpora and /corpora/{corpusname} do not include the state
or version of the data currently ingested into the database and thus available via the API.

6 https://github.com/dh-network/clsinfra-d73

6

D7.3 On Versioning Living and Programmable Corpora

Wallensteins Tod and Wilhelm Tell. We annotated the whole texts, finding 45 general
chiasmi and 9 antimetaboles.” (Schneider et al. 2021 :98; emphasis [bold] by us)

And further

“[...] we evaluate the generalization performance of our chiasmus classifier trained on the
four annotated Schiller dramas to other texts. The first set of texts comprises seven
other dramas by Friedrich Schiller [...]. To see how well our method generalizes to
different authors, we tested it on the remaining 493 documents from GerDraCor.”
(Schneider et al. 2021: 99; emphasis [bold] by us)

Although the authors publish their tool and the derived dataset9 as open source resp. open data,
it is not self-evident which version of GerDraCor was used. The only information that may
support the identification of the version is the information about the number of plays “504”10

included in GerDraCor at the time of assembling the training and test data set based on the
corpus (and, of course, bibliographic metadata of the study itself, such as the date of
publication). But in fact, there might be more than one version with 504 plays.

Based on this information, it is therefore not clear what data was used exactly in the
study. However, this would be a problem for reproduction of this research. But how the problem
could be solved? In the next chapter, we will show that there is a quite simple and elegant
solution: Git commit history.

3.2 Citing Git Commits as Corpus Versions. Introduction
In our report “On Programmable Corpora” we have already introduced GitHub as a “key
infrastructural component” in developing the DraCor toolset as well as in curating and hosting
DraCor corpora. Previously, we have also relied on GitHub to directly link into the codebase of
the DraCor API and other components of our ecosystem when explaining its inner workings
(Börner, Trilcke 2023). However, in this section, it is the platform GitHub itself that is in the focus
of our attention when we try to demonstrate how to effectively deal with datasets that are
constantly in flux. Because DraCor is using Git (and respectively GitHub) for publishing corpora
the process of creating and maintaining a corpus is fully transparent and traceable. As we will
show, this also opens up unrivaled possibilities for versioning and the corresponding referencing
of living corpora.

10 4 (annotated plays) + 7 other Schiller plays + 493 remaining documents from GerDraCor = 504 plays
overall

9 https://git.io/ChiasmusData / https://github.com/cvjena/chiasmus-annotations

7

https://git.io/ChiasmusData
https://github.com/cvjena/chiasmus-annotations

D7.3 On Versioning Living and Programmable Corpora

Unlike the repositories of DraCor software components (cf. the repository of the DraCor
API) for which releases are published,11 in the case of corpus repositories this feature is
(currently) not used.12 However, it is still possible to very precisely point to a single “version” (or
“snapshot”) of the data set. This can be done by referring to an individual commit13. Because all
editing operations are “recorded” or “logged” when committed, the commits can be used to
reconstruct the state of a corpus of a given point in time. We can consider the commits the
“implicit versions” of DraCor corpora.

The GUI of GitHub already provides powerful tools to dive into the commit history of a
corpus data set. The history of the repository

https://github.com/dracor-org/gerdracor
can be easily reached from the landing page (see Fig. 1).

Fig. 1: Landing page of the repository of GerDraCor on GitHub

13 The glossary iof the Git documentation defines “commit” the following: “A single point in the Git history;
the entire history of a project is represented as a set of interrelated commits. The word ‘commit‘ is often
used by Git in the same places other revision control systems use the words ‘revision’ or ‘version’.”
(https://git-scm.com/docs/gitglossary#Documentation/gitglossary.txt-aiddefcommitacommit).

12 On “releases” cf. the “GitHub Documentation” on
https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases

11 https://github.com/dracor-org/dracor-api/releases

8

https://github.com/dracor-org/gerdracor/commit/67fa8b39c90d4a1952d11c771b5d58175a8ccdf4
https://git-scm.com/docs/gitglossary#Documentation/gitglossary.txt-aiddefcommitacommit
https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases
https://github.com/dracor-org/dracor-api/releases

D7.3 On Versioning Living and Programmable Corpora

The header above the file listing of the root folder (see Fig. 2) includes a link to the latest
commit

https://github.com/dracor-org/gerdracor/commit/67fa8b39c90d4a1952

d11c771b5d58175a8ccdf4
as well as the commit history:

https://github.com/dracor-org/gerdracor/commits/main/

Fig. 2: Links to the most recent commit and commit history

The commit history allows for filtering commits by a certain date range, e.g. it is possible to
display commits dating from February 2018:

https://github.com/dracor-org/gerdracor/commits/main/?since=2018-

02-01&until=2018-02-28
From this list a single commit can be explored, e.g. from February 14th 2018:

https://github.com/dracor-org/gerdracor/commit/30760ec3ff4aa340f7

85bcc17bfd3ca81e7e2d06
This commit is identified by the SHA value (as “commit identifier”) of
“30760ec3ff4aa340f785bcc17bfd3ca81e7e2d06”, which can also be found as part of the
URL in the address bar of the browser.

From the single commit view it is possible to get to all TEI-XML files of the plays in the
corpus at that point in time. This can either be done by clicking on the button “Browse files” in
the upper right corner of the gray commit page header and then, on the landing page, by
navigating to the folder tei; or, as a shortcut, by directly changing the URL in the address bar
of the browser: To address the TEI files in the state of February 2018 the commit identifier
/tree/{commit SHA}/tei can be appended to the URL of the GerDraCor repository

https://github.com/dracor-org/gerdracor, resulting in:

9

https://github.com/dracor-org/gerdracor/commit/67fa8b39c90d4a1952d11c771b5d58175a8ccdf4
https://github.com/dracor-org/gerdracor/commit/67fa8b39c90d4a1952d11c771b5d58175a8ccdf4
https://github.com/dracor-org/gerdracor/commits/main/
https://github.com/dracor-org/gerdracor/commits/main/?since=2018-02-01&until=2018-02-28
https://github.com/dracor-org/gerdracor/commits/main/?since=2018-02-01&until=2018-02-28
https://github.com/dracor-org/gerdracor/commit/30760ec3ff4aa340f785bcc17bfd3ca81e7e2d06
https://github.com/dracor-org/gerdracor/commit/30760ec3ff4aa340f785bcc17bfd3ca81e7e2d06

D7.3 On Versioning Living and Programmable Corpora

https://github.com/dracor-org/gerdracor/tree/30760ec3ff4aa340f785

bcc17bfd3ca81e7e2d06/tei
This example demonstrates that even without specialized tools and just by using the GitHub
Web Interface it is straightforward to precisely retrieve a dated “version” of the corpus files. The
only requirement is that the commit, or at least, the precise date or the date range in which the
corpus was used is known.

3.3 Retrieving (Technical) Corpus Metadata via the GitHub API
To highlight the versioning capabilities of the Git commit history, we provide a detailed analysis
of the commit history of a GitHub repository containing the data of a DraCor corpus. For this
analysis, we developed a set of functions written in Python. The functionality of this prototype14

of a tool is bundled as methods of the class GitHubRepo contained in the module

github_utils15.
To retrieve metadata about the commits and, thus, the state of a corpus (the “implicit

version”) at a given point in time, the GitHub API is used.16 We will illustrate some functions of
the API that are relevant in the following. Although we include URLs of concrete examples, the
implemented methods to retrieve the data for the analysis in section 3.3 will work the same way.

A list of commits of a repository including basic metadata can be requested from
the URL

https://api.github.com/repos/dracor-org/gerdracor/commits
This returns the commits in the repository in batches of 30 commits starting with the most recent
one. The respective API operation is used to retrieve the identifiers of the commits (dictionary
key SHA) and the dates when the changes were committed. We show the first lines of the
returned JSON object:

{'sha': '67fa8b39c90d4a1952d11c771b5d58175a8ccdf4',
'node_id': 'C_kwDOBH09MdoAKDY3ZmE4YjM5YzkwZDRhMTk1MmQxMWM3NzFiNWQ1ODE3NWE4Y2NkZjQ',
'commit': {'author': {'name': 'Frank Fischer',
'email': 'lehkost@users.noreply.github.com',
'date': '2024-02-14T11:36:56Z'},
'committer': {'name': 'Frank Fischer',
'email': 'lehkost@users.noreply.github.com',
'date': '2024-02-14T11:36:56Z'},
'message': 'add play',
…
}

More detailed information on a single commit can be retrieved by attaching the SHA value to
the URL of the commits endpoint. So, the detailed metadata of the commit identified by the SHA

16 See the “GitHub REST API documentation” on https://docs.github.com/en/rest?apiVersion=2022-11-28
15 https://github.com/ingoboerner/d73/blob/main/report/github_utils.py
14 On our “reflective prototyping approach” cf. Börner/Trilcke 2023: 9ff.

10

https://api.github.com/repos/dracor-org/gerdracor/commits
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://github.com/ingoboerner/d73/blob/main/report/github_utils.py

D7.3 On Versioning Living and Programmable Corpora

“67fa8b39c90d4a1952d11c771b5d58175a8ccdf4” can be retrieved by sending a request
to the URL

https://api.github.com/repos/dracor-org/gerdracor/commits/67fa8b3

9c90d4a1952d11c771b5d58175a8ccdf4
On the basis of the returned data it is possible, for example, to find out which files had been
added, modified, renamed or deleted (see status in the files section of the response

object) in a given commit. In the case of the commit in question, in the files part of the
returned JSON object, the TEI-XML file
“kotzebue-das-posthaus-in-treuenbrietzen.xml” of the play “Das Posthaus in

Treuenbrietzen” by the author August von Kotzebue is listed with "added" as its status field
value:

{'sha': '0f0008dfcb846ae837b0b5de55753ced5059f2cb',

'filename': 'tei/kotzebue-das-posthaus-in-treuenbrietzen.xml',

'status': 'added',

'additions': 2592,

'deletions': 0,

'changes': 2592,

…

}

Another bit of information that is helpful when trying to reconstruct the state of a corpus,
especially the files included, at a given point in time is the “tree”17 of the commit. The
respective URL to request this information is included in the basic commit metadata as well as
in the more detailed response in the tree section.

{

…

'tree': {'sha': '3cbc81976a06a565d3ca673e3c17527bf6e30f8b',

'url':

'https://api.github.com/repos/dracor-org/gerdracor/git/trees/3cbc81976a06a565d3ca673e3c175

27bf6e30f8b'}

…

}

So the tree of the above mentioned commit can be retrieved at
https://api.github.com/repos/dracor-org/gerdracor/git/trees/3cbc8

1976a06a565d3ca673e3c17527bf6e30f8b
To access the metadata of the individual files containing the play data, the data folder has to
be identified. As usual for DraCor, also in the case inspected here it is the tei folder:

{'sha': '3cbc81976a06a565d3ca673e3c17527bf6e30f8b',

17 https://git-scm.com/docs/gitglossary#def_tree_object

11

https://api.github.com/repos/dracor-org/gerdracor/commits/67fa8b39c90d4a1952d11c771b5d58175a8ccdf4
https://api.github.com/repos/dracor-org/gerdracor/commits/67fa8b39c90d4a1952d11c771b5d58175a8ccdf4
https://api.github.com/repos/dracor-org/gerdracor/commits/67fa8b39c90d4a1952d11c771b5d58175a8ccdf4
https://api.github.com/repos/dracor-org/gerdracor/git/trees/3cbc81976a06a565d3ca673e3c17527bf6e30f8b
https://api.github.com/repos/dracor-org/gerdracor/git/trees/3cbc81976a06a565d3ca673e3c17527bf6e30f8b
https://api.github.com/repos/dracor-org/gerdracor/git/trees/3cbc81976a06a565d3ca673e3c17527bf6e30f8b
https://api.github.com/repos/dracor-org/gerdracor/git/trees/3cbc81976a06a565d3ca673e3c17527bf6e30f8b
https://api.github.com/repos/dracor-org/gerdracor/git/trees/3cbc81976a06a565d3ca673e3c17527bf6e30f8b

D7.3 On Versioning Living and Programmable Corpora

'url':

'https://api.github.com/repos/dracor-org/gerdracor/git/trees/3cbc81976a06a565d3ca673e3c175

27bf6e30f8b',

'tree': [{

…

}

{'path': 'tei',

'mode': '040000',

'type': 'tree',

'sha': '64a98327331abbaa110fe9c9db11208aad3ced90',

'url':

'https://api.github.com/repos/dracor-org/gerdracor/git/trees/64a98327331abbaa110fe9c9db112

08aad3ced90'}],

'truncated': False}

So by requesting the data from
https://api.github.com/repos/dracor-org/gerdracor/git/trees/64a98

327331abbaa110fe9c9db11208aad3ced90
we receive information about the individual file objects, most notably the filename in the field
with the key path and the file size (size) in bytes. See the following example:

{'path': 'achat-ein-april-scherz.xml',

'mode': '100644',

'type': 'blob',

'sha': '87cd9f61a04cb322c0815afec694a49e4fd910b1',

'size': 102669,

'url':

'https://api.github.com/repos/dracor-org/gerdracor/git/blobs/87cd9f61a04cb322c0

815afec694a49e4fd910b1'}

Excursus: An Algorithmic Archaeology of a Living Corpus:
GerDraCor as a Dynamic Epistemic Object
While we have shown in section 3.2 that Git commits can be used as stable references to states
of living corpora and thus as a mechanism for transparent versioning, in section 3.3 we explored
in more detail which information about corpora and corpus files can be queried using the GitHub
API. Our explorations in section 3.3 have also demonstrated that the use of Git not only
provides a powerful versioning tool for CLS corpora, but that this use of the API generates a
large amount of additional (technical) metadata about corpora. In the following excursus, we use
this metadata for a more in-depth analysis of the genesis of a DraCor corpus (namely
“GerDraCor”), taking the Git commit history as a basis.

12

https://api.github.com/repos/dracor-org/gerdracor/git/trees/64a98327331abbaa110fe9c9db11208aad3ced90
https://api.github.com/repos/dracor-org/gerdracor/git/trees/64a98327331abbaa110fe9c9db11208aad3ced90

D7.3 On Versioning Living and Programmable Corpora

The aim of this analysis is twofold: On the one hand, we want to use a particular
example to demonstrate what it means that in CLS we are occasionally dealing with living
corpora. On the other hand, we want to use the analysis to illustrate the power of Git-based
versioning and the metadata generated in this process, not least against the background that
this might also open up new research perspectives on the epistemic objects of CLS (now
understood as technical objects). An executable (and thus fully reproducible) version of this
analysis is accessible on GitHub. In addition, we are convinced that an in-depth knowledge of
the constitution of a data set is necessary when wanting to repeat the research based on this
data. If the data has changed in the meantime between the original research and the repeating
research knowing what exactly changed in the data can help to understand possible deviations
in results and allows that informed counter-measures can be taken.

As already mentioned, the “German Drama Corpus” (“GerDraCor”) will serve as our
showcase. The corpus’ repository is available at

https://github.com/dracor-org/gerdracor
The first step in the analysis is downloading all the data on all GerDraCor commits from the
repository on GitHub. Depending on the overall number of commits this can take a long time. In
a previous attempt, fetching and preparing the data of GerDraCor from GitHub took 53min 29s.
The following analysis will be based on data that was downloaded on February 14th, 2024. At
the time of the download the GitHub Repository “gerdracor” contained 1492 commits. We
consider each commit being an implicit version of a corpus and therefore we have 1492
versions of “German Drama Corpus” up to this date.

The “Birth” of GerDraCor
From the commit history of the repository of the German Drama Corpus we can retrieve the very
first commit. This initial commit to the repository which is identified by the SHA value
“2f4e830a852960eba8e05d6b622b3bd64911ab69” was committed by Mathias Göbel
(during a hackathon at the University of Potsdam) and dates from 2 December, 2016.

https://github.com/dracor-org/gerdracor/commit/2f4e830a852960eba8

e05d6b622b3bd64911ab69

With this commit, 465 TEI-XML files were added to a data folder with the name data. The
commit message “inital commit: converted text based on LINA and TextGrid” already reveals the
initial source of the data of corpus: LINA is short for “Literary Network Analysis” and was the
format developed in the project DLINA.18

18 The project members included Frank Fischer, Mathias Göbel, Dario Kampkaspar, Christopher Kittel and
Peer Trilcke. The output of the project is well documented on the project’s Blog (https://dlina.github.io/),
the data and tools are available on GitHub at dlina (https://github.com/dlina). The term LINA as an
abbreviation of the German “Literarische Netzwerkanalyse” (Literary Network Analysis) first appeared in
print in the publication Trilcke 2013.

13

https://github.com/dracor-org/gerdracor
https://github.com/dracor-org/gerdracor/commit/2f4e830a852960eba8e05d6b622b3bd64911ab69
https://github.com/dracor-org/gerdracor/commit/2f4e830a852960eba8e05d6b622b3bd64911ab69
https://dlina.github.io/
https://github.com/dlina

D7.3 On Versioning Living and Programmable Corpora

In the DLINA project, research on dramatic texts was based on derivatives of the
full-texts taken from the TextGrid Repository19. The “LINA files” included only metadata on the
dramatic texts (e.g. date of publication) and very detailed structural information on the
segmentation (acts, scenes); this included also information on which characters appear in which
structural segment. Thus, the “Zwischenformat”20-Files (i.e., files in an intermediary format)
allowed for the extraction of networks based on the co-occurence of characters in the same
structural segment (cf. Dario Kampkaspar, Trilcke 2015). The DLINA project officially released
their corpus of 465 plays before the Digital Humanities DH2015 conference in Sydney. This
corpus is also referred to as “Sydney Corpus” or the corpus with the “Codename Sydney”.
Unlike the current practice in DraCor, DLINA used Git Tags21 on corpus data. In the GitHub
Repository of the DLINA Corpus, there is a single tagged version 15.07-sydney:

https://github.com/dlina/project/releases/tag/15.07-sydney
The respective commit

https://github.com/dlina/project/commit/cca01b501a1a294772c2a6a9f

e38944b930eea03
adds a RelaxNG schema22 describing the “Zwischenformat”. Although this dates from August
31, 2016, this version number was already introduced more than a year before in a blog post
dating from June 20, 2015. The blog post explains it as such:

“The version number 15.07 is referring to ‘July 2015’ as we’re going to present our results at the
DH2015 conference on July 2, 2015. Further versions of the DLINA Corpus will receive according
versioning numbers.” (Fischer, Trilcke 2015)

The files in the first commit to the GerDraCor repository re-include the full text of the play from
the TextGrid Repository source in the element <text>, but in the <teiHeader> contain the
metadata of the LINA files. This metadata is transformed from the custom intermediary format
(“Zwischenformat”) that was used in the DLINA project to an XML encoding following the
Guidelines of the Text Encoding Initiative (TEI Guidelines).

A Living Corpus “Growing”
Fig. 3 shows the development of the number of plays included in the corpus versions of
GerDraCor. It can be seen from the plot that in 2018 the corpus slowly begins to grow.

22 RELAX NG Specification. Ed. by James Clark, Murata Makoto. 3 December 2001. OASIS Committee
Specification. https://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

21 https://git-scm.com/docs/gitglossary#Documentation/gitglossary.txt-aiddeftagatag, see also
https://git-scm.com/book/en/v2/Git-Basics-Tagging

20 https://dlina.github.io/Introducing-Our-Zwischenformat
19 https://textgridrep.org

14

https://dlina.github.io/Introducing-Our-Zwischenformat
https://github.com/dlina/project/releases/tag/15.07-sydney
https://github.com/dlina/project/commit/cca01b501a1a294772c2a6a9fe38944b930eea03
https://github.com/dlina/project/commit/cca01b501a1a294772c2a6a9fe38944b930eea03
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
https://git-scm.com/docs/gitglossary#Documentation/gitglossary.txt-aiddeftagatag
https://dlina.github.io/Introducing-Our-Zwischenformat
https://textgridrep.org

D7.3 On Versioning Living and Programmable Corpora

Fig. 3 Development of the number of documents in all versions in GerDraCor

Tab. 1 lists the number of plays being added per year from 2016 to 2024 which shows that from
2020 (the year the COVID19 pandemic began) onwards the number of plays added per year
grows significantly.

year new overall

2016 465 465

2017 0 465

2018 7 472

2019 7 479

2020 41 520

2021 32 552

2022 45 597

2023 66 663

2024 15 678
Tab. 1: Plays added to GerDraCor per year

15

D7.3 On Versioning Living and Programmable Corpora

The “growth” of the corpus – to a certain extent – also results from diversifying the digital
sources of which data is included.

Soon after the consolidation of the DLINA/TextGrid data the first Non-DLINA play was
added. Corpus version “a0bf290a517092e3db27b5f37c30776f596565cd” dating from January 6,
2018 includes the play Die Überschwemmung by Franz Philipp Adolph Schouwärt23. The play’s
digital source data does not stem from the TextGrid Repository as in the case of the data from
the DLINA project24, but is converted from Wikisource25. The following plot Fig. 4 shows the
distribution of sources used over time.

Fig. 4: Development of the Distribution of the Digital Sources of GerDraCor

In the course of its existence, the GerDraCor corpus also expands in terms of the time period
covered (see Fig. 5).

25 https://de.wikisource.org/wiki/Schouw%C3%A4rt_%E2%80%93_Die_Ueberschwemmung_(1784)

24 In a blog post (https://dlina.github.io/A-Not-So-Simple-Question) Fischer and Göbel [2015] conducted
an evaluation of the data set “Digitale Bibliothek” (https://www.textgrid.de/Digitale-Bibliothek) that is
included in TextGrid with the aim of identifying all available plays. The extracted TEI files can be found in
this repository GitHub repository:
https://github.com/DLiNa/project/tree/master/data/textgrid-repository-dramas

23 The identifier playname of the play is schouwaert-die-ueberschwemmung. The play can be
accessed on the production instance of DraCor at https://dracor.org/id/ger000466.

16

https://de.wikisource.org/wiki/Schouw%C3%A4rt_%E2%80%93_Die_Ueberschwemmung_(1784)
https://dlina.github.io/A-Not-So-Simple-Question
https://www.textgrid.de/Digitale-Bibliothek
https://github.com/DLiNa/project/tree/master/data/textgrid-repository-dramas
https://dracor.org/id/ger000466

D7.3 On Versioning Living and Programmable Corpora

Fig. 5: Development of the time range (“YearNormalized”) covered by GerDraCor

There is a second parameter that can be used to visualize the “growth” of a corpus – the sum of
the file sizes of all TEI-XML documents in a corpus version. As expected, the overall size grows
when adding plays to the corpus, but in 2017 it can also be observed that the overall size
shrinks even though the number of plays stay the same. Still, plotting the size can be used to
visualize changes when the overall number of documents stays the same, as happened in
2017, for example, when the total file sizes suddenly dropped. In this year no new plays were
added to the corpus (see Tab. 1).

17

D7.3 On Versioning Living and Programmable Corpora

Fig. 6: Development of the sum of all document sizes in all versions in GerDraCor

We don't want to go into detail about what happened in 2017. What is more important to us at
this moment is something else that clarifies our understanding of living corpora. Living corpora
are not only characterized by the fact that the number of documents they contain is growing.
Rather, it is also the case that the documents from living corpora themselves can change (e.g.
grow or shrink), because they are enriched by additional mark-up or homogenized, which can
lead, for example, to mark-up or metadata being deleted from the files (as was the case in 2017,
to solve this cliffhanger).

Plotting the file size over a period of time is also useful to understand if and when a
single file has been subject to modification. As an example we plot the file size of each version
of the XML file of the play Emilia Galotti by Gotthold Ephraim Lessing26 in Fig. 7.

26 The play can be accessed on DraCor at https://dracor.org/id/ger000088.

18

https://dracor.org/id/ger000088

D7.3 On Versioning Living and Programmable Corpora

Fig. 7: Development of file size of the play Emila Galotti over all versions in GerDraCor

The change in color of the plotted line indicates the moment when the file was renamed from
1772-Lessing_Gotthold_Ephraim-Emilia_Galotti-lina.xml27 to the still valid

lessing-emilia-galotti.xml. In the initial version of the XML file the metadata in the

<teiHeader> was based on the LINA file, but not in the format (“Zwischenformat”) that is

available as lina88 on the DLINA website28, but already encoded following the TEI Guidelines.

The reference to DLINA is still kept in the TEI version in the <publicationStmt> encoded as

an <idno> element until the version dated ‘12 May, 2019’ (see the section “Batch Edits as

Major Revisions” below). A reference to the TextGrid source is contained in the <sourceDesc>

and tagged as <bibl type="digitalSource"> including a link to TextGrid in an <idno>
element.29

The full text content taken from TextGrid was included in the initial version in the <text>
element without any line breaks and indentations on a single line only. The text is formatted in

29 http://www.textgridrep.org/textgrid:rksp.0
28 https://dlina.github.io/linas/lina88/

27 See the file on GitHub:
https://github.com/dracor-org/gerdracor/blob/2f4e830a852960eba8e05d6b622b3bd64911ab69/data/1772-
Lessing_Gotthold_Ephraim-Emilia_Galotti-lina.xml

19

http://www.textgridrep.org/textgrid:rksp.0
https://dlina.github.io/linas/lina88/
https://github.com/dracor-org/gerdracor/blob/2f4e830a852960eba8e05d6b622b3bd64911ab69/data/1772-Lessing_Gotthold_Ephraim-Emilia_Galotti-lina.xml
https://github.com/dracor-org/gerdracor/blob/2f4e830a852960eba8e05d6b622b3bd64911ab69/data/1772-Lessing_Gotthold_Ephraim-Emilia_Galotti-lina.xml

D7.3 On Versioning Living and Programmable Corpora

the third version (“106fefd275c20c5b673a326e89647f7511ba9f76”30) which results in the
steep increase of the file size. Overall, there are 26 versions in which the XML file of Emilia
Galotti is modified.31

Batch Edits as Major Revisions
One can differentiate (at least) two major types of modifications to the files in a corpus version:

■ Edits of single files only that bring a single file in shape;
■ “Batch” edits that change all files at once.

The first edits need to be analyzed on an individual level. On a broader scale it must be said
that these are, of course, relevant in reproduction studies because they might change, for
example, the text resulting in different numbers of <sp>, stage direction, number of words, et
cetera. We can always assume some effect on some of the metrics if there is a new version.32

In the following, we identify and comment on the batch edits, because we assume that
they introduce changes to the files that are the results of some automatic process, e.g. using
element Y instead of X.

In the case of the very early GerDraCor there are two commits that introduce significant
changes to where files are stored in the repository and how they are named:33

33 With the current setup of the the methods provided by our analysis tool github_utils (see section
3.3) it is necessary to take changes in file names into consideration if we want to investigate or visualize
the changes of a file over the whole period. After the batch renaming in September 2017 the data folder
name tei stays stable, but there is still some renaming happening. The method
get_ids_of_corpus_versions_renaming_documents allows to retrieve the idendifiers of all
versions in which document files are renamed. The method get_renamed_files returns dictionaries
containing the version number as well as the old and the new filename. The following plays have been
renamed after the above mentioned batch renaming: [‘goethe-faust-eine-tragoedie’,

32 There might be commits/versions in which only non-(play)-document files changed; usually these are
unproblematic because these modifications do not affect the metrics and data returned by the API or any
parts of files that are normally subject to an analysis, like the full text.

31 The the identifiers of the versions in which the file is modified are as follows:
[‘3e92970c6c3901b7661a515ce504605fb819e37d’, ‘5d4130230eb9b9f2820618089ed1cf774424f241’,
‘51dd69475f14757992c77d9a04c19026295b5f7c’, ‘5b41d0f8f11fa478cfa68f9dac54912e6b922a63’,
‘7987eb78ecee670e999373d1917bf64b8b1e5253’, ‘e8b7285eb4adbecebbcfcf53046f9a1093f25076’,
‘879250ad0d9cc686dda930afa694d9461a0b5757’, ‘8145e178ee1714ac115d2097e7c6df8cd1181e91’,
‘1ab8c9b713a3eeaf5b25026e6036caaab230c119’, ‘e8c21cfd3b76bdcb05c6174e2c2d237d0d07c21e’,
‘23833340aa83b963205f583189206a9881e9869e’, ‘d71e3d78562d8039f90bd21d88c6c7b67e912372’,
‘b0c6457ed5233ca634650d853627ed4ffe5fba8a’, ‘e1622273f41204a09d9af469d8f036a79b654af9’,
‘1095d70934ab525f866a2f1978541eeedf618651’, ‘8f0b2ac84f85ebf79df6b8aa0fb2d9662ee212ea’,
‘9c2fcf55cce2ec6290ffc8615e98d9b2355707d9’, ‘445a5b0fca0c96d7d4be7a9e8738a7c19cbe9cad’,
‘7b4faf2f0d6e80a7e39052a38e12617453a1e5d2’, ‘75b663876d1cd7b54235547ccd077a3299877a1c’,
‘fe53f8f5d4d36794df55859e262e6d1b893ce705’, ‘d23a93d9fa0e4eb53a580904ac5d01c8b8f8037c’,
‘376cec4c609bc27cdcd9e2bb41bda7253c0174ff’, ‘bfadf6b5844d4e05ea0501898a23c21f71c10cb3’,
‘f7af1eb1060e94a916b856596d9e2e198f7159ea’, ‘a99060f0065856f8df114ce8556c31161c0332d1’].

30

https://github.com/dracor-org/gerdracor/commit/106fefd275c20c5b673a326e89647f7511ba9f76#diff-0d89
c2bc1b36f1ca71e870eeb075d3f23d463ac76716a6709d7b7d8705adff6e

20

https://github.com/dracor-org/gerdracor/commit/106fefd275c20c5b673a326e89647f7511ba9f76#diff-0d89c2bc1b36f1ca71e870eeb075d3f23d463ac76716a6709d7b7d8705adff6e
https://github.com/dracor-org/gerdracor/commit/106fefd275c20c5b673a326e89647f7511ba9f76#diff-0d89c2bc1b36f1ca71e870eeb075d3f23d463ac76716a6709d7b7d8705adff6e

D7.3 On Versioning Living and Programmable Corpora

■ With the commit “e18c322706417825229f1471b15bd6daaeaf3ab1” dating from
September 17, 2017 the folder containing the files is renamed from the initial
data to tei.

■ With the commit “fdac66ba90c2c094012dc90395e952411d324e4c”, on the same
day, the file names of all TEI-XML files are changed to now match the identifier
playname.34

There are 11 versions in which all TEI files available at that time are modified at once. In the
following we describe the relevant ones.

■ The commit “7987eb78ecee670e999373d1917bf64b8b1e5253” dating from
September 3, 2018 adds Wikidata identifiers to 468 of 468 TEI files available at
that time. The identifier is included as an element <idno> with the value

"wikidata" of the attribute @type in <publicationStmt>.
■ The commit “e8b7285eb4adbecebbcfcf53046f9a1093f250762“ dating from

October 16, 2018 changes the <revisionDesc> of 468 of 468 TEI files
available at that time. This is a modification of all files that should not affect any
metrics currently returned by the DraCor API.

■ The commit “8145e178ee1714ac115d2097e7c6df8cd1181e91” dating from May
12, 2019 mainly changes several elements in the <teiHeader> of 472 of 472
TEI files available at that time.

With the initial version of GerDraCor the identifiers that were assigned to the TextGrid plays in
the DLINA project were kept. These identifiers consisted of a running number that, in the case
of the DLINA website, was prefixed with “lina”. In this version of the corpus these identifiers

were replaced with DraCor Identifiers that include the corpus identifier, e.g. “ger” followed by a
number with 6 digits. For example, in the case of the play Emilia Galotti the LINA identifier “88”
or “lina88” as in the URL of the LINA on the DLINA Website becomes “ger000088”.

This implies that all the 465 Identifiers of the DLINA-based plays in GerDraCor can be
“converted” into the DLINA identifiers by just stripping the leading zeros and, in the case of the
URL of the DLINA website, pre-pending “lina” in the URL:

34 In the report “On Programmable Corpora” (Börner, Trilcke 2023) this is the feature “P3 play_name”,
see “Tab. 02: Play Features” (Börner, Trilcke 2023: 38). This identifier is used, for example, when
requesting information about the play from the API:
https://dracor.org/api/v1/corpora/ger/plays/lessing-emilia-galotti; Documentation of this API endpoint see
https://dracor.org/doc/api#/public/play-info.

‘malss-die-jungfern-koechinnen’, ‘neuber-die-beschuetzte-schauspielkunst’,
‘neuber-die-verehrung-der-vollkommenheit’, ‘lortzing-der-wildschuetz’, ‘schlegel-alarcos’,
‘hauptmann-die-ratten’, ‘hauptmann-florian-geyer’, ‘hauptmann-gabriel-schillings-flucht’,
‘hauptmann-vor-sonnenaufgang’, ‘holz-jerschke-traumulus’, ‘holz-schlaf-die-familie-selicke’,
‘laufs-jacoby-pension-schoeller’, ‘seemann-dulk-die-waende’, ‘stephanie-der-schauspieldirektor’,
‘stephanie-die-entfuehrung-aus-dem-serail’, ‘stephanie-die-liebe-im-narrenhause’,
‘stephanie-doktor-und-apotheker’, ‘barlach-der-blaue-boll’].

21

https://dracor.org/api/v1/corpora/ger/plays/lessing-emilia-galotti
https://dracor.org/doc/api#/public/play-info

D7.3 On Versioning Living and Programmable Corpora

https://dlina.github.io/linas/lina{XXX}
E.g. the DraCor identifier that is resolvable with the URL

https://dracor.org/id/ger000010
would result in

https://dlina.github.io/linas/lina10
Vice versa

https://dlina.github.io/linas/lina465
would result in

https://dracor.org/id/ger000465
which is resolved to

https://dracor.org/ger/immermann-das-gericht-von-st-petersburg
The remaining major revision commits are:

● The commit “e8c21cfd3b76bdcb05c6174e2c2d237d0d07c21e” dating from September
7, 2019 assigns a RelaxNG schema derived from the DraCor TEI ODD35 to 474 play TEI
files available at that time.

● The commit “8f0b2ac84f85ebf79df6b8aa0fb2d9662ee212ea” dating from January 16,
2020 changes the values of the attribute @xml:lang of the root element <TEI> from

ISO-639-1 to ISO-639-2 codes, e.g. from "de" to "ger" in all 480 play TEI files available
at that time.

● The commit “9c2fcf55cce2ec6290ffc8615e98d9b2355707d9” dating from December 5,
2020 introduces the following modifications to all 510 TEI files available at that time:

○ date ranges, e.g. of the date of first publication of a play, are encoded using the
attributes @notBefore and @notAfter, e.g. a previous encoded time span as

in <date type="written" when="1885">1884–1885</date> becomes

<date type="written" notBefore="1884"

notAfter="1885">1884–1885</date>.

35 ODD and schema can be found in the GitHub repository https://github.com/dracor-org/dracor-schema.
When using the ODD derived schema to validate TEI-XML files of corpus versions of the past it would be
necessary to also use the respective version of the schema, which would need to be retrieved from the
commit history of the schema repository. It would make changes in the encoding more transparent if, at
least for schemas or ODD, some sort of explicit version numbers would be used that could be then
referenced in the TEI files of the plays. The TEI Guidelines define an attribute @version
(https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-TEI.html#tei_att.version) which “specifies the
version number of the TEI Guidelines [our emphasis] against which this document is valid”. Strictly
speaking, in the proposed use case the attribute would not point to an “official” TEI release but to a
versioned ODD or <schemaSpec>element. This might be considered tag abuse and has still to be
evaluated.

22

https://dlina.github.io/linas/lina%7BXXX
https://dracor.org/id/ger000010
https://dlina.github.io/linas/lina10
https://dlina.github.io/linas/lina465
https://dracor.org/id/ger000465
https://dracor.org/ger/immermann-das-gericht-von-st-petersburg
https://github.com/dracor-org/dracor-schema
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-TEI.html#tei_att.version

D7.3 On Versioning Living and Programmable Corpora

○ The diverse genre terms encoded as element <term> in <keywords> in the

<textClass> section of the header that have been available in previous

versions, e.g. <term type="genreTitle">Schattenspiel</term>,

<term type="genreTitle">Studentenspiel</term> are either removed

(resulting in <term type="genreTitle"/>) or normalized, e.g. the German

<term type="genreTitle">Komödie</term> becomes <term

type="genreTitle">Comedy</term>.
○ In addition to the normalized genre terms genre information is encoded using the

element <classCode> in <textClass> linking to some selected concepts on

Wikidata, e.g. <classCode

scheme="http://www.wikidata.org/entity/">Q40831</classCode>.
In this case the Wikidata identifier (Q-Number) identifies the concept “Comedy”
(Q4083136) on Wikidata.37

● The commit “75b663876d1cd7b54235547ccd077a3299877a1c” dating from May 16,
2022 introduces a new element <standOff> to hold context metadata to all 569 TEI
files available at that time.38

○ The wikidata identifier, previously encoded as element <idno>, is included in

<standOff> as an element <link> with the value "wikidata" of the @type
attribute and linking to the corresponding entity on Wikidata by including the
concept URI in the @target attribute.

38 The introduction of the <standOff> element is discussed in this issue in the DraCor schema
repository: https://github.com/dracor-org/dracor-schema/issues/38 (the issue was opened on 14 March
and closed on 2 July, 2022). This change of encoding is also a good example of the implications for other
projects using DraCor corpora in their research: GerDraCor is used in several research projects, amongst
them “QuaDramA” (https://quadrama.github.io/). In this project, two libraries were developed:
“DramaNLP” (https://github.com/quadrama/DramaNLP) and “DramaAnalysis”
(https://github.com/quadrama/DramaAnalysis). “DramaNLP” is the tool that generates the data to be
analyzed with the R library “DramaAnalysis”. The changes introduced in the GerDraCor version discussed
above had to be incorporated into DramaNLP as well, see the respective commit dating from 13
December, 2022 (https://github.com/quadrama/DramaNLP/issues/97).

37 For the discussion of this encoding strategy and its implementation in the API see also the
corresponding issue in the DraCor API repository: https://github.com/dracor-org/dracor-api/issues/120
(opened 3 December, 2020) which exemplifies the interdependence of API code and TEI-Encoding of the
DraCor corpora. The class codes are the basis for the extractor mechanism which allows to include genre
information in the API responses, see feature “P22 play_genre_normalized” in “Tab. 02: Play
features” in the report “On Programmable Corpora” (Börner, Trilcke 2023: 38). Class codes that are
supported are hard coded in the API code, e.g.
https://github.com/dracor-org/dracor-api/blob/665ea3f07c3f0ab83566440436691ed73957b263/modules/c
onfig.xqm#L79-L89.

36 https://www.wikidata.org/wiki/Q40831

23

https://www.wikidata.org/wiki/Q40831
https://github.com/dracor-org/dracor-schema/issues/38
https://quadrama.github.io/
https://github.com/quadrama/DramaNLP
https://github.com/quadrama/DramaAnalysis
https://github.com/quadrama/DramaNLP/issues/97
https://github.com/dracor-org/dracor-api/issues/120
https://github.com/dracor-org/dracor-api/blob/665ea3f07c3f0ab83566440436691ed73957b263/modules/config.xqm#L79-L89
https://github.com/dracor-org/dracor-api/blob/665ea3f07c3f0ab83566440436691ed73957b263/modules/config.xqm#L79-L89
https://www.wikidata.org/wiki/Q40831

D7.3 On Versioning Living and Programmable Corpora

○ The dates (printed, written, premiered) are also moved to the <standOff>

container and are encoded as a <listEvent> with typed <event> elements.
● The commit “d23a93d9fa0e4eb53a580904ac5d01c8b8f8037c” dating from June 3, 2022

adds the DraCor ID as the value of the attribute @xml:id to the root element <TEI> and

changes the encoding of the reference to Wikidata from a <link> to a <relation>

with the value "wikidata" of the attribute @type to all 569 TEI files available at that
time.

In this systematic perspective that is based on commits that change all files included in a corpus
version at a time, we might still miss some important milestones in the development of the
corpus if the respective changes in the encoding are not introduced at once but bit by bit to one
or several files. For example, this is the case when introducing a new “feature”, the encoding of
social or family relations of characters.39 This feature was introduced to GerDraCor in
cooperation with the “QuaDramA” project (Wiedmer, Pagel, Reiter 2020).40 The elements
<relation> in a <listRelation type="personal"> in the <teiHeader> were added
between September and November 2019 to 358 GerDraCor files.

What we have shown in this excursus was just a small example of the possibilities that a corpus
archaeology can offer based on the information that the GitHub API makes available as the
commit history. With the excursus, we wanted to illustrate how important it is from our
perspective to familiarize oneself as comprehensively as possible with the epistemic objects of
one's own research, i.e. –- in the case of CLS research — to gain a deep understanding of the
origin, genesis and development of a corpus.

40 The pull request that included the data into DraCor dates from November 24, 2019:
https://github.com/dracor-org/gerdracor/pull/10

39 Regarding the feature and its implementation in DraCor services, see the report “On Programmable
Corpora” (Börner, Trilcke 2023: 48–49, 62).

24

https://github.com/dracor-org/gerdracor/pull/10

D7.3 On Versioning Living and Programmable Corpora

4. Dockerizing DraCor, for Example. On Versioning
Programmable Corpora

4.1 Containerizing a Research Environment
As already noted in the introduction, the use of a version control system like Git can be seen as
both a powerful and user-friendly mechanism to stabilize “living” corpora. However,
“programmable” corpora consist of a connection of data ("living corpus") with a lightweight
research software (in the form of a research-driven API) whereby this connection can be
conceptualized as a distributed research infrastructure in a dynamic digital ecosystem (cf.
Börner, Trilcke 2023). Such a research infrastructure can no longer be stabilized only via the
versioning mechanism of Git, since in addition to the two components (data, code), their specific
connection is also crucial for the possibility of reproducing the research conducted with it. For
such scenarios, as will be shown below, a container-based approach is suitable, whereby we
will rely on containerization using the Docker software41.

Our approach is inspired by the concept of research artifacts from computer science,
which is described by Arvan et al. as “self-contained packages that contain everything needed
to reproduce results reported in a paper" and which are also "typically self-executable, meaning
that they are packaged within a virtual machine […] or within a container" (Arvan et al. 2022).
The prototypical implementation, on which we will report in the following, is again based on the
Drama Corpora Platform, DraCor. In a DraCor-based experiment, we set ourselves the
challenge of making a network-analytic study, which we conducted for a paper publication, as
fully replicable as possible using Docker.

The containerization technology “Docker'' is widely used in the IT industry, because it
can speed up development cycles and can reduce overhead when deploying applications.
Especially in the field of “DevOps” – “Dev” for development and “Ops” for operations, which
refers to the processes that are necessary to have an application run on a server – the
importance of communication between the development and the operations team is considered
highly important. Thus Docker workflows have been introduced. They do not only streamline
communication processes, they also shift the responsibility of handling software dependencies
to the development team: Docker enables the people actually writing the application to specify
the environment in which their software should be run. There are a couple of key components to
such workflows: The so-called “Dockerfile”42 is a meaningful and executable form of

42 “A Dockerfile is a text document that contains all the commands you would normally execute manually
in order to build a Docker image. Docker can build images automatically by reading the instructions from
a Dockerfile.” (https://docs.docker.com/glossary/#dockerfile); For the documentation of the format see
https://docs.docker.com/reference/dockerfile/

41 https://www.docker.com

25

https://docs.docker.com/glossary/#dockerfile
https://docs.docker.com/reference/dockerfile/
https://www.docker.com

D7.3 On Versioning Living and Programmable Corpora

documentation. It contains the steps necessary to build a highly portable, self-contained digital
artifact, a “Docker image”43. These images can be easily deployed on a designated
infrastructure as “Docker containers”44.

Certainly, in CLS research projects we will rarely find teams of development and
operation professionals that are in need of communicating better. But, we would like to argue
that still the attempt of reproducing research could be framed in a similar sense: On the one
hand we have an individual researcher (or a team of researchers) that conducts a study. In our
analogy, these are the developers. Their product – a study – relies on some application or script
that operates on data. On the other hand we have researchers wanting to reproduce or verify
the results, similar to operations professionals that have to deploy someone else's application
on a server.

It becomes evident that some hurdles in the process of reproducing CLS research exist
due to a lack of clear communication on how to run the analysis scripts and a tendency to
offload the responsibility of setting up an environment in which the analysis could be executed to
the reproducing party. A containerized research environment might circumvent these problems:
Instead of claiming that scripts “work, at least as of today” on the machine of the developing
researcher, as for example, Andrew Piper writes it in his foreword to his book “Enumerations”
(Piper 2018: xii); when employing container technology, it could be guaranteed instead that a
container created from an image containing a runnable self-contained research environment
can be re-run. This would allow for a reproduction of the study. Instead of saying: The analysis
was run-able on my machine when writing the paper and publishing the code only, in addition a
researcher could provide a run-able research artifact alongside the study. When using Docker,
this could be one or more images that would allow to re-create the research environment the
study was conducted in.45

In the following, we will report on our exemplary experiment in making a CLS study
replicable by using Docker technology.46

46 This experiment has also been presented at the “DH2023” conference in Graz. Cf. Börner, Trilcke et al.
2023. The slides of the presentation can be accessed at https://zenodo.org/records/8183676. For a
comprehensive evaluation of the use of container technology in research and digital publishing see
Burton et al. 2019

45 On a side note and because someone might argue that by embracing a proprietary technology: “Linux
containers” – what Docker is at its core – as a technology have been available since 2008. “Docker” was
only introduced in 2013 and the company Docker Inc. actively promoted the “Open Container Initiative”
(OCI, see https://opencontainers.org/), which was started in 2015. It developed a vendor agnostic
specification of containers and images, that was released in 2017 to which the current Docker
implementation adheres. This, of course, still doesn’t guarantee the longevity of the technology, but at
least a total lock-in into a certain technology is circumvented.

44 https://docs.docker.com/glossary/#container

43 “Docker images are the basis of containers. An image is an ordered collection of root filesystem
changes and the corresponding execution parameters for use within a container runtime. An image
typically contains a union of layered filesystems stacked on top of each other. An image does not have
state and it never changes.” (https://docs.docker.com/glossary/#image)

26

https://opencontainers.org/
https://docs.docker.com/glossary/#container
https://docs.docker.com/glossary/#image

D7.3 On Versioning Living and Programmable Corpora

4.2 Case Study: Dockerizing a Complete CLS Study
We exemplify the benefits of a Docker-based research workflow by referring to our study
“Detecting Small Worlds in a Corpus of Thousands of Theater Plays”. In this study, we tested
different operationalizations of the so-called “Small World” concept based on a multilingual “Very
Big Drama Corpus” (VeBiDraCor) of almost 3,000 theater plays. As explained above, the
corpora available on DraCor are “living corpora” – which means that both the number of text
files contained and the information contained in the text files changes (e.g. with regard to
metadata or mark-up). This poses an additional challenge for reproducing our study.
Furthermore, our analysis script (written in R) retrieves metadata and network metrics from the
REST API of the “programmable corpus”. Thus, we had to devise a way of not only stabilizing
the corpus but also the API.

DraCor provides Docker images for its services, which are, at its core the API, a
frontend, a metrics service, that does the calculation of the network metrics of co-presence
networks of the plays, and a triple store. The ready-made Docker images can be used to set up
a local DraCor environment.47

For VeBiDraCor we devised a workflow that spins up a Docker container from a
versioned bare Docker image of the DraCor database and ingests the data of the plays
downloaded (“pulled”) from specified GitHub commits using a Python script. We then committed
this container with docker commit48 to create a ready to use Docker image of the populated
database and API. Because the build process is modular and documented in a Dockerfile, it is
also possible to quickly change the API’s base image or the composition of the corpus by editing
a manifest file that controls which plays from which repositories at which state are included. In a
second step, we also dockerized the research environment: a Docker container running RStudio
to which we added our analysis script. The preparation of this image is documented in a
Dockerfile. As base image we used an image or the rocker-project (https://rocker-project.org/).
We used docker commit to “freeze” this state of our system and published all images. We call
this state the “pre-analysis state”, which is documented in a Docker Compose file.

After we ran the analysis, we again created an image of the RStudio container with
docker commit, thus turning it into a Docker image in which basically “froze” the state of the
research environment after the R-script was run. The image of this “post-analysis state” was

48 https://docs.docker.com/reference/cli/docker/container/commit/

47 Docker images of the DraCor system components are published on the platform DockerHub, see
https://hub.docker.com/u/dracor. More recent images are dracor/api, dracor/frontend, dracor/metrics and
dracor/fuseki. These are the images that are used in the production infrastructure and ideally should be
used when setting up local instances as well. For reasons of allowing for replication of work that has, for
example, been presented at the DH 2023 Graz conference, the image repositories with the naming
convention that repeats “dracor” in the image name, e.g. dracor/dracor-api are still kept on the platform.

27

https://docs.docker.com/reference/cli/docker/container/commit/
https://hub.docker.com/u/dracor

D7.3 On Versioning Living and Programmable Corpora

also published on the DockerHub repository. It allows for inspection and verification of the
results of our study in the same environment that we used.49

By having these images representing two moments in the course of our analysis, we not
only make our analysis transparent, we also allow for different scenarios of repeating our
research. For example, starting an environment with the Docker Compose file that documents
the “pre-analysis state” would allow a researcher to exactly repeat our analysis by re-running
the script on the exact same data.

But also other scenarios of repeating research (e.g. replication, reproduction, revision,
reanalysis, reinvestigation; cf. Schöch 2023) could be implemented easily. To give one example:
A researcher could adapt the Jupyter Notebook we used to assemble “VeBiDraCor” and create
an image of the local corpus container the same way we did. By changing a single line in the
Docker Compose file documenting the “pre-analysis state” it is possible to start the whole
system with this different data. For running our R-script to analyze this data he or she could still
use a container created from our RStudio image and thus run the analysis the exact same way
we did, but on different data.

4.3 Simplifying the Workflow: StableDraCor
The workflow presented above is still quite complex. There are multiple steps involved to set-up
the locally running infrastructure some of which need to be run from the command line. In
addition, one has to create a bare container with a database and an API, populate it with the
data, conduct the analysis, create several Docker images, and, ultimately, publish them in a
repository, e.g. on DockerHub. There is also the need to create the Docker Compose file that
specifies which system components are needed to recreate the environment the analysis was
run in at different points in time. Thus, there is a considerable need to make the process more
user-friendly.

Our approach to simplifying the process focuses on developing a Python package called
“StableDraCor” that makes the setting-up of local DraCor instances and populating them with
data easier by somewhat “hiding” the complexity of the Docker and Docker Compose
commands. While there is no real need for a generic tool managing containers and images
(because this can be done with Docker Desktop50), with “StableDraCor” we address the
complexity of setting up the specific DraCor infrastructure components and loading DraCor
corpora (or a subset thereof).

50 https://www.docker.com/products/docker-desktop/

49 This process is documented in the README.md file in the repository accompanying the “Small-World”
study, see https://github.com/dracor-org/small-world-paper/tree/publication-version. The original
VeBiDraCor was built with a Jupyter notebook
https://github.com/dracor-org/vebidracor/blob/3c3495d6b9434913687348435a341f781413304d/vebidraco
r-workflow.ipynb.

28

https://github.com/dracor-org/small-world-paper/tree/publication-version
https://github.com/dracor-org/vebidracor/blob/3c3495d6b9434913687348435a341f781413304d/vebidracor-workflow.ipynb
https://github.com/dracor-org/vebidracor/blob/3c3495d6b9434913687348435a341f781413304d/vebidracor-workflow.ipynb

D7.3 On Versioning Living and Programmable Corpora

In the following, we describe the workflow using the tool. The package can be built and
installed from the repository51. After initializing a StableDraCor instance, the infrastructure can
be started with a single command run(). If a user does not specify any parameters (like
pointing to a designated custom local Docker Compose file) the script fetches a configuration of
the system specified by a Docker Compose file (“compose.fullstack.yml”) and starts the
defined containers.

The package also supports setting-up local custom corpora either by copying a corpus or
parts thereof from any running DraCor system, for example the production system on
https://dracor.org or the staging server at https://staging.dracor.org (the latter containing even
more corpora that are currently prepared for publication). It is also possible to directly add TEI
files from the local filesystem, which allows a user to even use the DraCor environment with
data not published on https://dracor.org or a public GitHub repository. When adding data to a
local Docker container with the help of the “StableDraCor” package, the program keeps track of
the constitution of the corpora and the sources used.

It is also possible to directly load corpora or parts thereof from a GitHub repository. This
method of adding data allows to specify the “version” of the data in the corpus compilation
process at a given point in time by referring to a single GitHub commit. As mentioned above,
because DraCor corpora are “living corpora”, it is not guaranteed that corpora that are available
on the web platform do not change. Therefore, it would not be a good idea to base research
aiming at being repeatable at the data in the live system. By using data directly from GitHub with
StableDraCor it is possible to include only the plays that were available, let’s say, two years ago
and in the encoding state they were at this time.

The tool keeps track of the whole configuration of the system: This includes the versions
of the microservices used, and the corpora loaded. The state of the corpus is identified by a
timestamp and – if the source is a GitHub repository, the commit. This “log” can be output as a
“manifest” JSON object (command: get_manifest()), which should allow re-creating the
system even if no Docker image is available. It would also allow a user to unambiguously
identify the exact data that was used in a study.52 The following code snippet shows such a
manifest with several corpora added:

{'version': 'v1',
'system': {'id': '7f4f9ec9-40b2-4b92-8f33-5ef83714a12b',
'name': 'my-stable-dracor',

52 If someone would not want to or for some reasons could not use Docker, the manifest alone would still
be a sufficient source to retrieve the files used if they come from a corpus on GitHub. Of course, if local
files are used, this does not help, but at least, it makes this circumstance transparent.

51 https://github.com/dracor-org/stabledracor. Currently, it is still recommended to use the version in
development from the “dind” branch of https://github.com/ingoboerner/stable-dracor/tree/dind which
implements a “Docker in Docker” setup. For a tutorial on how to use this setup see
https://github.com/ingoboerner/stable-dracor/blob/dind/notebooks/02_intro.ipynb.

29

https://dracor.org
https://staging.dracor.org
https://dracor.org
https://github.com/dracor-org/stabledracor
https://github.com/ingoboerner/stable-dracor/tree/dind
https://github.com/ingoboerner/stable-dracor/tree/dind

D7.3 On Versioning Living and Programmable Corpora

'description': 'DraCor system created with the introduction notebook to showcase the
features of the stable-dracor-client.',
'timestamp': '2023-11-23T13:25:31.445797'},
'services': {'api': {'container': '8c9975f92468',
'image': 'dracor/dracor-api:v0.90.1-local',
'version': '0.90.1-2-g19a3f46-dirty',
'existdb': '6.0.1'},
'frontend': {'container': 'ac2e4e6d8a73',
'image': 'dracor/dracor-frontend:v1.6.0-dirty'},
'metrics': {'container': '3d8cc36cdf62',
'image': 'dracor/dracor-metrics:v1.2.0'},
'triplestore': {'container': '35802186a396',
'image': 'dracor/dracor-fuseki:v1.0.0'}},

'corpora': {'tat': {'corpusname': 'tat',
'timestamp': '2023-11-23T13:25:32.435087',
'sources': {'tat': {'type': 'api',
'corpusname': 'tat',
'url': 'https://dracor.org/api/corpora/tat',
'timestamp': '2023-11-23T13:25:32.435093',
'num_of_plays': 3}},

'num_of_plays': 3},
'dutch': {'corpusname': 'dutch',
'timestamp': '2023-11-23T13:25:37.631544',
'sources': {'dutch': {'type': 'api',
'corpusname': 'dutch',
'url': 'http://staging.dracor.org/api/corpora/dutch',
'timestamp': '2023-11-23T13:25:37.631550',
'num_of_plays': 1}},

'num_of_plays': 1},
'kar': {'corpusname': 'kar',
'timestamp': '2023-11-23T13:25:41.428662',
'sources': {'bash': {'type': 'api',
'corpusname': 'bash',
'url': 'https://dracor.org/api/corpora/bash',
'timestamp': '2023-11-23T13:25:41.428668',
'exclude': {'type': 'slug', 'ids': ['khudayberdin-aq-bilettar']},
'num_of_plays': 2}},

'num_of_plays': 2}}

}53

“StableDraCor” supports creating a Docker image from a populated database container.
With the original workflow it was necessary to do this with the docker commit command in the
terminal. It was also necessary to provide additional documentation, for example the Jupyter
notebook that was used to assemble a corpus. This information was ‘detached’ from the Docker
image and it was necessary to explicitly point to this form of documentation, because it was not
part of the research artifact itself. We tackled this issue with StableDracor and found a way to

53 For an explanation of the manifest see
https://github.com/ingoboerner/stable-dracor/blob/df31c4e6b42d0e8c6ba294efe4d26aa473719ab2/noteb
ooks/02_intro.ipynb

30

https://github.com/ingoboerner/stable-dracor/blob/df31c4e6b42d0e8c6ba294efe4d26aa473719ab2/notebooks/02_intro.ipynb
https://github.com/ingoboerner/stable-dracor/blob/df31c4e6b42d0e8c6ba294efe4d26aa473719ab2/notebooks/02_intro.ipynb

D7.3 On Versioning Living and Programmable Corpora

include machine readable documentation about the research artifact directly attached to it. Now,
when we create an image with the tool, we issue a slightly different “docker commit” command
that also attaches Docker Object Labels54 directly to the newly created image. We achieve this
by taking the manifest as mentioned earlier, and decomposing it into single Docker Labels.
StableDraCor can convert a manifest into labels but also re-convert Docker Object Labels on
the image in the “org.dracor.stable-dracor.*” namespace back into a manifest. By
providing the manifest information as image labels, we allow a user, for example, to retrieve
information about the corpus contents and the sources of a database without having to run the
image as a Docker container first. We also attach the information about the individual DraCor
microservices directly to the image as labels. .

In summary, our “StableDraCor” package allows to generate a fully self-describing,
completely versionized research artifact that alone is sufficient to replicate the corpora and their
research infrastructure that were used in a study.

54 https://docs.docker.com/config/labels-custom-metadata/

31

https://docs.docker.com/config/labels-custom-metadata/

D7.3 On Versioning Living and Programmable Corpora

5. Key Takeaways
With this report, we first of all wanted to raise awareness of the challenges that research with
living and programmable corpora entails if it claims to be reproducible research. Based on an
exemplary corpus archaeology of GerDraCor, we have also illustrated the developments that a
living corpus can undergo and that these developments can involve not only the number of
corpus elements, but also the structure and metadata of the text files.

As we have shown, the problem of reproducing research on living corpora, i.e. dynamic
epistemic objects, can be understood as a versioning problem. Accordingly, in this report we
have introduced versioning techniques for living and programmable corpora and illustrated their
use with examples taken from the DraCor platform.

To summarize, our recommendations on versioning are as follows:
● When working with living corpora, a version control system should always be

used; when citing such corpora, the versions should be explicitly and
comprehensively indicated. We recommend working with Git and citing Git
commits accordingly (see chapter 3).

● When working with programmable corpora, in which data and code are linked
and developed in dependence with each other, the entire infrastructure must be
versioned. To this end, we recommend using container technology to conserve
the state of data and code at the time when conducting the research. We
recommend Docker for containerization (see chapter 4).

Beyond this, it is crucial for reproducible research that there is an overarching awareness and
willingness among all those involved in the research process. We hope that this report will also
help to strengthen this awareness.

32

D7.3 On Versioning Living and Programmable Corpora

References
Al Laban, Firas, Jan Bernoth, Michael Goedicke, Ulrike Lucke, Michael Striewe, Philipp Wieder,

Ramin Yahyapour. „Establishing the Research Data Management Container in NFDIxCS“.
Proceedings of the Conference on Research Data Infrastructure 1 (7 September 2023).
https://doi.org/10.52825/cordi.v1i.395.

Arvan, Mohammad, Luís Pina, Natalie Parde. „Reproducibility in Computational Linguistics: Is
Source Code Enough?“ In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, ed. by Yoav Goldberg, Zornitsa Kozareva, Yue Zhang, 2350–61.
Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, 2022.
https://doi.org/10.18653/v1/2022.emnlp-main.150.

Börner, Ingo, und Peer Trilcke. „CLS INFRA D7.1 On Programmable Corpora“, 28 February 2023.
https://doi.org/10.5281/ZENODO.7664964.

Börner, Ingo, Peer Trilcke, Carsten Milling, Frank Fischer, Henny Sluyter-Gäthje. "Dockerizing
DraCor – A Container-based Approach to Reproducibility in Computational Literary Studies" In:
DH2023. Conference Abstracts. https://doi.org/10.5281/zenodo.8107836

Brown, Zack. „A Git Origin Story“. Linux Journal, 27. Juli 2018.
https://www.linuxjournal.com/content/git-origin-story.

Burton, Matt, Matthew J. Lavin, Jessica Otis, Scott B. Weingart. „Digits: Two Reports on New Units
of Scholarly Publication“. The Journal of Electronic Publishing 22, Nr. 1 (14. Februar 2020).
https://doi.org/10.3998/3336451.0022.105.

Chacon, Scott, und Ben Straub. Pro Git: Everything You Need to Know about Git. 2. ed. The Expert’s
Voice. New York, NY: Apress/Springer, 2014.

Da, Nan Z. „The Computational Case against Computational Literary Studies“. Critical Inquiry 45, Nr.
3 (March 2019): 601–39. https://doi.org/10.1086/702594.

Ďurčo, Matej, Vera Maria Charvat, Ingo Börner, Michał Mrugalski, Carolin Odebrecht. „CLS INFRA
D6.1 Inventory of Existing Data Sources and Formats“, 27 July 2022.
https://doi.org/10.5281/ZENODO.7520287.

Fischer, Frank, Ingo Börner, Mathias Göbel, Angelika Hechtl, Christopher Kittel, Carsten Milling, Peer
Trilcke. „Programmable Corpora: Introducing DraCor, an Infrastructure for the Research on
European Drama“. In DH2019: »Complexities«. 9–12 July 2019. Book of Abstracts. Utrecht:
Utrecht University, 2019. https://doi.org/10.5281/ZENODO.4284002.

Fischer, Frank, Mathias Göbel. „A (not so) simple question and a somewhat diabolic answer“. DLINA
Blog (blog), 18 June 2015. https://dlina.github.io/A-Not-So-Simple-Question.

Fischer, Frank, Peer Trilcke. „Introducing DLINA Corpus 15.07 (Codename: Sydney)“. DLINA Blog
(blog), 20 June 2015.
https://dlina.github.io/Introducing-DLINA-Corpus-15-07-Codename-Sydney.

Gavin, Michael. Literary mathematics: quantitative theory for textual studies. Stanford text
technologies. Stanford, California: Stanford University Press, 2023.
http://www.gbv.de/dms/bowker/toc/9781503633902.pdf.

33

https://doi.org/10.52825/cordi.v1i.395
https://doi.org/10.52825/cordi.v1i.395
https://doi.org/10.18653/v1/2022.emnlp-main.150
https://doi.org/10.18653/v1/2022.emnlp-main.150
https://doi.org/10.5281/ZENODO.7664964
https://doi.org/10.5281/ZENODO.7664964
https://doi.org/10.5281/zenodo.8107836
https://www.linuxjournal.com/content/git-origin-story
https://www.linuxjournal.com/content/git-origin-story
https://doi.org/10.3998/3336451.0022.105
https://doi.org/10.3998/3336451.0022.105
https://doi.org/10.1086/702594
https://doi.org/10.5281/ZENODO.7520287
https://doi.org/10.5281/ZENODO.7520287
https://doi.org/10.5281/ZENODO.4284002
https://dlina.github.io/A-Not-So-Simple-Question
https://dlina.github.io/Introducing-DLINA-Corpus-15-07-Codename-Sydney
https://dlina.github.io/Introducing-DLINA-Corpus-15-07-Codename-Sydney
http://www.gbv.de/dms/bowker/toc/9781503633902.pdf
http://www.gbv.de/dms/bowker/toc/9781503633902.pdf

D7.3 On Versioning Living and Programmable Corpora

Kampkaspar, Dario, Frank Fischer, Peer Trilcke. „Introducing our ‚Zwischenformat‘“. DLINA Blog
(blog), 21 June 2015. https://dlina.github.io/Introducing-Our-Zwischenformat.

Kampkaspar, Dario, Peer Trilcke. „Editing Rules“. DLINA Blog (blog), 22 June 2015.
https://dlina.github.io/Editing-Rules.

Mrugalski, Michał, Carolin Odebrecht, Vera Charvat, Ingo Börner, Matej Durco. „CLS INFRA D5.1.
Review of the Data Landscape“, 19 July 2022. https://doi.org/10.5281/ZENODO.6861022.

Open Science Collaboration. „Estimating the Reproducibility of Psychological Science“. Science 349,
Nr. 6251 (28 August 2015): aac4716. https://doi.org/10.1126/science.aac4716.

O’Sullivan, James. „The humanities have a ‘reproducibility’ problem“. Talking Humanities (blog), 9
July 2019.
https://talkinghumanities.blogs.sas.ac.uk/2019/07/09/the-humanities-have-a-reproducibility-prob
lem.

Schneider, Felix, Björn Barz, Phillip Brandes, Sophie Marshall, Joachim Denzler. „Data-Driven
Detection of General Chiasmi Using Lexical and Semantic Features“. In Proceedings of the 5th
Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences,
Humanities and Literature, ed. by Stefania Degaetano-Ortlieb, Anna Kazantseva, Nils Reiter,
Stan Szpakowicz, 96–100. Punta Cana, Dominican Republic (online): Association for
Computational Linguistics, 2021. https://doi.org/10.18653/v1/2021.latechclfl-1.11.

Schöch, Christof. „Repetitive Research: A Conceptual Space and Terminology of Replication,
Reproduction, Revision, Reanalysis, Reinvestigation and Reuse in Digital Humanities“.
International Journal of Digital Humanities 5, Nr. 2–3 (6 November 2023): 373–403.
https://doi.org/10.1007/s42803-023-00073-y.

Shanahan, Daniel R. „A living document: reincarnating the research article“. Trials 16, Nr. 1 (11 April
2015): 151. https://doi.org/10.1186/s13063-015-0666-5.

Trilcke, Peer. „Social Network Analysis (SNA) als Methode einer textempirischen
Literaturwissenschaft“. In Empirie in der Literaturwissenschaft, ed by Philip Ajouri, Katja
Mellmann, Christoph Rauen, 201–47. Münster, 2013.

Trilcke, Peer, Evgeniya Ustinova. „Detecting Small Worlds in a Corpus of Thousands of Theater
Plays. A DraCor Study in Comparative Literary Network Analysis“. In Computational Drama
Analysis: Reflecting Methods and Interpretations, ed. by Melanie Andresen, Nils Reiter. De
Gruyter, [forthcoming].

Wiedmer, Nathalie, Janis Pagel, Nils Reiter. „Romeo, Freund des Mercutio: Semi-Automatische
Extraktion von Beziehungen zwischen dramatischen Figuren“, 194–200. In DHd 2020
Spielräume: Digital Humanities zwischen Modellierung und Interpretation. Book of Abstracts.
Paderborn: Paderborn University, 2020. https://doi.org/10.5281/zenodo.3666690

34

https://dlina.github.io/Introducing-Our-Zwischenformat
https://dlina.github.io/Editing-Rules
https://dlina.github.io/Editing-Rules
https://doi.org/10.5281/ZENODO.6861022
https://doi.org/10.1126/science.aac4716
https://talkinghumanities.blogs.sas.ac.uk/2019/07/09/the-humanities-have-a-reproducibility-problem
https://talkinghumanities.blogs.sas.ac.uk/2019/07/09/the-humanities-have-a-reproducibility-problem
https://talkinghumanities.blogs.sas.ac.uk/2019/07/09/the-humanities-have-a-reproducibility-problem
https://doi.org/10.18653/v1/2021.latechclfl-1.11
https://doi.org/10.1007/s42803-023-00073-y
https://doi.org/10.1007/s42803-023-00073-y
https://doi.org/10.1186/s13063-015-0666-5
https://doi.org/10.5281/zenodo.3666690

