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A DETAILED INFORMATION
A.1 Introduction of BLEU and CodeBLEU Metrics
A.1.1 BLEU. The BLEU (Bilingual Evaluation Understudy) [51] metric is a widely used method
for evaluating the quality of text which has been machine-translated from one language to another.
Developed to assess the accuracy of machine translation outputs, BLEU compares the machine-
produced translations to one or more human reference translations. It quanti�es translation quality
by calculating the precision of n-grams (sequences of n words) in the machine-generated text
relative to the reference texts, while also incorporating a penalty for overly brief translations. This
metric provides a score ranging from 0 to 1, where a score closer to 1 indicates a greater similarity
between the machine translation and the human reference, suggesting higher translation quality.
BLEU is praised for its simplicity and objectivity, making it a standard benchmark in the �eld of
natural language processing for comparing the performance of di�erent translation systems.

The overall BLEU score is calculated as:
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where ⌫% is the brevity penalty, # is the maximum n-gram length, and ?= is the precision of
n-grams. The brevity penalty is used to penalize overly short translations, and the precision of
n-grams is calculated as the ratio of the number of n-grams in the machine translation that appear
in the reference translations to the total number of n-grams in the machine translation. The BLEU
score is the geometric mean of the precision of n-grams, with the brevity penalty applied to the
score. The brevity penalty is calculated as:
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For each n-gram level (e.g., unigram, bigram, trigram, etc.), the precision is calculated as:
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where clip= is the number of n-grams that appear in the machine translation and the reference
translations, count= is the number of n-grams in the machine translation, and 2clip= and 2count=
are the corresponding counts. The BLEU score is the weighted geometric mean of the precision
of n-grams, with the weights being the inverse of the number of n-grams. The weights are used
to balance the contributions of di�erent n-gram levels to the overall score, with higher weights
assigned to longer n-grams. This is done to re�ect the fact that longer n-grams are more informative
and carry more meaning, and thus should be given more importance in the evaluation.

A.1.2 CodeBLEU. CodeBLEU [57] is an evaluation metric speci�cally designed for assessing
the quality of code generated by machine learning models in programming tasks. It extends the
principles of the BLEU metric, traditionally used in natural language processing for evaluating
machine translations, to the domain of source code generation. CodeBLEU takes into account
not only the syntactic accuracy by comparing n-grams between the generated code and the
reference code, but also incorporates semantic and structural aspects unique to programming
languages. This includes considering code abstract syntax trees (ASTs), data �ow, and logical
control structures to better capture the functional correctness of the generated code relative to the
reference implementations. By integrating these dimensions, CodeBLEU aims to provide a more
comprehensive and meaningful assessment of code generation models, re�ecting both the stylistic
and functional �delity of the produced source code. This metric has become increasingly important
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as the �eld of code generation and software engineering assisted by arti�cial intelligence continues
to evolve. CodeBLEU can be de�ned as the weighted combination of four parts:

CodeBLEU = U · BLEU + V · BLEUweight + W ·Matchast + X ·Matchdf . (15)

where BLEU is calculated by standard BLEU [51], BLEUweight is the weighted n-gram match,
obtained by comparing the hypothesis code and the reference code toekns with di�erent weights,
Matchast is the syntactic AST match, exploring the syntactic information of the code, and Matchdf
is the semantic data �ow match, capturing the semantic information of the code. The weights U , V ,
W and X are used to balance the contributions of these four parts.

A.2 Details of Datasets and Tasks
In our experiments, we consider the following �ve widely-used tasks, (1) defect detection, (2) clone
detection, (3) authorship attribution, (4) code translation as well as (5) code summarization.

• Defect detection: Given a source code, this task is to identify whether it contains defects that
may be used to attack software systems, such as resource leaks, use-after-free vulnerabilities
and DoS attack. In our experiments, we use the dataset provided by Zhou et al.3 [87]. It
consists of 27, 318 functions collected from two large C-language open-source projects that
are popular among developers and diversi�ed in functionality, i.e., FFmpeg4 and Qemu5. The
defect detection task is treated as binary classi�cation. The positive label indicates that the
current project has defects while the negative one represents the opposite case.

• Clone detection: Given two code snippets as input, clone detection task aims to check whether
they are equivalent in terms of operational semantics. This paper considers the widely
used clone detection benchmark BigCloneBench [63] in our experiment. It consists over
6, 000, 000 true clone pairs and 260, 000 false clone pairs from 10 di�erent functionalities.
In BigCloneBench, each code fragment is a Java method. Following the settings of Zhou et
al. [72], we discard those unlabeled data while we use 901, 028 code fragments for training
and the other 415, 416 ones for validation and testing purposes.

• Authorship attribution: The purpose of this task is to identify the author of a given code
snippet. In this paper, we use the Python dataset provided by Alsulami et al. [3]. It is collected
from the Google Code Jam1 (GCJ)6, an annual competition held by Google since 2008. This
dataset consists of solutions to 10 problems implemented by 70 authors.

• Code translation: This task aims to migrate legacy software from one programming language
in a platform to another. The training data for code translation is the code pairs with equivalent
functionality in two programming languages. In this paper, we use the dataset provided by
Lu et al. [41]. It is collected from 4 open-source projects including Lucene7, POI8, JGit9 and
Antlr10. These projects are originally developed in Java and subsequently translated into C#.
This dataset consists of 11, 800 pairs of functions or methods, from which 500 pairs have been
randomly selected for validation purposes and the other 1, 000 pairs are used for testing.

• Code summarization: The objective of code summarization is to generate a natural language
comment for a given code snippet. In this paper, we use the CodeSearchNet dataset [31] that

3https://sites.google.com/view/devign
4https://github.com/FFmpeg/FFmpeg
5https://github.com/qemu/qemu
6https://codingcompetitions.withgoogle.com/codejam
7https://lucene.apache.org/
8https://poi.apache.org/
9https://eclipse.dev/jgit/
10https://github.com/antlr/
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consists of six programming languages, including Python, Java, JavaScript, PHP, Ruby, and
Go. The data are collected from publicly available open-source non-fork GitHub repositories,
with each documentation representing in the �rst paragraph of the code. To enhance its
overall quality, we employ a �ltering process according to the guidelines outlined in [41].
The statistics about the �ltered CodeSearchNet dataset is listed in Table 3.

Table 3. Data statistics about the filtered CodeSearchNet dataset.

Language Training Validation Testing
GO 167,288 7,325 8,122
Java 164,923 5,183 10,955
JavaScript 58,025 3,885 3,291
PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,261

A.3 Details of Evaluation Metrics
To quantitatively evaluate the performance di�erent methods, we consider the following four
metrics in our empirical study.

• Attack success rate (ASR): the percentage of the number of successful adversarial attacks ex-
amples (denoted as #BD22 ) w.r.t. the total number of examples generated by the corresponding
algorithm (denoted as #C>C0; ):

�(' =
#succ

#total
⇥ 100%. (16)

More speci�cally, for classi�cation tasks, adversarial examples that lead to inconsistencies
between the victim model’s predictions and the original classi�cation results are considered
successful. For generation tasks, following the approach in NLP of setting a threshold [17, 60],
we consider adversarial examples successful when the BLEU [51] or CodeBLEU [57] scores
are below 50% of the original values. The higher the ASR is, the better performance of the
algorithm achieves.

• Average adversarial loss (AAL): the average value of adversarial loss.
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• Average semantic similarity (ASS): the average value of semantic similarity.

�(( =
1
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8=1

52 (x0). (18)

• Average modi�cation rate (AMR): the average ratio of the perturbation tokens w.r.t. the total
number of tokens:

�"' =
1

#succ

#succ’
8=1

53 (x0). (19)
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• Average query count (AQC): the average number of queries (denoted as #querry) w.r.t. the
victim model to �nd a successful adversarial example:

�&⇠ =
1

#succ

#succ’
8=1

#querry . (20)

It is important to note that the primary goal of MOAA is to generate a diversity trade-o�AEs, in
contrast to existing methods which only focus on �nding an AE. To ensure a fair comparison
with AQC, we evaluate the e�ciency of algorithms based on the number of query required
to generate the �rst AE.

Recap from Section 2.2 that we have de�ned our objectives as to minimize AL, SS and MR.
Consequently, we would expect algorithms that yield AAL, ASS, AMR and AQC as low as possible.
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Fig. 15. Sca�er plot of matrices (SPLOM) visualizes the correlation of AL, SS and MR values for CodeBERT,
GraphCodeBERT and CodeT5 models on defect detection task.

A.4 Introduction of peer algorithms
In this section, we introduce the mechanism of each algorithm we adopted as peer algorithms.
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• MHM: Zhang et al. [83] formalized the process of AE generation as a sampling problem. The
problem can be decomposed into an iterative process consisiting of three stages: 1) selection
of the identi�er to be renamed, 2) selection of substitutions and 3) acceptance or rejection
decision. To generate AEs for models of code, They proposed Metropolis-Hastings Modi�er
(MHM), a Metropolis-Hastings sampling-based [25, 46] identi�er renaming technique. This
method is a black-box attack that randomly selects replacements for local variables and
then strategically deciding whether to accept or reject these replacements. This decision is
informed by both predicted lables and the corresponding con�dence of the victim models,
enabling more e�ective AE generation. MHM employs a pre-de�ned extensive collection of
identi�er names, from which the replacements are selected.

• Greedy Attack: Yang et al. [78] used identi�er renaming as the AE generation technique
and explored how to produce AEs that are natural. They de�ned a metric to measure the
importance of identi�er names in a code snippet and started to substitue identi�ers with
the highest importance. Greedy Attack greedily selects the replacements (out of all natural
substitues), from which the generated AE makes the victtim model produce lower con�dence
on the ground truth label. If it fails to change the prediction results, Greedy Attack continues
to replace the next identi�er until all the identi�ers are considered or an AE is obtained.

• ALERT: Yang et al. [78] think that �nding appropriate substitutes to generate AEs is essentially
a combinatorial optimization problem, whose objective is to �nd the optimal combination
of identi�ers and corresponding substitues that minimizes the victim model’s con�dence
on the ground truth label. Thus, they design an attack based on genetic algorithms, called
ALERT to solve the problem that Greedy Attack may be stuck in a sub-optimal solution.
If the Greedy Attack fails to �nd a successful adversarial example, they apply ALERT to
search more comprehensively. ALERT �rst represents chromosomes as a list of identi�ers pairs
which means replacing the identi�er by the replacement, and then initialized the population.
Subsequently, it performs genetic operators to generate new solution, and keep solutions
with larger �tness values in the population. In the end, the algorithm returns the solution
with the highest �tness value.

B EXTENDED RESULTS
B.1 Relationship between objective functions
Fig. 15, Fig. 16, and Fig. 17 shows the scatter plot of matrices (SPLOM) visualizes the correla-
tion of AAL, ASS and AMR values for CodeBERT, GraphCodeBERT and CodeT5 models on defect
detection, clone detection and authorship attribution tasks, respectively. The correlation
between AL and SS is positive, while the correlation between AL andMR is negative. The correlation
between SS and MR is negative. The results indicate that the three objective functions are not
independent, and the relationship between them is complex. This validates the rationale of our
multi-objective optimization formulation.
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Fig. 16. Sca�er plot of matrices (SPLOM) visualizes the correlation of AL, SS and MR values for CodeBERT,
GraphCodeBERT and CodeT5 models on clone detection task.
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Fig. 17. Sca�er plot of matrices (SPLOM) visualizes the correlation of AL, SS and MR values for CodeBERT,
GraphCodeBERT and CodeT5 models on authorship attribution task.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.



101:32 Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li

B.2 Comparison Results
The Table 4 shows the comparison results of ASR, AAL, ASS AMR and AQC values obtained
by MOAA and the other three selected peer algorithms on defect detection, clone detection,
authorship attribution, code translation and code summarization tasks.

In addition to attack e�eiciency, MOAA is also competitive in maintaining the semantic similarity
and modi�cation rate of the generated AEs. Note that in Fig. 4, MOAA does not exhibit statistically
signi�cant di�erences in terms of ASS and AMR scores. This is because MOAA generates a set of AEs
with diverse trade-o�s between the three objectives. When calculating these metrics, we aggregate
the values across the entire population, and thus the reported ASS and AMR represent the centric
values of the whole population, which can be obscured by extreme AEs that solely focusing on
optimizing the adversarial loss (see Fig. 18 for an example).

Fig. 18 visualizes the distribution of generatedAEs by MOAA for two examples in defect detection
dataset in the objective space. The ‘N’ represents the mean values of the entire population. From the
right half of the �gure, we can observe the mean value of 53, i.e. MR, is in�uenced by the distribution
of the population, resulting in an increase. Furthermore, Fig. 19 demonstrates the results for AL, SS
and MR when selecting the minimum, median and mean values in the AE population genereated
by MOAA. The bar charts shows that the optimal values within the population generate by MOAA
signi�cantly surpass the baseline algorithms, indicating the superiority of our algorithm.
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Fig. 18. Visualization of the distribution of generated AEs by MOAA for two examples in defect detection
dataset in the objective space.
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Table 4. Comparison results of ASR, AAL, ASS AMR and AQC values obtained by MOAA and the other
three selected peer algorithms on defect detection, clone detection, authorship attribution, code
translation and code summarization tasks.

Task Model Metric MHM Greedy Attack ALERT MOAA Task Model Metric MHM Greedy Attack ALERT MOAA

De
fe

ct
De

te
ct

io
n

CodeBERT

ASR(%) 34.9634(1.1816)† 50.3288(2.2824)† 51.5962(2.0390) 52.6100(2.0977)

Co
de

Su
mm

ar
iz

at
io

n
(G
o)

CodeBERT

ASR(%) 73.3126(2.1967)† 80.9632(2.1015)† 86.4264(2.1147)† 94.3883(2.0976)
AAL 0.4048(0.0044)† 0.4008(0.0042)† 0.4158(0.0024)† 0.3460(0.0056) AAL 7.0589(0.6537)† 6.9282(0.4812)† 6.3648(0.4720)† 0.0914(0.0070)
ASS 1.1752(0.0717)‡ 1.0460(0.0447)‡ 1.0904(0.0324)‡ 1.7706(0.2364) ASS 1.9247(0.0164)† 2.0397(0.0748)† 2.1460(0.0317)† 1.8867(0.0264)

AMR(%) 11.0479(0.5489)† 8.8927(0.3491)‡ 9.7054(0.2470)‡ 10.2937(0.3540) AMR(%) 13.1255(0.8292)‡ 13.3919(0.7708) 13.3661(0.9694) 13.6364(1.3100)
AQC 1054.4211(44.2738)† 228.5147(3.7074)‡ 643.9245(16.9197) 647.5264(15.1203) AQC 1208.2164(13.3535)‡ 1329.3666(16.4602)‡ 1359.2694(17.0333)‡ 1708.4422(14.7381)

GraphCodeBERT

ASR(%) 52.2113(1.6509)† 66.3950(1.5099)† 70.4752(2.0003)† 92.6990(1.8308)

GraphCodeBERT

ASR(%) 60.4947(1.9984)† 66.2294(1.5590)† 74.2207(1.4916)† 91.2442(1.4846)
AAL 0.4371(0.0037)† 0.4260(0.0027)† 0.4241(0.0034)† 0.2150(0.0032) AAL 6.9529(0.0774)† 6.9803(0.0721)† 6.6467(0.0250)† 0.1689(0.0068)
ASS 1.1201(0.0352)‡ 0.9617(0.0305)‡ 1.0175(0.0265)‡ 1.2172(0.0287) ASS 1.3706(0.0031)† 1.3386(0.0073) 1.3195(0.0098) 1.3281(0.0024)

AMR(%) 9.9979(0.3142)† 8.3062(0.3161)† 8.8675(0.2732)† 7.8421(0.1591) AMR(%) 15.6252(0.9475)‡ 16.1356(1.2271) 15.8896(1.7858)‡ 16.3406(1.5793)
AQC 1545.6196(49.7182)† 213.1684(4.2550)† 600.6114(32.2701)† 144.5727(6.4235) AQC 1260.9188(7.6357)‡ 987.2148(6.6742)‡ 1327.1169(12.5701)‡ 1536.6321(12.7392)

CodeT5

ASR(%) 58.6701(1.1650)† 59.1292(1.8468)† 62.9700(1.9411)† 75.5396(1.8566)

CodeT5

ASR(%) 75.4062(2.5589)† 80.6288(2.2577)† 85.1743(2.3457)† 95.4993(2.2593)
AAL 0.4383(0.0034)† 0.4528(0.0038)† 0.4527(0.0033)† 0.3231(0.0141) AAL 7.1635(0.3958)† 6.9374(0.4176)† 6.9158(0.3109)† 0.0945(0.0027)
ASS 1.0152(0.0628)‡ 1.0376(0.0933)‡ 1.0502(0.0724)‡ 1.3728(0.0820) ASS 1.7395(0.0754) 1.7293(0.3826) 1.7989(0.3910)† 1.7382(0.0227)

AMR(%) 9.1522(1.0717)‡ 9.1843(1.1961) 9.2658(1.1559) 9.2280(0.5606) AMR(%) 13.6795(0.8142) 13.4374(1.0781)‡ 13.9038(1.0768) 13.7450(1.2203)
AQC 1201.2857(32.0083)† 269.4983(4.5513)† 468.4779(4.1553)† 111.0769(6.6249) AQC 1022.4953(10.5874) 684.7991(4.7953)‡ 1139.4655(9.4255) 909.0473(7.2948)

Cl
on

e
De

te
ct

io
n

CodeBERT

ASR(%) 9.4743(0.3979)† 24.8216(0.7862)† 28.9126(0.9873)‡ 27.4664(1.2258)

Co
de

Su
mm

ar
iz

at
io

n
(J

av
a)

CodeBERT

ASR(%) 71.9599(2.1537)† 78.8542(2.1126)† 83.2597(2.1489)† 91.1603(2.0348)
AAL 0.0137(0.0025)‡ 0.0118(0.00277)‡ 0.0140(0.0021)‡ 0.0608(0.0104) AAL 8.5247(1.1589)† 8.1258(0.9196)† 8.4839(0.9260)† 1.6432(0.0346)
ASS 1.0297(0.0614)‡ 1.4062(0.0527)‡ 1.5233(0.0358)‡ 3.2655(0.1381) ASS 1.0395(0.0610) 1.0382(0.0042) 1.0172(0.0046) 1.2173(0.0744)

AMR(%) 4.4311(0.2943)‡ 7.2608(0.2271)‡ 8.3348(0.2251)‡ 9.9231(0.2942) AMR(%) 10.6472(0.0906)† 10.1908(0.0808) 10.1842(0.0763) 9.7968(0.1862)
AQC 267.7727(0.5215)‡ 343.0625(6.5172)‡ 2157.2774(79.6103)† 887.0185(8.3498) AQC 479.5237(4.0225)‡ 756.1951(4.0936)‡ 889.3219(6.0982)‡ 1316.6049(11.8694)

GraphCodeBERT

ASR(%) 4.8072(0.3733)† 5.9498(0.4234)† 7.7729(0.6346)† 25.4834(0.7816)

GraphCodeBERT

ASR(%) 74.1837(1.9567)† 82.7395(2.3089)† 83.3326(2.4118)† 91.6697(2.2387)
AAL 0.0622(0.0199) 0.0706(0.0115) 0.0657(0.0088) 0.0837(0.0070) AAL 8.4296(0.6698)† 8.1521(0.9947)† 8.3189(0.7406)† 1.7016(0.4572)
ASS 2.5864(0.2611)‡ 2.0150(0.09729)‡ 2.1519(0.1083)‡ 3.5807(0.0723) ASS 1.0917(0.6462) 1.0856(0.8349) 1.0982(0.6871) 1.1728(0.7549)

AMR(%) 4.6996(0.4476)‡ 10.2701(0.4624) 11.4084(0.4162) 10.2541(0.0139) AMR(%) 10.1801(0.1246)† 9.9435(0.1538) 9.8547(0.1273) 9.3427(0.1486)
AQC 575.7493(6.2874)‡ 357.5935(3.6641)‡ 1127.6145(12.2368) 1464.4348(9.8952) AQC 1354.8251(0.6596) 657.1928(7.3942)‡ 743.8721(6.2546)‡ 1354.1853(8.4509)

CodeT5

ASR(%) 13.3097(1.9351)† 15.0468(1.8145)† 21.4845(1.8092) 20.6125(1.5927)

CodeT5

ASR(%) 70.8053(2.4352)† 82.5873(2.0992)† 82.5139(1.8864)† 90.5189(1.6097)
AAL 0.0463(0.0034) 0.0172(0.0042)‡ 0.0177(0.0018)‡ 0.03751(0.0032) AAL 8.4889(0.2460)† 8.3756(0.6413)† 8.3665(0.4718)† 1.6792(0.3255)
ASS 1.4551(0.07417)‡ 0.8734(0.0633)‡ 1.3787(0.0660)‡ 3.0523(0.0729) ASS 1.1293(0.0051) 1.1355(0.0042) 1.1298(0.0034) 1.1950(0.0072)

AMR(%) 6.8009(0.3439)‡ 5.8782(0.4149)‡ 8.5879(0.4739) 9.0597(0.2077) AMR(%) 10.0251(0.3275) 10.0554(0.4416) 10.0320(0.3695) 9.8162(0.3426)
AQC 224.6579(7.4395)‡ 609.6146(8.5868) 872.9426(9.2412)† 589.6741(5.8253) AQC 1105.2413(10.5993) 783.4504(8.2385)‡ 958.0157(9.2413) 1098.8810(15.0116)

Au
th

or
sh

ip
At

tr
ib

ut
io

n CodeBERT

ASR(%) 33.0841(1.5639)† 33.4579(3.9871)† 41.6822(0.5119)† 55.6514(1.5784)
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CodeBERT

ASR(%) 72.8792(1.4754)† 79.4468(1.8328)† 83.7764(1.8792)† 94.4724(2.0539)
AAL 0.1993(0.0091)† 0.1074(0.0105) 0.2186(0.0072)† 0.0958(0.0038) AAL 7.3475(0.0031)† 7.4288(0.0022)† 7.3414(0.0025)† 0.0945(0.0017)
ASS 2.5588(0.0523)† 1.4009(0.0253) 1.6340(0.0809) 1.3739(0.0455) ASS 1.0251(0.042) 1.0203(0.074) 1.0279(0.062) 1.0142(0.0351)

AMR(%) 13.0903(0.3598)† 7.1008(0.2668) 9.1250(0.3438)† 5.0087(0.0842) AMR(%) 10.0326(0.2601) 9.7083(0.3337) 9.6685(0.2719) 9.5337(0.1257)
AQC 1997.6822(22.7374)† 468.7500(5.8089) 2292.5208(15.7111)† 379.6458(2.8910) AQC 783.1970(8.0723)‡ 1131.9847(1.8096) 1228.1297(8.7176) 1022.6524(14.4693)

GraphCodeBERT

ASR(%) 25.9615(1.5203)† 30.5769(1.2537)† 34.0385(1.9939)† 73.5484(1.6307)

GraphCodeBERT

ASR(%) 66.0817(2.5152)† 78.3215(0.9378)† 79.1885(1.0357)† 88.7874(1.1068)
AAL 0.0152(0.0007)‡ 0.0579(0.0030) 0.0605(0.0043) 0.0464(0.0024) AAL 7.3072(0.0064)† 7.2462(0.0117)† 7.2539(0.0105)† 0.1814(0.0023)
ASS 1.9383(0.2116)† 2.0739(0.0851)† 2.2065(0.0775)† 1.2839(0.0442) ASS 1.4139(0.0893) 1.4130(0.0759) 1.4023(0.0647) 1.4078(0.0267)

AMR(%) 10.1498(1.0148)† 10.1945(0.5468)† 10.6832(0.2184)† 4.5019(0.0798) AMR(%) 10.1872(0.0324)‡ 10.1652(0.0274)‡ 10.0051(0.0256)‡ 11.4227(0.0423)
AQC 1011.0235(12.4738)† 669.5794(5.2947) 720.5902(5.7387) 502.8567(4.2580) AQC 970.4263(5.1902)† 751.3329(3.7841) 880.2802(7.3768) 701.4414(8.7519)

CodeT5

ASR(%) 60.0430(0.8487)† 77.1429(0.4318)† 77.3333(0.4259)† 93.4615(1.0533)

CodeT5

ASR(%) 72.4293(1.7211)† 79.3892(2.1395)† 81.4914(2.0268)† 93.0783(1.8478)
AAL 0.3542(0.0023)† 0.3252(0.0022)† 0.3250(0.0028)† 0.0456(0.0038) AAL 7.3166(0.0114)† 7.1265(0.0250)† 7.1176(0.0276)† 0.09416(0.0041)
ASS 1.5294(0.0072) 1.6612(0.0056) 1.6643(0.0068) 1.0619(0.0467) ASS 1.0376(0.0589) 1.0211(0.0674) 1.0236(0.0762) 1.0709(0.0341)

AMR(%) 7.7451(0.0569)† 8.5215(0.0492)† 8.5428(0.0476)† 4.0707(0.1280) AMR(%) 9.7834(0.0219)‡ 9.8112(0.0758)‡ 9.7931(0.1876)‡ 10.0085(0.0953)
AQC 948.2614(8.7978)† 360.0697(1.4218) 382.6635(1.7551) 410.7524(3.6198) AQC 818.6516(4.0134)† 178.4650(1.1522)‡ 289.5082(1.0374) 244.0604(0.9513)
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ASR(%) 19.4652(1.3840)† 24.3496(1.3817)† 27.6091(1.8849)† 37.2587(1.5966)
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CodeBERT

ASR(%) 26.5319(1.6192)† 41.9822(1.8452)† 42.3215(1.7456)† 50.3525(1.4172)
AAL 42.7687(1.7746)† 41.9823(2.1617)† 41.9604(2.6058)† 31.8919(2.0897) AAL 9.4605(0.0583)† 9.4158(0.1463)† 9.4669(0.1768)† 4.6512(0.0330)
ASS 1.4002(0.7874)‡ 1.7456(0.7682)‡ 1.7513(0.2381)‡ 2.4386(0.6145) ASS 1.9928(0.0645)† 2.0991(0.1163)† 2.0209(0.1306)† 1.7004(0.0162)

AMR(%) 9.3106(0.2972)‡ 9.1800(0.3815)‡ 9.1883(0.5519)‡ 12.6639(0.7013) AMR(%) 18.4112(0.4339) 18.0986(0.2963) 18.7691(0.1200) 17.4396(0.2149)
AQC 1433.7221(9.7696)† 684.8405(2.6475)‡ 898.7626(6.1487) 908.4528(5.0057) AQC 852.0959(4.9375) 711.8820(3.9474) 853.9002(8.4915) 770.0263(8.0428)

GraphCodeBERT

ASR(%) 19.5062(1.6495)† 24.8468(1.9070)† 28.0031(1.8538)† 32.6510(1.1514)

GraphCodeBERT

ASR(%) 30.1248(1.7048)† 41.6237(1.2823)† 45.0556(1.2634)† 61.5703(1.7124)
AAL 41.3063(2.5773)† 41.8398(2.1493)† 41.8472(2.0611)† 32.7849(1.4689) AAL 7.1494(0.6472)† 7.2328(0.6517)† 7.2936(0.6423)† 3.6214(0.7748)
ASS 1.6987(0.2562)‡ 1.8506(0.5873) 1.8874(0.5308) 2.4532(0.6886) ASS 1.2519(0.1254) 1.2833(0.0447) 1.2649(0.0896) 1.3251(0.0691)

AMR(%) 12.2491(1.0458) 12.3073(1.0978) 12.3223(1.4532) 12.5108(1.4730) AMR(%) 18.6924(0.4961)‡ 18.7747(0.9233)‡ 18.9937(0.7181)‡ 20.0072(0.5571)
AQC 964.2559(9.1950)‡ 1289.8176(15.5111) 1364.2602(8.2487) 1414.5173(13.7891) AQC 801.6217(9.9239)† 609.8933(8.3682) 969.5867(3.6068)† 629.7227(6.5213)

CodeT5

ASR(%) 20.5098(1.0747)† 26.8406(1.0908)† 28.5673(1.3533)† 36.7087(1.5843)

CodeT5

ASR(%) 36.9622(2.1724)† 49.8849(2.0637)† 57.3779(2.3206)† 65.1018(2.1651)
AAL 41.3249(1.2622)† 41.4436(1.4165)† 41.4580(1.0861)† 28.9674(1.0467) AAL 7.3179(0.5612)† 7.3456(0.4658)† 7.3067(0.7206)† 3.1588(0.8673)
ASS 1.6575(0.2732)‡ 1.6536(0.7332)‡ 1.7724(0.1845)‡ 2.4986(0.4058) ASS 1.3773(0.0699)‡ 1.5138(0.0572) 1.5071(0.0660) 1.6217(0.0877)

AMR(%) 12.3851(0.0874) 12.1058(0.0719) 12.1407(0.0942) 13.4673(0.1248) AMR(%) 17.0762(0.3304)‡ 17.2729(0.4249)‡ 17.4266(0.2022)‡ 19.6417(0.4120)
AQC 1115.8959(8.5798)† 364.8792(3.1183)‡ 785.9483(8.3591) 707.5491(8.5932) AQC 1141.6404(15.1902)† 792.7308(9.8947)† 1077.4974(11.4656)† 543.6317(4.2029)

Co
de

Tr
an

sl
at

io
n

(C
#!

Ja
va

)

CodeBERT

ASR(%) 28.3817(1.0964)† 33.0786(1.3050)† 33.6216(1.9560)† 42.0938(1.1529)
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CodeBERT

ASR(%) 60.3187(1.1769)† 67.2979(1.4735)† 72.9829(1.7450)† 89.3568(1.9701)
AAL 37.5315(1.0342)† 36.8309(1.2786)† 38.9662(1.4164)† 27.6437(1.2853) AAL 5.8629(0.0143)† 5.4959(0.0079)† 5.8479(0.0118)† 0.3032(0.0275)
ASS 1.8972(0.45552) 1.9275(0.1957) 1.9706(0.2002) 1.8633(0.2876) ASS 1.0693(0.2175) 1.0756(0.2583) 1.0763(0.2206) 1.1286(0.0753)

AMR(%) 8.1517(0.9473)‡ 8.6149(1.3091)‡ 8.7062(1.5883)‡ 13.6125(1.2368) AMR(%) 14.6887(0.0944) 15.6528(0.2067)† 15.7683(0.2237)† 13.4196(0.1064)
AQC 1118.3492(11.5706)† 235.6494(4.0349) 326.1112(4.5417) 250.3528(3.9131) AQC 998.2624(14.2460) 763.0913(6.6805)‡ 905.4322(9.8221) 960.6993(7.6981)

GraphCodeBERT

ASR(%) 29.6756(0.9634)† 34.8186(1.2498)† 35.9256(1.0662)† 43.9068(1.1027)

GraphCodeBERT

ASR(%) 65.7519(2.0489)† 72.7107(2.3153)† 76.5041(2.0043)† 91.5836(2.3359)
AAL 39.2513(0.3761)† 35.9514(0.7908)† 36.0817(0.1020)† 26.6884(0.8343) AAL 5.5424(0.5721)† 5.6221(0.6601)† 5.9094(0.6487)† 0.5714(0.0079)
ASS 1.5202(0.2586)‡ 1.7402(0.7869) 1.7519(0.5615)‡ 2.3617(0.3879)‡ ASS 1.2667(0.0947) 1.2516(0.0881) 1.2694(0.0754) 1.2657(0.0302)

AMR(%) 7.9475(0.2641)‡ 8.1708(0.8651)‡ 8.6395(0.4379)‡ 13.2705(0.6994) AMR(%) 15.2882(0.6079) 15.5355(0.4816) 15.6184(0.6568) 14.3566(0.9554)
AQC 1434.9513(16.9056)† 521.4703(5.9889) 665.5925(8.1927) 532.9388(6.9820) AQC 515.1050(12.8312) 302.4738(9.9101)‡ 322.4893(10.1972)‡ 683.7195(6.9023)

CodeT5

ASR(%) 32.1931(0.9267)† 36.4419(0.9254)† 38.2741(1.1782) 46.3932(0.9016)

CodeT5

ASR(%) 69.2103(2.3417)† 78.0914(2.0706)† 80.9588(2.4502)† 94.4562(2.3896)
AAL 38.6196(1.0257)† 36.4782(1.2261)† 36.4940(1.2745)† 26.7596(1.8524) AAL 5.9790(0.0048)† 5.9635(0.0085)† 5.9655(0.0057)† 0.5203(0.0083)
ASS 1.8047(0.3979) 1.9286(0.3356) 1.9347(0.7024) 1.7264(0.6530) ASS 1.2781(0.057) 1.2947(0.073) 1.2676(0.0896) 1.3233(0.0992)

AMR(%) 8.6995(0.3583)‡ 9.3126(0.5787)‡ 9.3171(0.1983)‡ 14.5387(0.7553) AMR(%) 13.8472(0.1820) 14.6355(0.7457) 14.9510(0.7319) 13.7727(0.08830)
AQC 828.7284(3.8754)† 401.1386(7.2451)‡ 587.8209(7.1875) 636.3316(6.8927) AQC 1119.9139(14.5362)‡ 1348.7448(10.3948) 1591.6591(3.7099) 1401.9790(5.7011)

† denotes the performance of MOAA is signi�cantly better than other peers according to theWilcoxon’s rank sum test at a 0.05 signi�cance
level;
‡ denotes the corresponding algorithm signi�cantly outperforms MOAA.
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Fig. 19. The AAL, ASS, and AMR metrics when selecting the minimum, median, and average values from the
population generated by MOAA for the defect detection task.
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B.3 Ablation Study of Importance Score and Identifier Name Prediction
B.3.1 Methods. To investigate the usefulness of importance score and identi�er name prediction,
we develop three variations:

• MOAA-v1: This variant considers a vanilla NSGA-II without importance score and identi�er
name prediction. Instead, MOAA-v1 use randomly select an identi�er name for mutation and
replaced by a token provided by ALERT.

• MOAA-v2: This variant is similar to MOAA-v1 except using the importance score the same as
MOAA to guide the mutation process.

• MOAA-v3: This variant is similar to MOAA except using random selection.
Note that the other parameter settings are kept the same as Section 5.2.
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Fig. 20. Bar charts of the a�ack success rate and average query count of MOAA-v1, MOAA-v2, MOAA-v3 and
MOAA on three victim models for the defect detection, clone detection and authorship attribution
tasks.

B.3.2 Results and Analysis. Fig. 20 exhibits the result of the ablation study. We observe that MOAA
consistently outperforms the other three variations in terms of ASR and AQC. This means that
both the importence score and identi�er name prediction are crucial for the success of MOAA.

B.4 Examples of Generated AEs
Table 5 presents examples of AEs generated by MHM, Greedy Attack, ALERTand MOAAfor CodeBERT
on the Defect Detection dataset. In the �rst example, only MOAAmanages to generate a successful
AE, despite MHM, Greedy Attackattempt to substutute all identi�ers in the original code. This shows
the superior e�eiciency of the search space utilized by MOAA. Regarding the second example, while
all attackers achieve success, MOAA distinguishes itself by opting to replace ‘mr’ with ‘memory_map’,
a choice informed by the function name ‘set_system_memory_map’. This strategic replacement
demonstrates MOAA’s ability to grasp the broader context implied by the code, as opposed to the
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other methods which rely solely on the super�cial information provided by the identi�er name
‘mr’, thus struggling to comprehend the code’s context.

Table 5. Examples of AEs generated by MHM, Greedy Attack, ALERT and MOAA for CodeBERT on Defect
Detection dataset.

Attacker Input Output Success

Original

int �_schro_queue_push_back(FFSchroQueue *queue, void *p_data)
{

FFSchroQueueElement *p_new = av_mallocz(sizeof(FFSchroQueueElement));
if (!p_new)

return -1;
p_new!data = p_data;
if (!queue!p_head)

queue!p_head = p_new;
else

queue!p_tail!next = p_new;
queue!p_tail = p_new;
++queue!size;
return 0;

}

1

MHM

queue!port;
p_data!pfdat;
p_new!p_fresh;
size!name

1 ⇥

Greedy Attack

queue!port;
size!address;
p_data!pfdat;
p_new!pockNEW

1 ⇥

ALERT N/A 1 ⇥

MOAA queue!p_list 0 X

Original

void set_system_memory_map(MemoryRegion *mr)
{

memory_region_transaction_begin();
address_space_memory.root = mr;
memory_region_transaction_commit();

}

1

MHM mr!dr 0 X
Greedy Attack mr!mm 0 X

ALERT mr!fr 0 X
MOAA mr!memory_map 0 X

B.5 Subjective Study
Fig. 21 shows the questionnaire used in the subjective study. We also evaluate the naturalness of the
AEs generated by each algorithm by conducting a user study. Following previous works [67, 78],
we invite 10 non-author participants who possess a Bachelor/Master degree in Computer Secience.
For this study, to accommodate the preferences of the participants, we select tasks of di�erent
programming languages for each of them. To alleviate recognition burden, we then �lter the dataset
to exclude code snippets longer than 200 tokens. To make comparison fair, we only select examples
that can be successfully attacked by all four algorithms. We randomly pick up 100 examples from
the remaining code snippets. For each of these examples, we take the AEs generated by each
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algorithm11. Therefore, we ask the participants to grade 400 hx, x0i pairs blindly in a 5-point rating
scale. They are instructed to focus on whether the replaced identi�ers are natural in the context of
the code snippet.
In this subjective study, we follow the grading criteria as follows:

• 5 for highly natura and contextually appropriate identi�er replacement;
• 4 for natural identi�er replacements with minor contextual discrepancies;
• 3 for correct but less natural identi�er replacements;
• 2 for awkward or contextually inappropriate identi�er replacements;
• 1 for incorrect, nonsensical, or misleading identi�er replacements.

Table 2 presents the population of AEs generated by MOAA when attacking CodeBERT model for
the Defect Detection dataset. The diversity observed in these exampls underscores a signi�cant
challenge for decision-makers, i.e. determining superiority among the AEs is not straightforward.
This highlights the critical role of diversity when generating AEs.

Received 2023-09-28; accepted 2024-04-16

11For MOAA we randomly select one AE from the generated population.
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Fig. 21. The questionnaire used in the subjective study.
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