
ATVA’24 Artifact: Learning Broadcast Protocols
with LeoParDS
Noa Izsak 1, Dana Fisman 1, and Swen Jacobs 2

izsak@post.bgu.ac.il, dana@cs.bgu.ac.il, jacobs@cispa.de

1. Ben Gurion University, Beer-Sheva, Israel

2. CISPA Helmholtz Center for Information Security, Saarbrücken,
Germany

This artifact serves as an example template for artifacts submitted to ATVA’24
artifact evaluation.

Table of Contents
• Quickstart

• Requirements

• Setup Steps

• Smoke Test Steps

• Available Bagde

• Functional Badge

• Artifact Directory Structure

• Steps to Replicate the Experimental Results

• Reusable Badge

• Building the Docker Image

• Learning-Broadcast-Protocols-with-LeoParDS

• About Broadcast Protocols

1

Quickstart
Requirements
The following software is required for running this artifact:

• docker

Setup Steps
• Install Docker by following the instructions at https://docs.docker.com/get-

docker/.

• Download the artifact Learning-Broadcast-Protocols-with-LeoParDS-
artifact.zip from zenodo

• Unzip the artifact:

Note: This will unzip the artifact directory structure and files into the cur-
rent working directory, including the compressed docker image image.tar.

unzip Learning-Broadcast-Protocols-with-LeoParDS-artifact.zip

1. Build the Docker image:

docker build -t bpcode:bpcode .

Or import the image file:

docker load -i image.tar

This will import the docker image named <image>. This might take a few
minutes.

2. Run the Docker container:

If you would like to copy the produced results / outputs to your local machine
(for example to take a look at the produced figures), the easiest way is to mount
your local directory in the docker container.

To do so, run the container in the directory you want the files to be stored with
the additional -v flag:

docker run -d -it --name bpcodecontainer -v .:/storage bpcode:bpcode

This will make you current directory accessible in the container under the path
/storage.

Otherwise, run:

docker run -d -it --name bpcodecontainer bpcode:bpcode

3. Access the Docker container:

docker exec -it bpcodecontainer /bin/bash

2

https://docs.docker.com/get-docker/
https://zenodo.org/records/11080250

Note This will start a new Docker container.

Smoke Test Steps
After completing the above steps, within the Docker environment:

4. Execute the smoke test:

python Test_run.py

If you want to copy to the produced output file (and you started the container
with your local directory mounted, see step 2 Run the Docker container), simply
execute in the Docker enviornemnt:

cp BP_results_subsume_cs_*.csv /storage

and

cp BP_results_non_cs_*.csv /storage

Output of Smoke Test Execution

Click here for the Output of Smoke Test Execution

The output should including visual printing, along with the creation of 10 files:

• Files named BP_results_non_cs_{i}.csv and BP_results_subsume_cs_{i}.csv
for 𝑖 in [1, 2, 3, 4, 5].

– The first 5 files, (BP_results_non_cs_{i}.csv) contain randomly
generated words, so the execution time may vary but should be com-
pleted in less than 5 minutes.

– The other 5 files, (BP_results_subsume_cs_{i}.csv).

The entire process should take about 5 minutes to complete.

In BP_results_subsume_cs_{i}.csv the output_BP might slightly vary be-
tween runs, but right_output should always be True (refer to figure below):

Figure 1: image

For BP_results_non_cs_{i}.csv the output_BP is influenced by randomly
generated words, but for the provided test inputs, it should terminate with
right_output and minimal_right_output as True (refer to figure below):

Figure 2: image

3

Note: Example outputs are provided, but they may vary. Refer to
Runing example for Test_run folder.
The critical aspect is ensuring right_output is True, and for the second case,
minimal_right_output is also True

Cleanup

1. Stop the existing Docker container:

docker stop bpcodecontainer

2. Remove the Docker container:

docker rm bpcodecontainer

3. Remove the Docker image:

docker rmi bpcode:bpcode

Available Bagde
The artifact has been uploaded to Zenodo and is accessible at zenodo (DOI:
10.5281/zenodo.10968038).

Artifact Directory Structure
• Dockerfile: The docker file to build the artifact image
• commands_to_run.text: The commands you need to run after unziping

the artifact
• LICENSE: Artifact license
• Readme.md: This file
• paper.pdf: An updated version of the submitted paper
• Directory Result

– result.csv: Archive containing all files used for the evaluation
• Directory Runing example for Test_run

– BP_results_non_cs_1.csv
– BP_results_non_cs_2.csv
– BP_results_non_cs_3.csv
– BP_results_non_cs_4.csv
– BP_results_non_cs_5.csv
– BP_results_subsume_cs_1.csv
– BP_results_subsume_cs_2.csv
– BP_results_subsume_cs_3.csv
– BP_results_subsume_cs_4.csv
– BP_results_subsume_cs_5.csv

• image.tar: The docker image to replicate the evaluation.
• Test_run.py: Script to run a smoke test evaluation

4

https://zenodo.org/records/11080250

• ReplicateExperimentalResults.py: Script to reproduced our evalua-
tion

• random_generator.py : Script we used to run the evaluation
• BP_Class.py : Where BP_class is defined, that is the BP object itself
• BP_gen.py : Where BP_generator class is defined, that allow a user to

generate a random BP
• BP_Run.py : Functions that allow us to infer on BPs for diffrent needs,

i.e.:
– subsume a CS (run_subsume_cs),
– without subsuming a CS (run_no_cs),
– without subsuming a CS and having a given positive precentage in

the random generated sample (run_no_cs_pos_perc)
• BP_Learn.py : Where LearnerBp class is defined and use as the object

that the inference procedure occurs on
• State_Vector.py : An helper class
• Trie.py : An helper class
• main.py : A function where you can plot the evaluated results as we

present in the paper

Functional Badge
In our paper, we executed generator_and_check_subsume_cs, and for each
input that terminated according to our criteria as explained in the paper, we
added it to the data-set we examined. Due to the random generation of Broad-
cast Protocols (BPs), it is possible that running the tool independently may not
reproduce the exact set of BPs. However, this variability is acceptable, as our
aim is to encourage other fields to utilize this tool for their own purposes and
explore new applications.

We have included the experiment-generated data under the Results folder in
results.csv.

Note: Generating this data required several days of compute time across mul-
tiple compute nodes using a cluster. The resulting files are substantial in size,
and regenrate these files will demand significant computing resources.

See Steps to Replicate the Experimental Results for instructions.

Steps to Replicate the Experimental Results
We ran all experiments on a cluster with Intel Xeon E5-2620 v4 CPUs. We
allocated one CPU core and 30GB of RAM. For our experiments we randomly
generated 4149 BPs with a number of states in [2, 20], number of actions in [0, 8].
For each of these BPs we generated a random sample with a random number
of words, 𝐹𝑤, in [5, 100]; with a bound of M𝑙 = 20 on the length of the words,
and a bound of 20 for the number of processes. The ratio of positive examples
in the sample ranges between 0 and 1.

5

Note: Due to the fact the running the whole data-set should take
several days, we present both the way to run the whole expirement
and a subset of it that will take up to two hours

To reproduce our experimental results, follow these steps:

1. Start the Docker Container

• Install Docker by following the instructions at: //docs.docker.com/get-
docker/.

• Download the artifact Learning-Broadcast-Protocols-with-LeoParDS-artifact.zip
from zenodo

• Unzip the artifact:

Note: This will extract the artifact directory structure and files into
the current working directory, including the compressed Docker image
image.tar.

unzip Learning-Broadcast-Protocols-with-LeoParDS-artifact.zip

1. Build the Docker image:

docker build -t bpcode:bpcode .

Or import the image file:

docker load -i image.tar

This will import the docker image named <image>. This might take a few
minutes.

2. Run the Docker container:

If you would like to copy the produced results / outputs to your local machine
(for example to take a look at the produced figures), the easiest way is to mount
your local directory in the docker container.

To do so, run the container in the directory you want the files to be stored with
the additional -v flag:

docker run -d -it --name bpcodecontainer -v .:/storage bpcode:bpcode

This will make you current directory accessible in the container under the path
/storage.

Otherwise, run:

docker run -d -it --name bpcodecontainer bpcode:bpcode

3. Access the Docker container:

docker exec -it bpcodecontainer /bin/bash

6

https://zenodo.org/records/11080250

Note: This will start a shell in the Docker container where the following steps
should be executed.

2. Execute Evaluation Runs

For a representative subset, use input paramter 1:

python ReplicateExperimentalResults.py 1

Running the representative subset should take about 2 hours

For the entire data-set, use input parameter 0:

python ReplicateExperimentalResults.py 0

Note: Running the whole data-set will require significant computing time (several
days)

If you want to copy to the produced output file (and you started the container
with your local directory mounted, see step 2 Run the Docker container), simply
execute:

cp results_infer.csv /storage

3. Extract Numbers presented in the Paper

To extract the data (Table as well as the figures) presented in the paper:

python main.py

The table data will be displayed on the output screen, and the figures will be
saved as plot 6(a).png, plot 6(b).png, plot 7(a).png, and plot 7(b).png
within the project directory.

If you want to copy to the produced output files to your local machine (and
you started the container with your local directory mounted, see step 2 Run the
Docker container), simply execute:

cp *.png /storage

4. Cleanup

1. Stop the existing Docker container:

docker stop bpcodecontainer

2. Remove the Docker container:

docker rm bpcodecontainer

3. Remove the Docker image:

docker rmi bpcode:bpcode

7

Reusable Badge
In the following subsections, we provide detailed instructions on how to use
different components of the code. Note that the code is thoroughly documented,
so any helper function not described here can be understood by examining the
code. However, to cater to those who may not be familiar with coding, especially
in Python, we explain the main components with running examples, as also
discussed in the paper.

Building the Docker Image
To build the Docker image, follow these steps:

1. Install Docker by following the instructions at: https://docs.docker.com/get-
docker/.

2. The artifact contains all the necessary files to build the Docker image from
scratch. Execute the following commands:

1. Build the Docker image:
docker build -t bpcode:bpcode .

2. Save the Docker image to a tar file:
docker save -o image.tar bpcode

Now you have created a Docker image!

• To use this Docker image, refer to the “Setup Steps” section. Specifically,
in step 1 of the “Setup Steps” you can load the Docker image using: docker
load -i image.tar

Learning-Broadcast-Protocols-with-LeoParDS
This repository contains the artifacts for the paper “Learning Broadcast Pro-
tocols with LeoParDS’’. It contains all the necesery code and inforamtion for
using the code as showen in the paper and for new reserach and experements to
be done.

More details on the algorithm and Broadcast Protocols (BPs) can be found in
the paper, the rest of this file will explain the input and output file format as
well as how to use our program.

BPGen - BP_generator:
class BP_generator:

def __init__(self, min_number_of_states, min_number_of_act, max_number_of_states=None,
max_number_of_act=None, print_info=False):

...
self.number_of_act = na #as defined in the function
self.number_of_states = ns #as defined in the function

8

self.bp: BP_class = self.generate()

def generate(self) -> BP_class:
...
returnes a BP object that has @number_of_states states and each state
has a unique action so it wouldn't be hidden and another @number_of_act
randomly distributed actions

Creating a random BP with number of states between 2 and 3 and number of
actions between 1 and 2

bp = BP_generator(2, 1, 3, 2)

So a possible randomly generated BP is:

THE BP:
initial state: 0
actions: {0: {'a': 0, 'c': 1}, 1: {'b': 0}}
receivers: {0: {'a': (0, False), 'b': (1, False), 'c': (1, False)},

1: {'a': (1, False), 'b': (1, False), 'c': (0, False)}}

This is the result of print(bp.bp)

An illustration of this BP is as follows:

Figure 3: image

9

CSGen
CSGen - run_cs_to_a_limit

Under BP_Learn.py in class BP_run, you can find the following function:

def run_cs_to_a_limit(self, cutoff_limit, sample_limit, minimal=False):

The BP that we create this CS for is 𝑠𝑒𝑙𝑓.𝑏𝑝, cutoff_limit is M𝑝 from the paper,
represnting a bound on the number of processes. This is, in order to ensure
termination also in case the given BP does not have a cutoff. We also have
as input a sample_limit, in case you run on a computer with low memory
resources, you can bound the size of the sample so if it is too high it will stop.
This function is more direct as there are less inputs to tune, if you do want to
make it more personal for diffrent uses see the fucntion below.

CSGen - run_subsume_cs

Under BP_Learn.py in class BP_run, you can find the following function:

def run_subsume_cs(self, words_to_add, are_words_given, cutoff_lim=None,
time_lim=None, word_lim=None, minimal=False):

"""
a run that add amount of words_to_add to the cs and run it
:param minimal: A parameter that is fed to the learning procedure
:param word_lim: Limitation on amount of word to be generated,

in order to help with limited resources
:param time_lim: If given, this is time limitation in sec
:param cutoff_lim: If given, then cutoff limitation for running
:param are_words_given: A boolean value representing whether we

create a sample (not necessarily a CS)
for words_to_add amount or is the words are already given to us
:param words_to_add: Number of words if are_words_given==False

or the set of words if are_words_given==True
"""
...

As in the previous run function, the BP that we create this CS for is 𝑠𝑒𝑙𝑓.𝑏𝑝,
cutoff_lim is M𝑝 from the paper, represnting a bound on the number of
processes. This run function create a CS for the BP by the algorithm that we
created and then potantialy padding it with additional words (words_to_add),
either create it by itself or randomly generate new words (depends on
are_words_given).

10

RSGen
RSGen - no positive ratio

RWGen - run_no_cs Under BP_run.py in class BP_run, you can find the
following function:

def run_no_cs(self, words_to_add, words_are_given, maximal_procs=20,
maximal_length=20, minimal=False):

"""
if words_are_given==True then words_to_add are sample dictionary.
otherwise, words_to_add is an int of number of words to add.
a run that add amount of words_to_add to the cs and run it
:param minimal: whether we want to invoke BPInfMin or not
:param words_to_add: int if words_are_given=False, otherwise a dictionary of sample
:param words_are_given: boolean value
:param maximal_procs: maximal allowed processes for word in the sample
:param maximal_length: maximal allowed length of word in the sample
...
"""
char_set = {'positive': {}, 'negative': {}}
start_time = time.perf_counter()
if not words_are_given:

char_set, words_added = self.create_sample(words_to_add, char_set,
maximal_procs, maximal_length)

else:
char_set = words_to_add
words_added = words_to_add

end_time = time.perf_counter()
learn_bp = LearnerBp(char_set, self.bp, end_time - start_time, words_added)
...
learn_bp.learn(minimal)
...

Where the function create_sample expand the given sample (in our case,
char_set which is empty) in words_to_add amount where maximal_procs
is the maximal number of processes to be considered in the sample resp.
maximal_length for the length of the sample.

learn_bp is a LearnerBp object that the learning procedure will happen upon.
sending it to learn_bp.learn() starts the learning procedure.

Defaultively, .learn() is for BPInf, if we want BPInfMin we will call it with
.learn(minimal=True). This sample (that is not necessarily a CS), is for
𝑠𝑒𝑙𝑓.𝑏𝑝. words_to_add represents 𝐹𝑤 from the paper, maximal_procs repre-
sents M𝑝 and maximal_length represnts M𝑙. Where 20 is the defaultive value
for both of them.

11

RSGen - with positive ratio

RPWGen - run_no_cs_pos_perc Under BP_run.py in class BP_run, you
can find the following function:

def run_no_cs_pos_perc(self, words_to_add, pos_perc, length_limit=20,
procs_limit=20, minimal=False):

"""
:param minimal: whether we want to invoke BPInfMin or not
:param words_to_add: int amount of words to add
:param pos_perc: positive % of total words
:param length_limit: longest word limit
:param procs_limit: maximal procs limit
"""
char_set = {'positive': {}, 'negative': {}}
start_time = time.perf_counter()
char_set, words_added = self.create_sample_pos_perc(words_to_add, char_set,

pos_perc, length_limit,
procs_limit)

end_time = time.perf_counter()
learn_bp = LearnerBp(char_set, self.bp, end_time - start_time, words_added)
...
learn_bp.learn(minimal)
...

Similar to the above, but with the pos_perc option. This sample (that is not
necessarily a CS), is for 𝑠𝑒𝑙𝑓.𝑏𝑝. words_to_add represents 𝐹𝑤 from the paper,
pos_perc represents 𝐹𝑟 from the paper, value between [0, 1], procs_limit rep-
resents M𝑝 and length_limit represnts M𝑙. Where 20 is the defaultive value
for both of them.

An Example:

Given the folloeing BP:

let’s call this BP 𝐵1, so for RSGen with this BP and parameters:

• 𝐹𝑤 = 5,

• M𝑙 = 5,

• M𝑝 = 3
• 𝐹𝑟 = 0.2

The output could be the sample 𝑆 = {(𝑎𝑎𝑏𝑎𝑏, 2, 𝐹), (𝑎𝑏𝑏𝑏, 2, 𝐹), (𝑏𝑎𝑎, 3, 𝑇), (𝑏𝑏𝑎, 2, 𝐹), (𝑏𝑎, 1, 𝐹)}.

12

Figure 4: image

BPInf and BPInfMin
For both of them we run the function learn that is under BP_Learn.py. The
boolean parameter minimal in the learn function determend whether we run
BPInf (minimal=False) or BPInfMin (minimal=True)

def learn(self, minimal=False):

Running examples:
More examples and explanation about the fucntions can be find in
the code

Example 1:
The results will be saved in the csv file : BP_results_cs_subsumed Note, since
this is random generation procedure, we cannot geratnee termination, therfore,
running this procedure may result in “print(f”The random generated BP has
either no cutoff or it is greater then {cutoff}“)”. Id it do converage then the
procedure will return an appropriate random generated BP and an Infered BP
from the sample

def run_a_random_bp_example(minimal=False):
if minimal:

df = pd.DataFrame(columns=min_column)
else:

df = pd.DataFrame(columns=non_min_column)

13

cutoff = 15
timer_c = 900
word_lim = 1500
bp = BP_generator(3, 1, max_number_of_act=2)
learner = BP_run(bp.bp)
bp_min_acts, bp_min_rec, bp_acts, bp_rec, solution = learner.run_subsume_cs(0, False,

cutoff, timer_c,
word_lim=word_lim,
minimal=minimal)

if solution['failed_converged']:
new_row = pd.DataFrame([solution], columns=min_column)
df = pd.concat([df if not df.empty else None, new_row], ignore_index=True)
df.to_csv(f'BP_results_cs_subsumed.csv', index=False)
print(f"The random generated BP has either no cutoff or it is greater then {cutoff}")

else:
bp_learned = BP_class(len(bp_acts), bp_acts, 0, bp_rec)
solution['right_output'] = equivalent_bp(bp.bp, bp_learned, solution['cutoff'])
print(f"Are the two BP's are equivalent?:", solution['right_output'])
if minimal:

bp_learned = BP_class(len(bp_min_acts), bp_min_acts, 0, bp_min_rec)
solution['minimal_right_output'] = equivalent_bp(bp.bp, bp_learned,

solution['cutoff'])
print(f"Are the two BP's are equivalent?: minimal:",

solution['minimal_right_output'])
new_row = pd.DataFrame([solution], columns=min_column)
df = pd.concat([df if not df.empty else None, new_row], ignore_index=True)
df.to_csv(f'BP_results_cs_subsumed.csv', index=False)

Where learner.run_subsume_cs(0, False, cutoff, timer_c) which is
equivalent to the CS development by the algorithm that was developed for
maximal cutoff and time_bounding of timer_c

A fucntion that do so is run_a_random_bp_example()

A posible output can be:

SAT
self known actions ['d', 'a', 'b', 'c']
self known states [0, 1, 2]
minimal False
this is the BP:
acts:{0: {'d': 1, 'a': 1}, 1: {'b': 0}, 2: {'c': 0}}
rec:{0: {'d': (1, True), 'a': (1, True), 'b': (1, True), 'c': (1, True)},

1: {'d': (0, True), 'a': (1, True), 'b': (0, True), 'c': (0, True)},
2: {'d': (0, True), 'a': (0, True), 'b': (1, True), 'c': (0, True)}}

SMT values constrains
Are the two BPs are equivalent?: (None, None, True)

14

As we expected, the minimal and the defaultive returned BPs are of the
same size (3), because for CS the algorithm guarantees it.

The csv file will look as follows: |failed_converged | timeout | amount_of_states_in_origin
| amount_of_states_in_output | origin_BP | output_BP | cutoff |
CS_development_time | CS_positive_size | CS_negative_size | words_added
| longest_word_in_CS | solve_SMT_time | right_output | |——— |——|——

—-|——-|——-|————–|————–|——-|——–|——-|——-|——-|——|——|
|FALSE|FALSE|3|3|“states: 3,actions: {0: {‘a’: 1, ‘d’: 1}, 1: {‘b’: 0}, 2: {‘c’:
0}},initial: 0,receivers: {0: {‘a’: 1, ‘b’: 2, ‘c’: 1, ‘d’: 1}, 1: {‘a’: 0, ‘b’: 0,
‘c’: 1, ‘d’: 0}, 2: {‘a’: 2, ‘b’: 2, ‘c’: 2, ‘d’: 0}}”|“states: 3, actions: {0: {‘d’:
1, ‘a’: 1}, 1: {‘b’: 0}, 2: {‘c’: 0}},initial: 0,receivers: {0: {‘d’: 1, ‘a’: 1,
‘b’: 1, ‘c’: 1}, 1: {‘d’: 0, ‘a’: 1, ‘b’: 0, ‘c’: 0}, 2: {‘d’: 0, ‘a’: 0, ‘b’: 1, ‘c’:
0}}”|2|0.000421|16|28|{‘positive’: {}, ‘negative’: {}}|5|0.0233275|(None, None,
True)|

Example 2:
We can also do so for a given BP, written according to our structure The fol-
lowing BP 𝐵1 is written as follows:

Figure 5: image

bp1 = BP_class(2, {0: {'a': 1}, 1: {'b': 0}}, 0, {0: {'a': 1,
'b': 0}, 1: {'a': 1, 'b': 0}})

I.e., it has 2 states, action 𝑎 is broadacsted from state 0 and landed in state 1,
and action 𝑏 is broadacsted from state 1 and land on state 0. And from both
states, the receiving transition 𝑎?? land on state 1 while the receiving transition
on action 𝑏, which is 𝑏?? land on state 0.

15

A fucntion that do so is run_a_given_bp_example(bp1) for a given bp

And creating a CS and inferring for it will be:

SAT
self known actions ['a', 'b']
self known states [0, 1]
minimal False
this is the BP:
acts:{0: {'a': 1}, 1: {'b': 0}}
rec:{0: {'a': (1, True), 'b': (0, True)}, 1: {'a': (0, True), 'b': (0, True)}}
SMT values constrains
Are the two BPs are equivalent?: (None, None, True)

About Broadcast Protocols:
Broadcast protocols (in short BPs) are a powerful concurrent computational
model, allowing the synchronous communication of the sender of an action with
an arbitrary number of receivers.

The basic model assumes that communication and processes are reliable, i.e., it
does not consider communication failures or faulty processes. BPs have mainly
been studied in the context of parameterized verification, i.e., proving functional
correctness according to a formal specification, for all systems where an arbitrary
number of processes execute a given protocol.

The challenge in reasoning about parameterized systems such as BPs is that a
parameterized system concisely represents an infinite family of systems: for
each natural number 𝑛 it includes the system where 𝑛 indistinguishable processes
interact. The system is correct only if it satisfies the specification for any number
𝑛 of processes interacting.

Formal definition - BP

A broadcast protocol 𝐵 = (𝑆, 𝑠0, 𝐿,𝑅) consists of a finite set of states 𝑆 with
an initial state 𝑠0 ∈ 𝑆, a set of labels 𝐿 and a transition relation 𝑅 ⊆ 𝑆×𝐿×𝑆,
where 𝐿 = {𝑎!!, 𝑎?? ∣ 𝑎 ∈ 𝐴} for some set of actions 𝐴. A transition labeled
with 𝑎!! is a broadcast sending transition, and a transition labeled with 𝑎??
is a broadcast receiving transition, also called a response.

16

	ATVA’24 Artifact: Learning Broadcast Protocols with LeoParDS
	Table of Contents

	Quickstart
	Requirements
	Setup Steps
	Smoke Test Steps
	Cleanup

	Available Bagde
	Artifact Directory Structure

	Functional Badge
	Steps to Replicate the Experimental Results
	1. Start the Docker Container
	2. Execute Evaluation Runs
	3. Extract Numbers presented in the Paper
	4. Cleanup

	Reusable Badge
	Building the Docker Image

	Learning-Broadcast-Protocols-with-LeoParDS
	BPGen - BP_generator:
	CSGen
	CSGen - run_cs_to_a_limit
	CSGen - run_subsume_cs

	RSGen
	RSGen - no positive ratio
	RSGen - with positive ratio
	An Example:

	BPInf and BPInfMin

	Running examples:
	Example 1:
	Example 2:
	About Broadcast Protocols:
	Formal definition - BP

