
This article has been submitted to ISSCS 2023

Soil Roughness Estimation Using Fractal Analysis

on Digital Images of Soil Surface

Kamal Marandskiy1 and Mihai Ivanovici2

Electronics and Computers Department

Transilvania University of Bras,ov, Bras,ov, Romania

1kamal.marandskiy@unitbv.ro
2mihai.ivanovici@unitbv.ro

Abstract

Irregularities of soil are defined by the term soil surface roughness
and various factors affect it such as tillage operations, land manage-
ment, soil texture, etc. Soil roughness impacts water infiltration and
surface storage level, as well as wind and water erosion. We used two
classical methods for soil roughness estimation based on chain and
pinboard and tested their effectiveness in lab and in situ measure-
ments. However, we concluded that even though these two methods
are perfectly correlated when they are aligned on the same line over the
sample surface, in-field results showed the opposite. Thus, we propose
a new soil surface roughness measurement method based on fractal
analysis of digital images of the soil surface, acquired using a camera
obscura-based technique. We show that the 2D fractal analysis gives
more pertinent results compared to the other methods designed for 1D
measurements.

1 Introduction

Irregularities of soil are defined by the term soil surface roughness (SSR) and
it is caused by many factors such as tillage operations, land management, soil
texture, etc, and it affects infiltration, surface storage level, wind, and water
erosion [1], [2]. SSR is a broad term often referred to as soil microrelief that
can be divided into individual indices that describe different characteristics
of the soil. One of them and the focus of this study is random roughness
(RR) which is related to soil aggregate stability. The term was first used
by Burwell et al. (1963) [3] to describe the elevation variations at random
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points on the soil surface. In comparison, another index that is part of SSR
is oriented roughness which describes roughness caused by tillage tool marks
and wheel tracks [4].

Various methods have been proposed and used in the last few decades
to measure random roughness. They can be divided into two main cate-
gories: contact methods; sensor methods. Two contact methods are widely
adopted namely pinboard [5] and chain methods [6]. Sensor methods are
stereophotogrammetry [7], terrestrial laser scanning [8], and adaptive depth
detection by using Xtion Pro by Asus [9]. Thomsen et. al (2015) [10] ap-
plied all the mentioned methods to different management and compared the
results. Due to the fact that the soil surface is randomly rough, fractal anal-
ysis could be used to assess the soil roughness. In [11] some methods are
indicated to be using fractal parameters for the evaluation of soil roughness
complexity. Consequently, in this article, we make the hypothesis that the
fractal analysis is the most appropriate way to assess the soil roughness, due
to its application of 2D signals, as opposed to the classical methods (chain
and pinboard) focused on line (1D) measurements.

In 1983 Mandelbrot introduced fractal geometry to describe self-similar
sets that are referred to as fractals [12]. A measure for characterizing the
irregularity and the complexity of a fractal is called fractal dimension (FD)
and it indicates how much space is filled. The theoretical Hausdorff frac-
tal dimension is defined for continuous objects, thus not used in practice.
Various FD estimators exist, allowing the fractal analysis of digital images
exhibiting properties of self-similarity: the probability measure [13, 14], the
Minkowski–Bouligand dimension, also known as the box-counting dimen-
sion [15], the δ-parallel body method also known as covering-blanket ap-
proach, morphological covers or Minkowski sausage [16].

The FD is often used in analyzing structures such as textures that mani-
fest fractal properties in order to discriminate them [17], [18]. In this study,
we propose the fractal analysis-based method to estimate RR and compare
its performance with two classical methods: the chain and the pin-board
method. The methodology is described in Section II while image acquisition
and pre-processing are described in Section III. The experimental results are
presented in Section IV, along with a comparison. Finally, conclusions are
provided in Section V.
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2 Methodology

For the experiments, we used the chain method along with our own built
pinboard. For the fractal analysis (FA), we designed a camera obscura type
of wooden box with a fixed aperture for the camera lens, equipped with LED
strips for controlled illumination. Furthermore, we used various artificial
surfaces for in lab experiments validation. Afterward, we conducted in situ
measurements in an experimental field which is part of the National Institute
of Research and Development for Potato and Sugar Beet, Brasov, Romania.

2.1 Chain Method

We employed a bicycle chain in our experiments that have 1m length and
link pitch equal to 13 mm. RR is defined by a chain roughness (CR) [6]

and it is calculated as : Cr =
(
1− L2

L1

)
× 100, where, L1 - is the size of the

chain (1 m) and L2 - is the Euclidean distance measured by a ruler over the
sample surface (m).

2.2 Pinboard Method

Pinboard is a widely-adopted method to measure the RR index and rough-
ness is defined by [5] as the natural logarithm of the standard deviation
(SD) of multiple height measurements after eliminating the possible bias
(like slope and oriented roughness, or the 10% of upper and lower extreme
values). However, later Cremers et. al (1996) [19] proposed that SD of height
measurements after eliminating the slope effects is sufficient for the measure-
ments and we adopted this definition of RR. We developed a pinboard setup
and it is able to cover the frame with a 73cm width. The setup accommo-
dates a total of 53 aluminum pins with 33cm height per each, pins are placed
with a 10mm distance between them and a 3mm diameter. Canon 5D Mark
II was used for data acquisition. Figure 1 shows the pinboard setup.

2.3 Fractal Analysis

For the experiments we used the approach proposed in [20] adapted to work
on 2D (gray-scale image) and 1D signals. We applied the FA on 2D gray-
scale digital images, size of 256× 256 pixels, of soil surface acquired in situ,
as well as on the 1D average profile (AP), size of 1 × 256, computed for
each digital image. AP was computed as the average of the image lines:
AP = 1

N

∑N
i=1 li, where, li - is the ith line of each image. The reason
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Figure 1: Pinboard in-lab setup.

for computing the AP is based on the experiments presented in [11] where
they used a sliding pinboard and averaged the measurements for increased
correlation with the other methods.

2.4 Preliminary In-Lab Experiments

We performed several in-lab experiments to validate the tools. Figure 2
shows four artificial surfaces, regular (d), cvasi-regular (b), and irregular
(c), that emulate the soil surface of different roughness.

(a) Sample A (b) Sample B (c) Sample C (d) Sample D

Figure 2: Various artificial samples for in lab experiments.

Sample A is a flat surface that we used to compute the mean error of
the pinboard, which resulted to be approximately 1 mm. Table 1 displays
the SD and CR values for each artificial sample (two measurements were
performed for sample B due to its different longitudinal variations).
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Table 1: SD and CR of artificial surface samples

Name Sample A Sample B Sample C Sample D

CR 0 25.29 (16.52) 2.44 6.57
CR* 0 15.03 (13.91) 2.1 7.5
SD 0.094 1.01 (0.92) 0.35 0.27
SD* 0.094 0.52 (0.58) 0.29 0.31

* indicates that the measurements were performed exactly on the same
line on the surface. The SD and CR measurements correlate very well both
when performed on the same line or not, i.e. a correlation coefficient of 0.93
(0.91 respectively) for the in-lab measurements.

3 Image Acquisition and Pre-processing

Illumination conditions have a significant impact on in situ image acqui-
sition, because the position of the sun during the day may cast shadows
that vary as a function of the sun’s azimuth angle. Consequently, we devel-
oped an acquisition setup based on a black box that contains LED strips for
controlled illumination. Figure 3 shows a diagram of the acquisition setup.
We used a Canon 5D Mark II digital camera with 21 megapixels for image
acquisition. A total of 12 in situ measurements were taken.

Figure 3: Block diagram of the box setup for fractal analysis.
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The black box-based setup is able to completely eliminate sunlight from
the surface and LED strips provide constant illumination in order to capture
quasi identical-exposure images.

In order to apply FA on acquired images, we preprocessed the images as
follows: RGB color images were converted to grayscale to discard the color
information which is not relevant to the analysis; we cropped each image
creating 7 imagettes / square crops; each image was resized to 256 × 256.
Image brightness was equalized for all images. Considering that we captured
12 color images during in situ measurements, a total of 84 images were
obtained after the preprocessing. The purpose of making additional crops
is to improve the correlation analysis. Figure 4 shows 12 representative
preprocessed images for the 12 locations of in situ image acquisition.

Figure 4: Pre-processed imagettes of soil surfaces for fractal analysis that
were taken at 12 different locations.

4 Experimental Results

The in-situ usage of chain and pinboard is displayed in Figure 5 along with
the location of the measurements.
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(a) In situ usage of chain (b) In situ usage of pinboard

(c) In situ usage of pinboard (detail) (d) In situ measurement locations

Figure 5: In situ chain and pinboard measurements and locations.

We performed a regression analysis and computed the Pearson correla-
tion coefficient (CC) for the in situ measurements, for the reference methods
(chain and pinboard), and for the fractal analysis of image crops. Table 2
shows the CC values between the results of different measurement methods.
The in-lab measurements using the reference methods were highly corre-
lated, however, the results in Table 2 demonstrate that in practice, the two
reference methods show no correlation at all, as a consequence of the fact
that the chain and pinboard measurements were not performed exactly on
the same line on the ground. In addition, both methods are slightly intru-
sive. The correlation between reference methods and fractal analysis is at
its best 0.34.

In Figure 6 we show the data and the regression line for the pinboard
measurements and the FD of the 84 imagettes representing soil surface dig-
ital images (top) and the chain measurements and the FD of the AP of the
12 images corresponding to the 12 measurement locations (bottom).

The fractal analysis shows that the in situ measurements exhibit basi-
cally no significant correlation. The reasons may be multiple: the in-situ
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Table 2: Correlation analysis results

Regression CC

CR (chain) and SD (pinboard) in situ −0.09
CR (chain) and SD (imagettes) 0.15

SD (pinboard) and SD (imagettes) 0.21
SD (pinboard) and FD (imagettes) 0.34

CR (chain) and FD (AP) 0.33
SD (pinboard) and FD (AP) −0.33

classical methods do not correlate either; the performed analysis requires
more data for statistical significance; measuring the soil roughness on a line
or on a surface makes a significant difference. In Figure 7 we plot two lines
(lines 50th and 200th) from one soil surface digital images in Figure 4 and
compare them against the AP of the entire image. The two lines have dif-
ferent profiles though the image was captured from a small surface. In [11],
the authors used a sliding pinboard then they averaged the measurements,
but the AP in Figure 7 exhibits completely different variations (thus com-
plexity) compared to the image lines. Thus averaging the multiple pinboard
measurement on a certain area clearly leads to an underestimation of soil
characteristics (clearly indicated by both the SD and 1D FA presented in
Table 3).

Table 3: 1D FD and SD of selected lines and AP.

line 50 line 200 AP

SD 18.36 15.59 6.71
FD 1.63 1.8 1.02

5 Conclusions

RR in the context of soil surface roughness is an important parameter in the
estimation of soil characteristics. However, the classical (reference) methods
do not provide consistent results when used in situ. The correlation analysis
shows that in practice the two methods may not provide reliable indications
of the RR, as their outcome strongly depends on the position on the ground.
In addition, the reference methods are defined for 1D measurements on
a single line on the ground, unable to capture the surface variations in
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2D. Averaging multiple measurements over a certain area clearly leads to
underestimation of the soil roughness. We proposed a new approach to
predict RR based on fractal analysis of digital images representing the soil
surface acquired in situ in a controlled environment. We showed the results
of the correlation analysis between the performed measurements and, as
future work, we plan to demonstrate that the 2D FA performed on images
should be more relevant for soil roughness estimation compared to any type
of 1D measurements.
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Figure 6: Correlation analysis for pinboard and FD of 84 image crops of
soil surface digital images (CC=0.34) and chain and FD of 12 image APs
(CC=0.33).
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Figure 7: Comparison graph of selected 2 lines and AP of entire image.
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