

Introduction to Chemistry Library Research for Juniors: An Overview | 25 September 2023

Emily C. Wild

Chemistry, Geosciences and Environmental Studies Librarian

My Bio

Emily C. Wild

ewild@princeton.edu

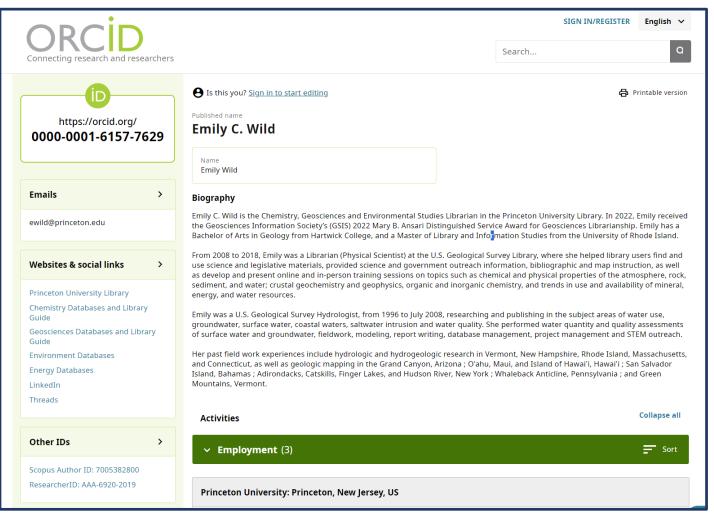
https://library.princeton.edu/staff/ewild

Princeton University Library, 2018-Present
Chemistry, Geosciences and Environmental Studies Librarian
Subject Specialist & Selector for Chemistry, Geosciences, Environment,
Energy (contact me directly)

LinkedIn: https://www.linkedin.com/in/emilycwild/ **ORCID:** https://orcid.org/0000-0001-6157-7629

U.S. Geological Survey employee 1995/1996 to 2018:

https://web.archive.org/web/20170716130801/https://www.usgs.gov/staff-profiles/emily-wild


Denver, Colorado : 2008-2018 - Librarian (Physical Scientist) for Water, Geology, Geography, Biology

NH-VT & MA-RI: 1996-2008 - Hydrologist: Water Use, Surface Water, Groundwater, Water Quality, Coastal Waters, Hydrogeology, Bibliographic Databases

Emily C. Wild (0000-0001-6157-7629) - ORCID

Rhode Island Water Use and Availability, 1995-99 = 7 publications

Emily Wild Rhode Island Water Use and Availability, 1995-99 = 6 publications

Current:

Estimated water use and availability in the South Coastal Drainage Basin, southern Rhode Island, 1995-99

Emily C Wild, Mark T Nimiroski US Geological Survey (2004-5288), 2005

Edited:

Estimated water use and availability in the South Coastal Drainage Basin, southern Rhode Island, 1995-99

Emily C Wild

US Department of the Interior, US Geological Survey 4(4), 2005

Estimated Water Use and Availability in the South Coastal Drainage Basin, Southern Rhode Island, 1995-99

By Emily C. Wild and Mark T. Nimiroski

Prepared in cooperation with the Rhode Island Water Resources Board Scientific Investigations Report 2004-5288

https://pubs.usgs.gov/sir/2004/5288/

Generative AI, Text – Chemistry

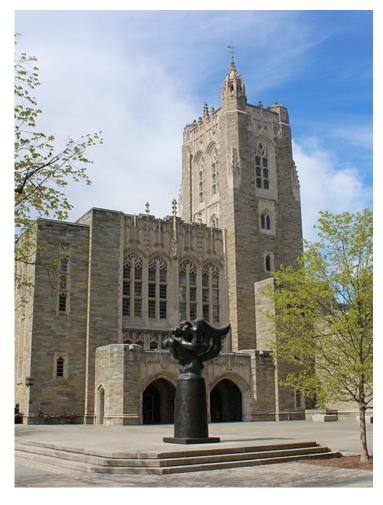
FAQ: Should I trust AI or Chemistry Librarians?

<u>Turning ChatGPT into a 'chemistry assistant' -</u> <u>American Chemical Society (acs.org)</u>

<u>ChatGPT Chemistry Assistant for Text Mining and the Prediction of MOF Synthesis | Journal of the American Chemical Society</u> (acs.org)

FAQ: Is there an environmental impact on water resources from AI?

<u>Microsoft's water usage surges by thousands of gallons after the launch of ChatGPT: Study – BusinessToday</u>


Every time you talk to ChatGPT it drinks 500ml of water; here's why

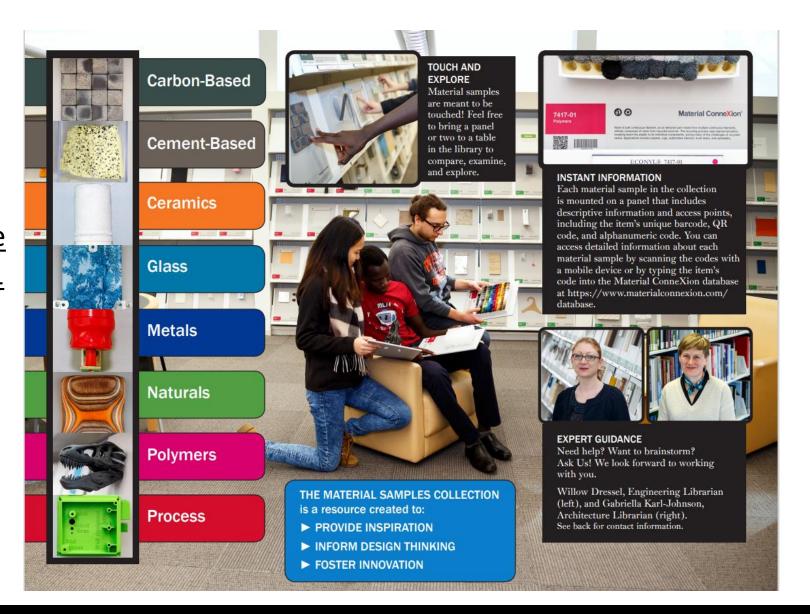
OpenAl's Al chatbot ChatGPT gulps 500ml of water for every 5-50 prompts it answers

Princeton University Library

Peter B. Lewis Library - Lewis Science Library https://library.princeton.edu/

2008 - https://facilities.princeton.edu/projects/peter-b-lewis-library-2008

ABOUT RECAP


The Research Collections and Preservation
Consortium (ReCAP) was created in 2000 to
support its members' goals of preserving their
library and archival collections, and making
them available to researchers. The ReCAP
facility consists of a preservation repository and
resource sharing services, and is located on
Princeton University's Forrestal Campus. ReCAP
is jointly owned and operated by Columbia
University, Harvard University, The New York
Public Library and Princeton University

Materials Collection

Materials Collection

- Touch and Explore
- Scan QR Code or visit
 https://libguides.prince
 ton.edu/resource/4951
 for properties and
 additional materials

Your Accounts | Princeton University Library

Search for library materials and website content

Q

MAIN MENU

Your Accounts

Library Account

- Review and renew material you've borrowed
- View information about library requests, fines and blocks
- Find out more about <u>circulation</u> <u>policies</u>

Access Your Library Account

Borrow Direct

- Request and check the status of material requested from other Borrow Direct partner libraries
- Find out more about <u>Borrow</u> Direct

Access Borrow Direct

Interlibrary Loan & Article Express

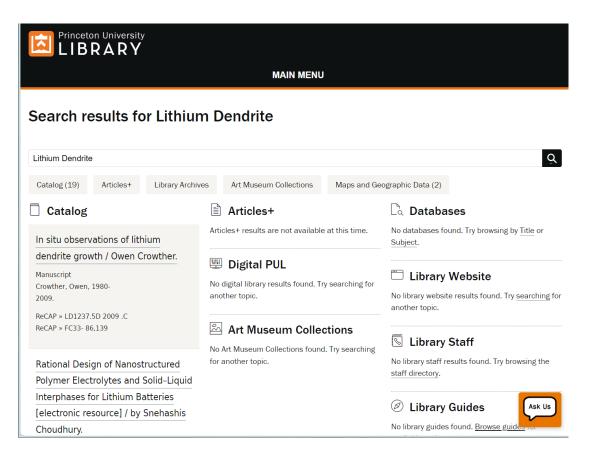
- Request or renew material requested from other libraries
- Find out more about <u>Interlibrary</u> <u>Loan</u> and <u>Article Express</u>

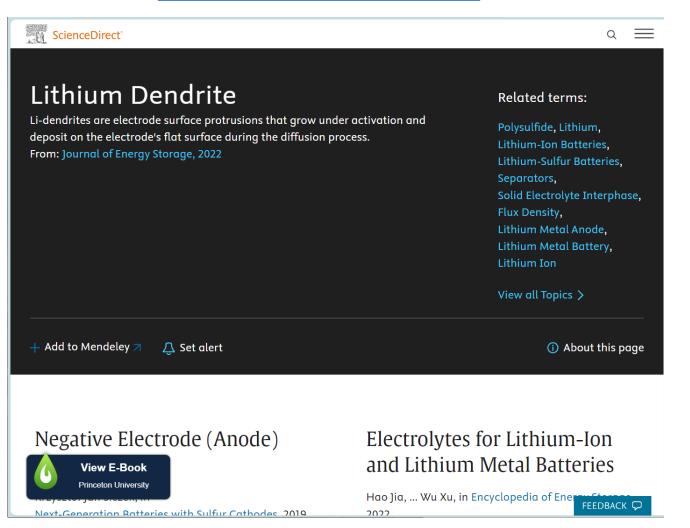
Access Interlibrary Loan and Article Express

Special Collections

- Register for access to special collections reading rooms
- Request and check the status of manuscripts, archives & rare books
- Find out more about <u>research</u> accounts

Access Your Resea

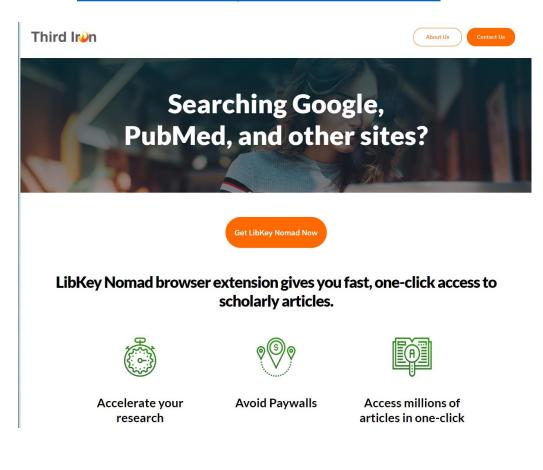


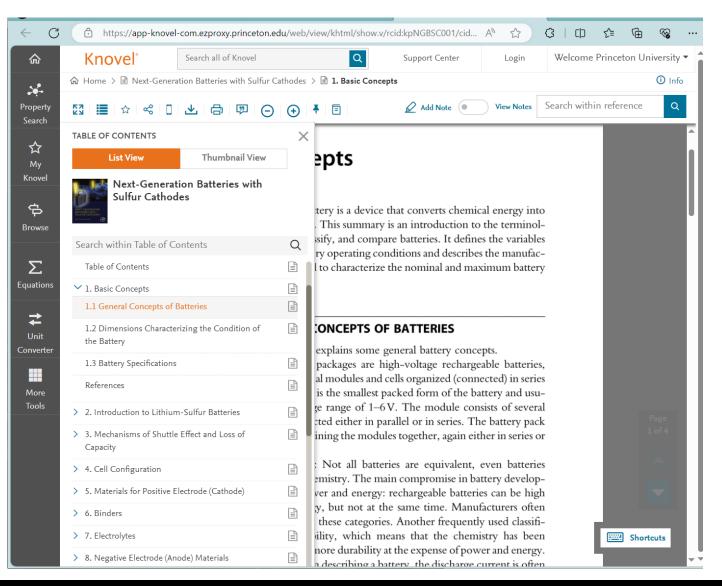


Library Catalog v. Web Search

Search results for Lithium Dendrite | Princeton University Library

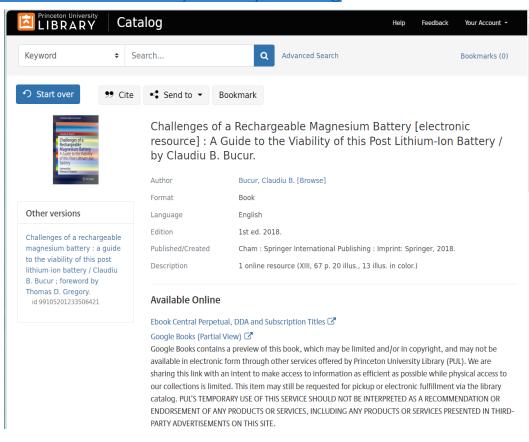
lithium dendrites at DuckDuckGo

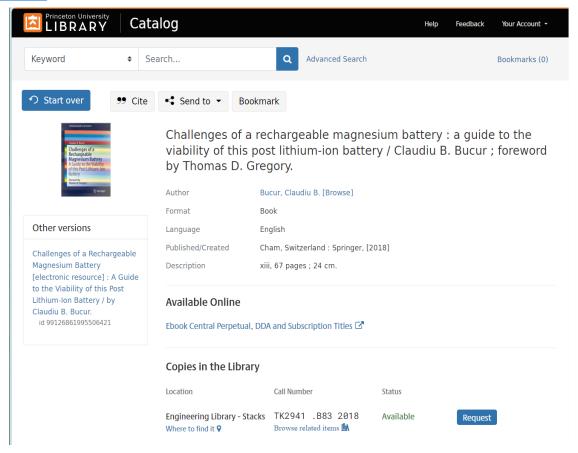




LibKey Nomad

Download LibKey Nomad – Third Iron

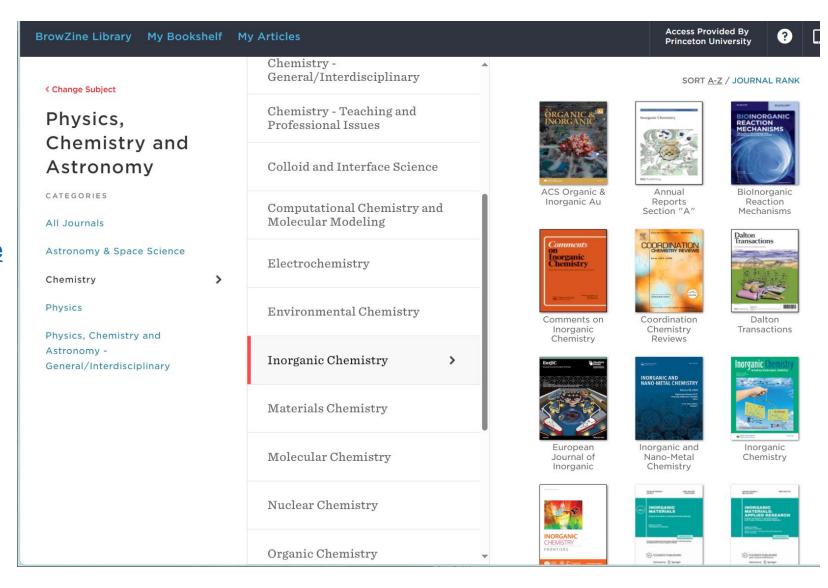

1. Basic Concepts - Knovel (princeton.edu)



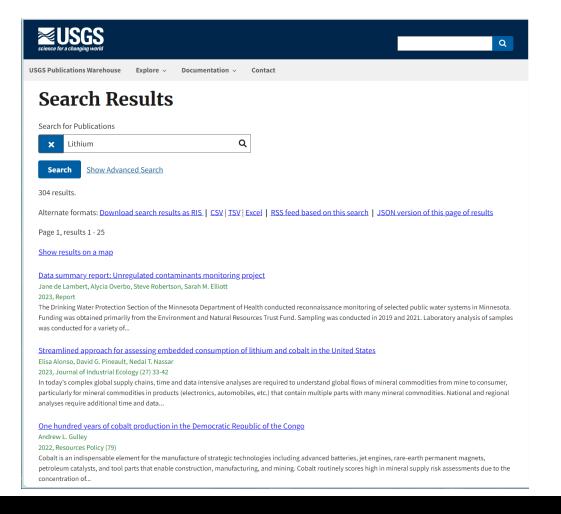
Library Catalog

Challenges of a Rechargeable Magnesium Battery
[electronic resource]: A Guide to the Viability of this
Post Lithium-Ion Battery / by Claudiu B. Bucur. Princeton University Library Catalog

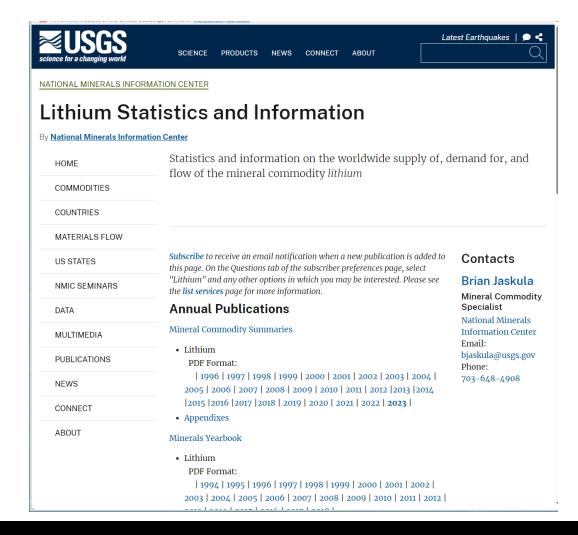
<u>Challenges of a rechargeable magnesium battery: a guide to the viability of this post lithium-ion battery / Claudiu B. Bucur; foreword by Thomas D. Gregory. - Princeton University Library Catalog</u>



https://libguides.princeton.edu/browzine

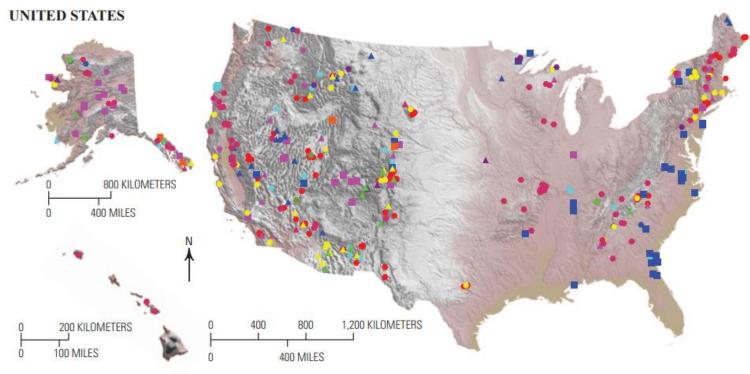

All Journals — Chemistry — Princeton University — BrowZine

<u>Inorganic Chemistry — Chemistry —</u> <u>Princeton University — BrowZine</u>



USGS Lithium

Search Results - USGS Publications Warehouse


<u>Lithium Statistics and Information | U.S. Geological Survey</u> (usgs.gov)

Critical Minerals - Lithium

Australia, Canada and US Unify Critical Minerals Data | U.S. Geological Survey (usgs.gov)

Base from National Oceanic and Atmospheric Administration ETOPO1 1 Arc-Minute Global Relief Model, 2017

EXPLANATIONCritical Minerals

Rhenium

▲ Tellurium

■ Titanium

Vandium

Manganese

▲ Niobium and Tantalum

A Rare Earth Elements

▲ Platinum Group Elements

- AntimonyBarite
- Danilium
- Beryllium
- Cobalt
- FluoriteGallium
- Germanium Tin
- Graphite
- IndiumLithium
- Zirconium
- Figure 1. Critical mineral resources in Australia, Canada, and the United States (Labay and others, 2017). Critical minerals support a broad range of industrial sectors and a diversity of high-tech industries important to global economies (see Primary Uses of Critical Minerals sidebar).

Chemistry Databases

https://libguides.princeton.edu/chemistry

Databases

Guides

Showing 46 Databases

Starting Points

CHEMnetBASE

Consists of several chemical data handbooks from Chapman & Hall/CRC.

Encyclopedia of Polymer Science and Technology

Comprehensive coverage of the entire field of polymer science and technology. Includes over 400 articles covering fundamental and practical aspects of polymer science including materials, properties, methods, applications, processing, and analytical methods.

KnowItAII U spectra database

Offers access to the KnowltAll U reference collection of over 1.3 million spectra including structures and chemical property information; includes IR, UV/Vis, NMR, Raman and mass spectra. ATTENTION KnowltALL Desktop Software Users: Please update your license at...

more...

Pharmaceutical Substances

Authoritative information resource for literature and data associated with the syntheses, patents, and applications for active pharmaceutical ingredients (APIs).

PubChem

PubChem is the world's largest collection of freely accessible chemical information. Search chemicals by name, molecular formula, structure, and other identifiers. Find chemical and physical properties, biological activities, safety and toxicity information, patents, literature citations and more.

Reaxys

Detailed index covering organic and inorganic chemistry. Includes patents. Provides access to chemical reactions and physical, chemical and bioactivity data 1772+

Science of Synthesis

Considers and critically reviews methods from journals, books, and patent literature and presents important synthetic methods for all classes of organic compounds. Web version covers former Houben-Weyl treatise (1952-2003) and its continuation title, Science of Synthesis (2001+). Critically reviews chemical reaction literature with emphasis on functional group conversions.

SciFinder Web (Chemical Abstracts)

Comprehensive coverage of all aspects of chemistry. Combines several Chemical Abstracts Service (CAS) databases. 1907+

Search

Search the full text of this site. Results will link to pages containing your terms; results from subject page searches are automatically filtered by that subject.

Search all research guides

Search

Chemistry Experts

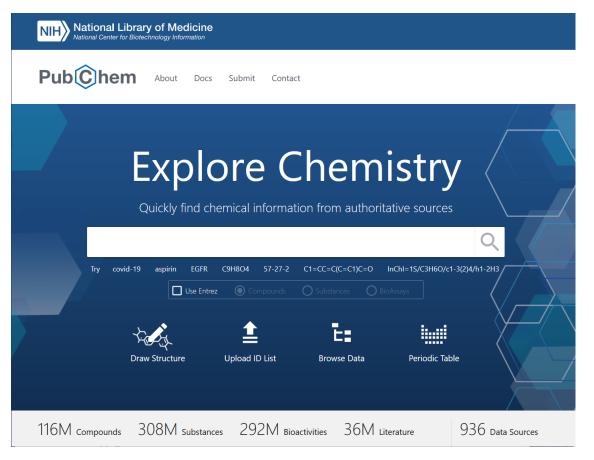
Chemistry, Geosciences and Environmental Studies Librarian

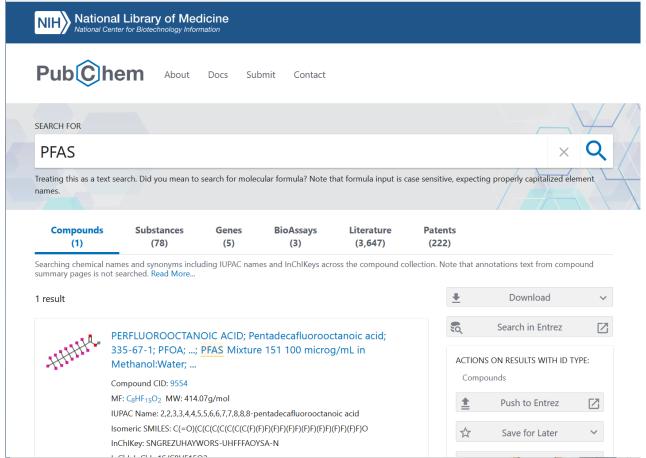
Emily Wild

ewild@princeton.edu

Contact:

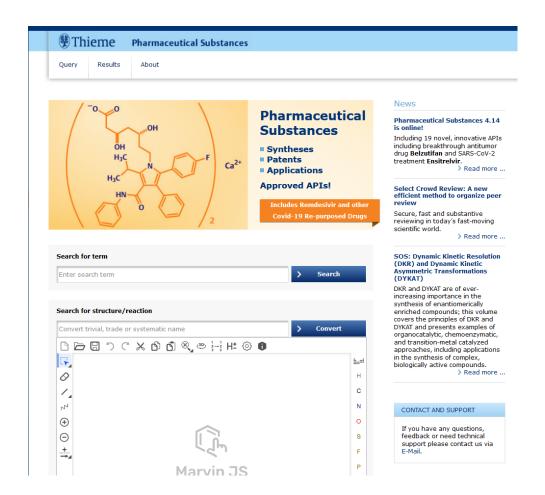
212 Lewis Science Library 609-258-5484

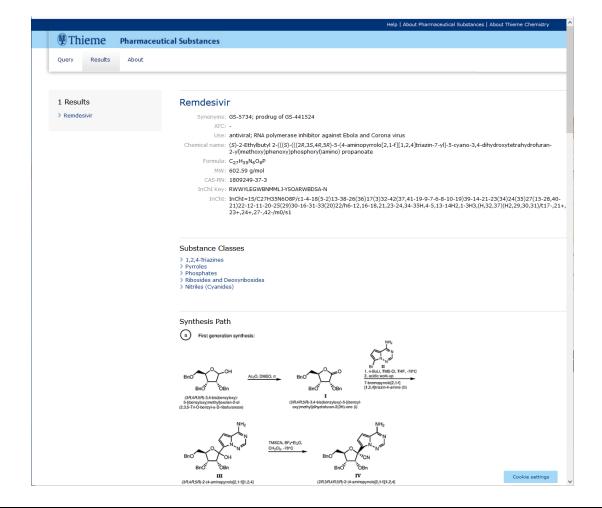




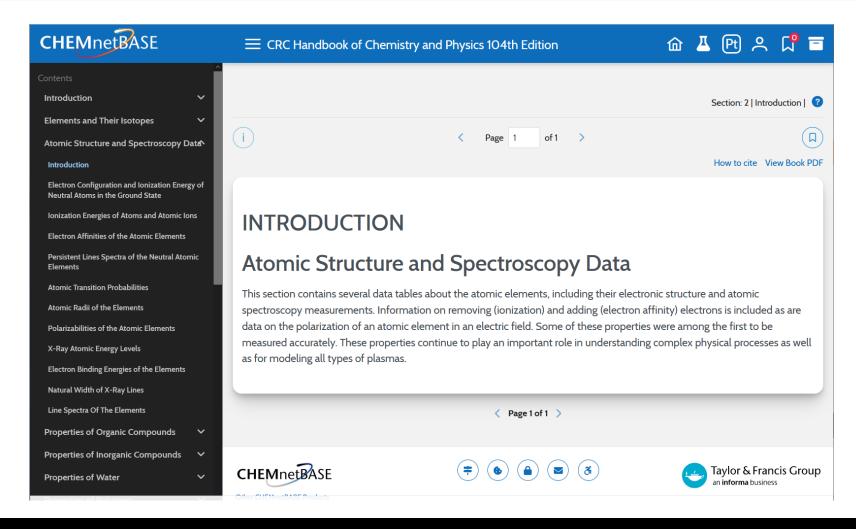
https://pubchem.ncbi.nlm.nih.gov/

"per- and polyfluorinated alkyl substances"

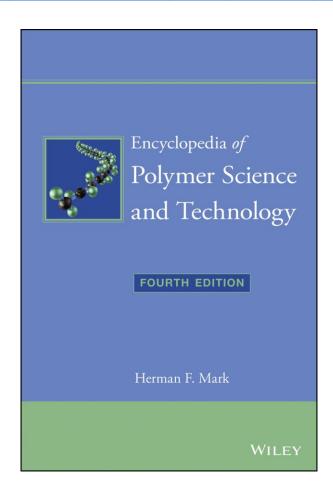


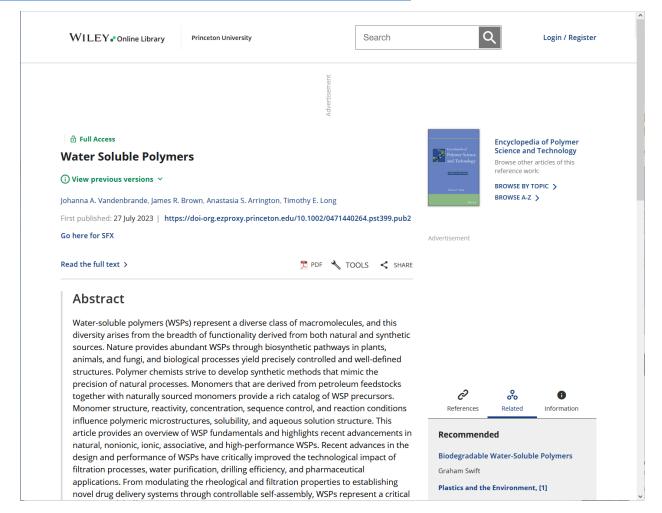


Pharmaceutical Substances


https://pharmaceutical-substances-thieme-com.ezproxy.princeton.edu/ps/

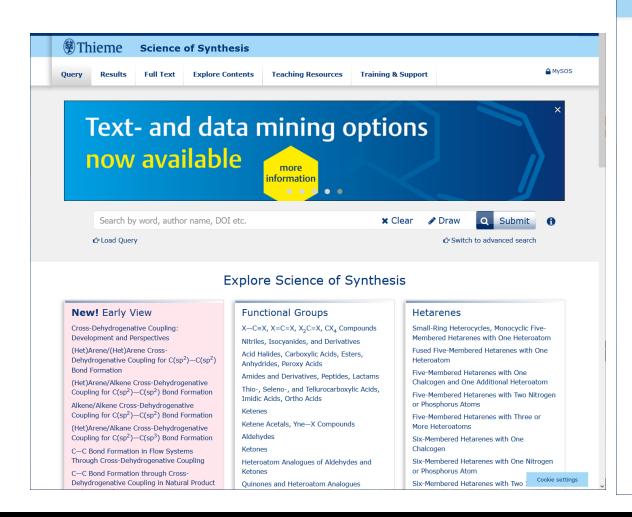
Handbook of Chemistry and Physics (CRC)

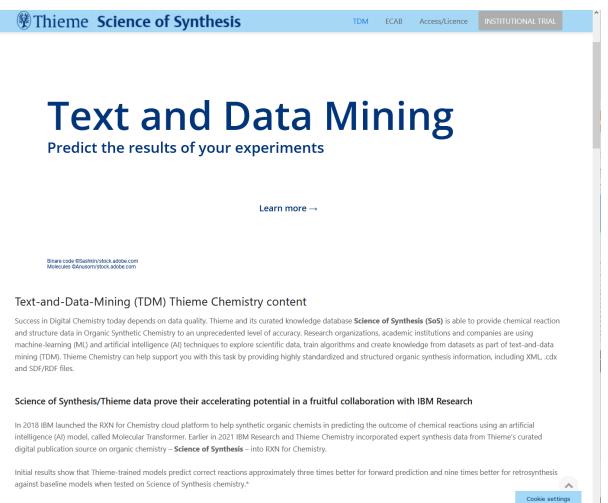

https://hbcp-chemnetbase-com.ezproxy.princeton.edu/documents/02 01/02 01 0001.xhtml?dswid=-6552



Encyclopedia of Polymer Science and Technology

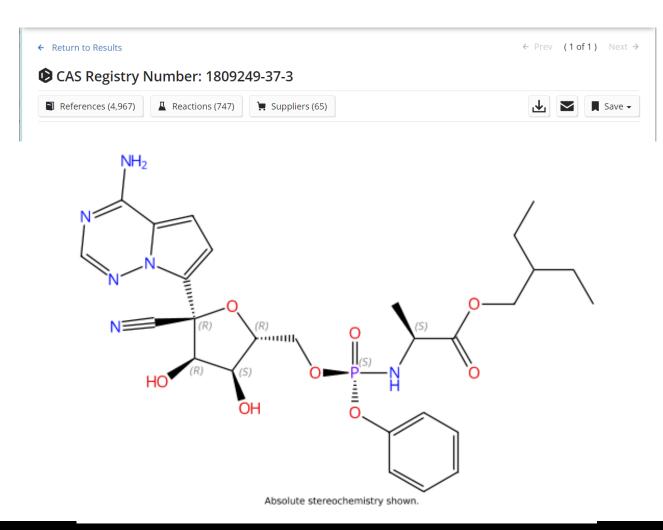
https://onlinelibrary-wiley-com.ezproxy.princeton.edu/doi/book/10.1002/0471440264





Science of Synthesis

https://science-of-synthesis-thieme-com.ezproxy.princeton.edu/



SciFinder-n

Remdesivir

Substances ▼ remdesivir

ir (

Key Physical Properties	Value	Condition
Molecular Weight	602.58	-
Melting Point (Experimental)	89.4-90.4 °C	-
Density (Predicted)	1.47±0.1 g/cm ³	Temp: 20 °C; Press: 760 Torr
pKa (Predicted)	12.00±0.70	Most Acidic Temp: 25 °C

Experimental Properties | Spectra

Expand All | Collapse All

Other Names and Identifiers

Canonical SMILES

N#CC1(OC(COP(=0)(OC=2C=CC=CC2)NC(C(=0)OCC(CC)CC)C(O)C1O)C3=CC=C4C(=NC=NN43)N

Isomeric SMILE

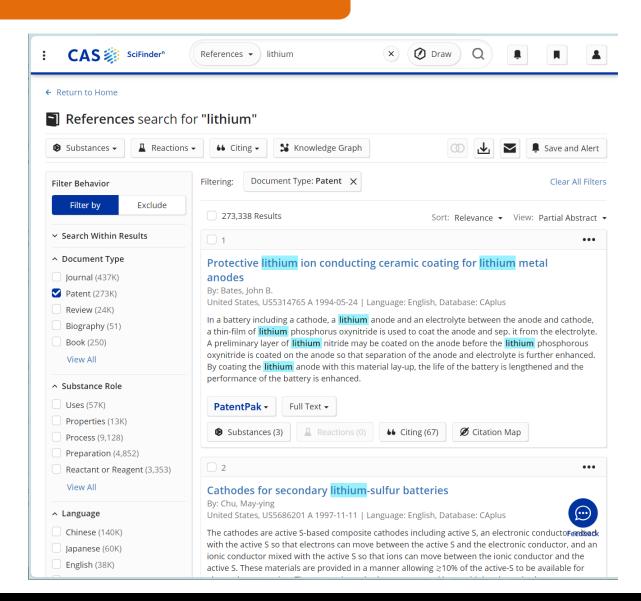
C(#N)[C@]1(O[C@H](COP(OC2=CC=CC=C2)(N[C@H](C(OCC(CC)CC)=O)C)=O)[C@@H](O)[C@H]1O)C=3N4C(=CC3)C(N)=NC=N4

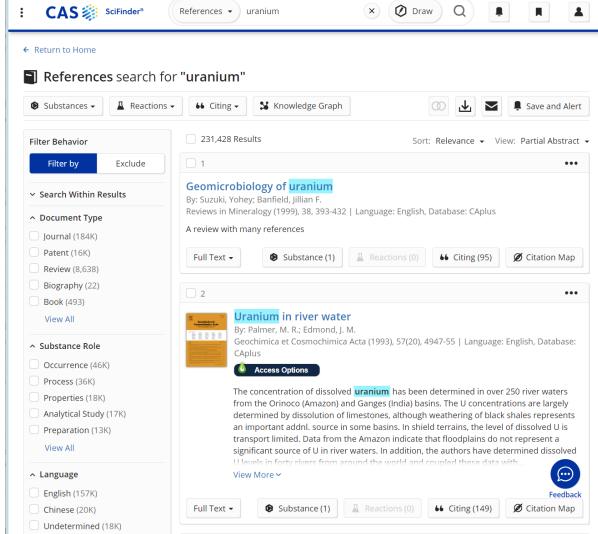
inch

InChl=15/C27H35N6O8P/c1-4-18(5-2)13-38-26(36)17(3)32-42(37,41-19-9-7-6-8-10-19)39-14-21-23(34)24(35)27(15-28,40-21)22-12-11-20-25(29)30-16-31-33(20)22/h6-12,16-18,21,23-24,34-35H,4-5,13-14H2,1-3H3,(H,32,37)(H2,29,30,31)/t17-,21+,23+,24+,27-,42-/m0/s1

InChl Key

RWWYLEGWBNMMLJ-YSOARWBDSA-N

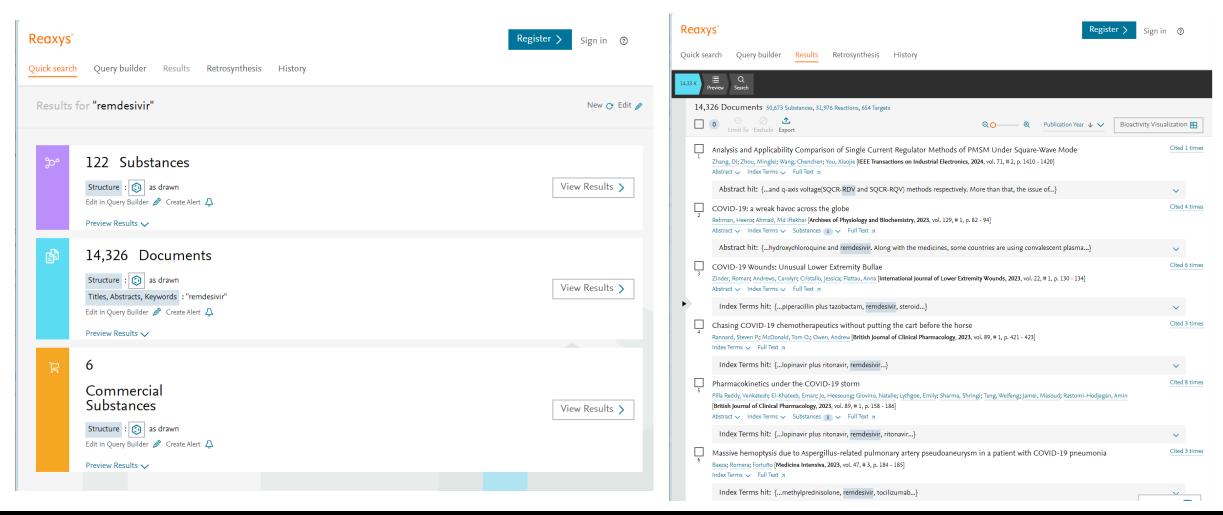

10 Other Names for this Substance


Remdesivir

 $(S)-2-Ethylbutyl\ 2-(((S)-(((2R,3S,4R,5R)-5-(4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(phenoxyl) phosphoryl) amino) propanoate$

 $2-Ethylbutyl\ (2S)-2-[[(S)-[[(2R,3S,4R,5R)-5-(4-aminopyrrolo(2,1-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-1,2-f)(1,2,4)triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydr$

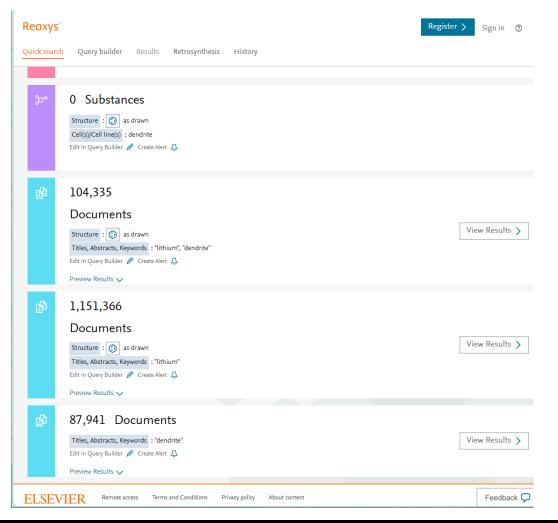
SciFinder-n

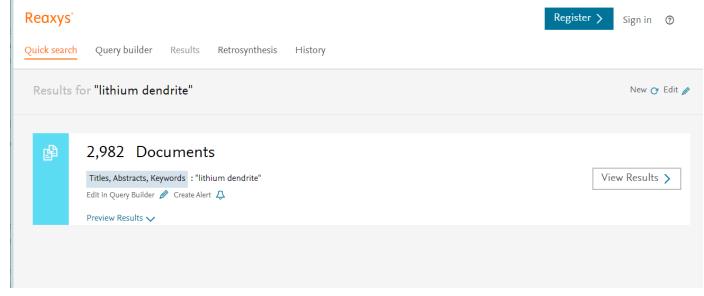


Reaxys

Remdesivir

https://www-reaxys-com.ezproxy.princeton.edu/#/search/quick





Reaxys

https://www-reaxys-com.ezproxy.princeton.edu/#/search/quick

Lithium Dendrite v. "Lithium Dendrite"

Chemistry Databases

https://www-knowitallanyware-com.ezproxy.princeton.edu/search

Starting Point

KnowItAII U spectra database

Offers access to the KnowltAll U reference collection of over 1.3 million spectra including structures and chemical property information; includes IR, UV/Vis, NMR, Raman and mass spectra. ATTENTION KnowltALL Desktop Software Users: Please update your license at...

less...

To download Windows client version, PU users go to http://www.knowitallu.com/gettingstarted

Pharmaceutical Substances

Authoritative information resource for literature and data associated with the syntheses, patents, and applications for active pharmaceutical ingredients (APIs).

PubChem

PubChem is the world's largest collection of freely accessible chemical information. Search chemicals by name, molecular formula, structure, and other identifiers. Find chemical and physical properties, biological activities, safety and toxicity information, patents, literature citations and more.

Reaxys

Detailed index covering organic and inorganic chemistry. Includes patents. Provides access to chemical reactions and physical, chemical and bioactivity data 1772+

Science of Synthesis

Considers and critically reviews methods from journals, books, and patent literature and presents important synthetic methods for all classes of organic compounds. Web version covers former Houben-Weyl treatise (1952-2003) and its continuation title, Science of Synthesis (2001+). Critically reviews chemical reaction literature with emphasis on functional group conversions.

SciFinder Web (Chemical Abstracts)

Comprehensive coverage of all aspects of chemistry. Combines several Chemical Abstracts Service (CAS) databases. 1907+

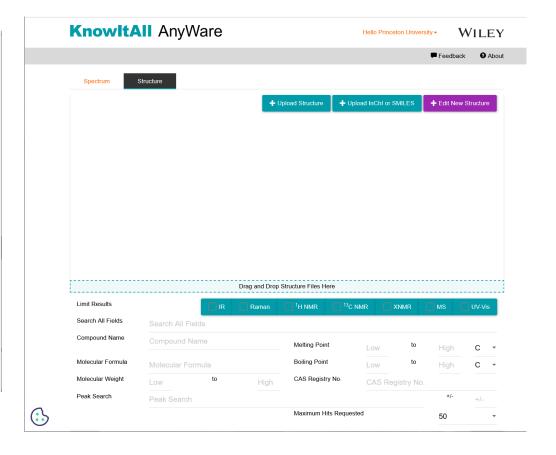
Chemistry Experts

Chemistry, Geosciences and Environmental Studies Librarian

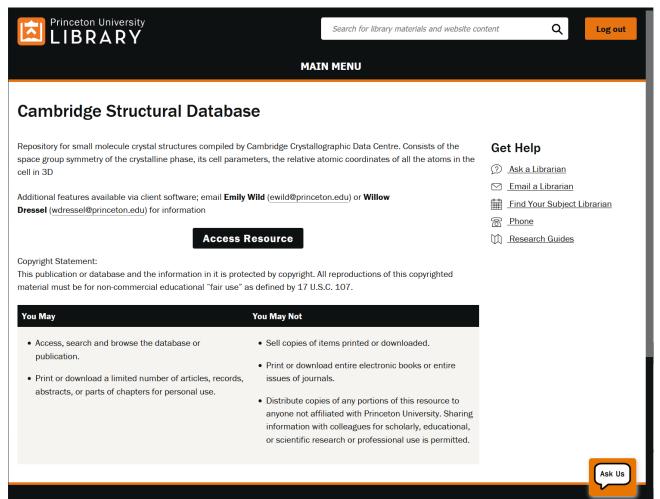
Email Me

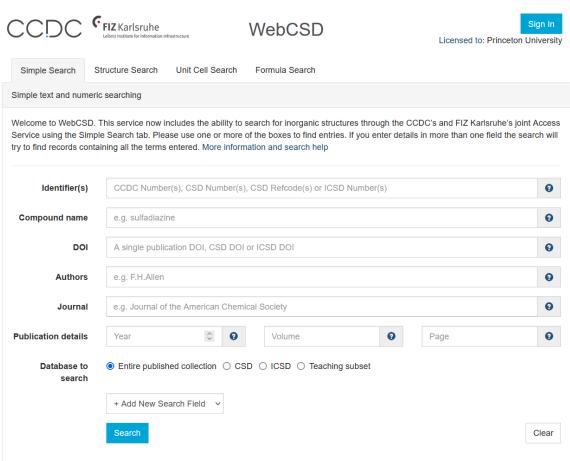
ewild@princeton.edu

Contact:


212 Lewis Science Library 609-258-5484

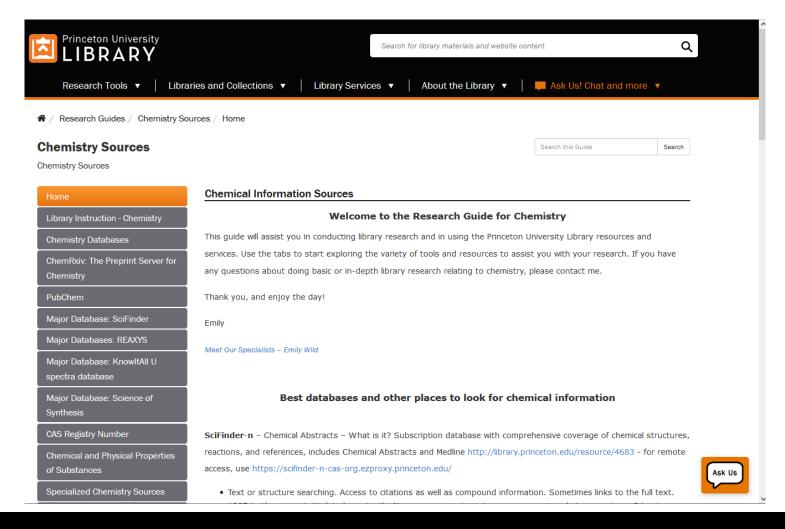
Casiali


 \wedge



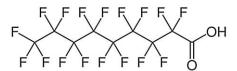
Chemistry Databases

https://library.princeton.edu/resource/restricted/45479



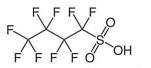
Chemistry Library Research Guide

https://libguides.princeton.edu/ChemSources


Chemistry Databases

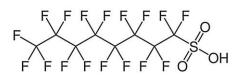
My most frequently asked chemistry questions = PFAS (left) and Elements (right)

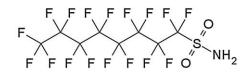
Perfluorobutanoic acid (PFBA)


Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA)

Perfluorononancanoic acid (PFNA)


Perfluorodecanoic acid (PFDA)


Perfluorobutane sulfonic acid (PFBS)

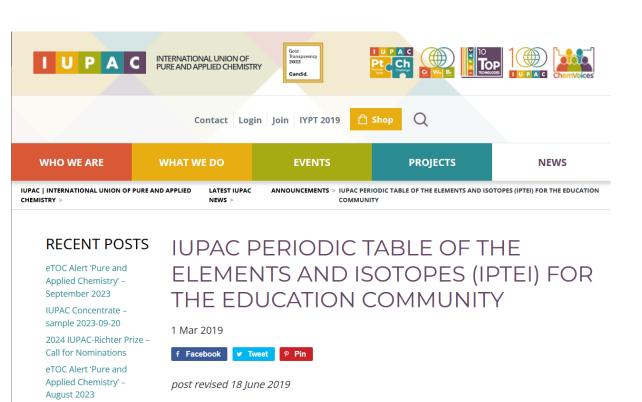
Perfluorohexane sulfonic acid (PFHxS)

Hexafluoropropylene oxide dimer acid (HFPO-DA or GenX)

Perfluorooctane sulfonic acid (PFOS)

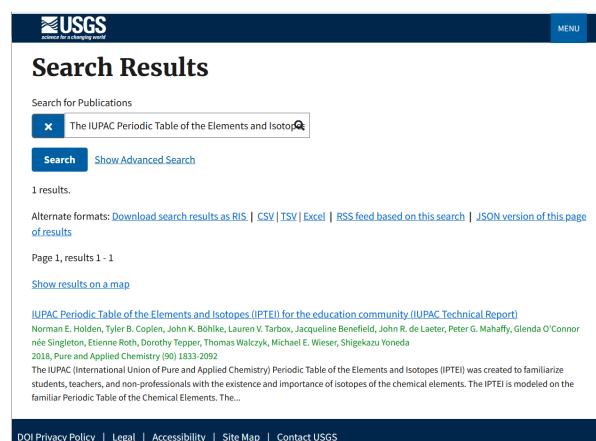
Perfluorooctanesulfonamide (PFOSA)

IUPAC Periodic Table of the Elements


1 H hydrogen 1,0080 ±0,0002	2		Key:									13	14	15	16	17	2 He helium 4.0026 ±0.0001
3 Li lithium 6.94 ±0.06	4 Be beryllium 9.0122 ± 0.0001		atomic num Symbo name abridged stands atomic weigh	ol ard								5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 O oxygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20,180 ± 0,001
11 Na sodium 22.990 ±0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 AI aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ±0.02	17 CI chlorine 35.45 ±0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ±0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ±0.001	23 V vanadium 50,942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ±0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ±0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallium 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83,798 ± 0,002
37 Rb rubidium 85.468 ±0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ±0.001	40 Zr zirconium 91.224 ±0.002	41 Nb niobium 92.906 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	43 Tc technetium	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ±0.01	46 Pd palladium 106.42 ±0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ±0.01	49 In indium 114.82 ± 0.01	50 Sn tin 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ±0.01
55 Cs caesium 13291 ±0.01	56 Ba barium 137.33 ± 0.01	57-71 lanthanoids	72 Hf hafnium 178.49 ±0.01	73 Ta tantalum 180.95 ± 0.01	74 VV tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ±0.01	76 Os osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 ± 0.01	80 Hg mercury 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson
[223]	[226]		[267]	[268]	[269]	[270]	[269]	[277]	[281]	[282]	[285]	[286]	[290]	[290]	[293]	[294]	[294]

57 La lanthanum 138.91 ± 0.01	58 Ce cerium 140.12 ± 0.01	59 Pr praseodymium 140.91 ±0.01	60 Nd neodymium 14424 ±0.01	61 Pm promethium [145]	62 Sm samarium 150.36 ± 0.02	63 Eu europium 151.96 ± 0.01	64 Gd gadolinium 157.25 ± 0.03	65 Tb terbium 158.93 ± 0.01	66 Dy dysprosium 162.50 ± 0.01	67 Ho holmium 164.93 ±0.01	68 Er erbium 167.26 ± 0.01	69 Tm thulium 168.93 ± 0.01	70 Yb ytterbium 173.05 ± 0.02	71 Lu lutetium 174.97 ± 0.01
AC actinium	90 Th thorium 232.04 ± 0.01	91 Pa protactinium 231.04 ±0.01	92 U uranium 238.03 ±0.01	93 Np neptunium [237]	94 Pu plutonium [244]	95 Am americium	96 Cm curium [247]	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium [258]	102 No nobelium	103 Lr lawrendum

For notes and updates to this table, see www.iupac.org. This version is dated 4 May 2022. Copyright © 2022 IUPAC, the International Union of Pure and Applied Chemistry.


https://iupac.org/what-we-do/periodic-table-of-elements/

co-authored by N. E. Holden, T. B. Coplen, J. K. Böhlke, L. V. Tarbox, J. Benefield, J. R. de Laeter, P. G. Mahaffy, G. O'Connor, E. Roth, D. H. Tepper, T. Walczyk, M. E. Wieser, S. Yoneda and published in *Pure and Applied Chemistry*, 90(12), 1833–2092 (2018) is an authoritative resource for the educational community. See https://doi.org/10.1515/pac-2015-0703.

The IUPAC Periodic Table of the Elements and Isotopes (IPTEI) for the Education Community

https://iupac.org/iptei/

Search Results - USGS Publications Warehouse

eTOC Alert 'Pure and

Applied Chemistry' - July

CATECODIEC

U.S. Geological Survey (USGS)

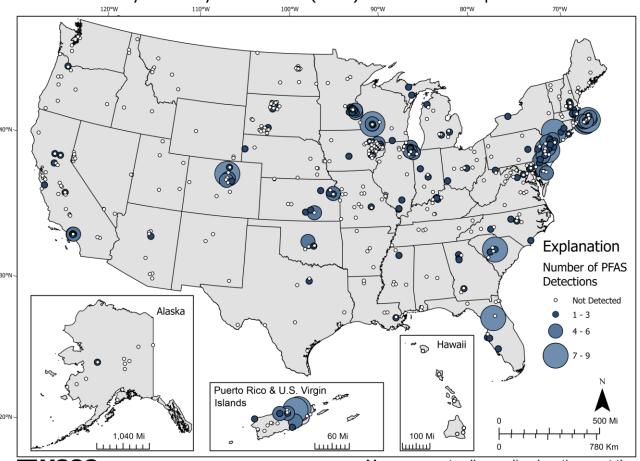
Emily was the USGS Hydrologist that pulled all the data for Leslie this publication

https://pubs.usgs.gov/publication/sir20085227

Emily was the USGS Librarian (Physical Scientist for this publication

"Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States"

https://pubs.usgs.gov/publication/70189315


Recommended reading

"Contaminants of emerging concern in the environment: Where we have been and what does the future hold?"

https://pubs.usgs.gov/publication/70201175

https://www.usgs.gov/news/national-news-release/tap-water-study-detects-pfas-forever-chemicals-across-us

Per- and Polyfluoroalkyl Substances (PFAS) in Select U.S. Tapwater Locations

Map represents all sampling locations not the only locations where PFAS was observed.

Thank You!

Upcoming virtual workshops...

Introduction to Environmental Studies Library Research:
Uranium Mining and Nuclear Energy
September 29 at 2:30 pm https://libcal.princeton.edu/event/11050593

Introduction to Geosciences Library Research: Critical Minerals by Land and Sea (and Space?)
October 6 at 2:30 pm https://libcal.princeton.edu/event/11050701

Introduction to Geosciences Library Research: Water Resources by Surface-Water Basins and Groundwater Aquifers

November 3 at 2:30 pm https://libcal.princeton.edu/event/11050754

Introduction to Chemistry Library Research: Critical Minerals and Earth Abundant Elements


November 10 at 2:30 pm https://libcal.princeton.edu/event/11050900

Introduction to Environmental Studies Library Research: Water Use and Availability

December 8 at 2:30 pm https://libcal.princeton.edu/event/11059361

Introduction to Geosciences Library Research: Earthquakes, Hurricanes, Volcanoes, and Wildfires

December 15 at 2:30 pm https://libcal.princeton.edu/event/11059477

