Evolutionary Multi-objective Optimization for Contextual Adversarial Example Generation 101:25

A DETAILED INFORMATION
A.1 Introduction of BLEU and CodeBLEU Metrics

A.1.1 BLEU. The BLEU (Bilingual Evaluation Understudy) [51] metric is a widely used method
for evaluating the quality of text which has been machine-translated from one language to another.
Developed to assess the accuracy of machine translation outputs, BLEU compares the machine-
produced translations to one or more human reference translations. It quantifies translation quality
by calculating the precision of n-grams (sequences of n words) in the machine-generated text
relative to the reference texts, while also incorporating a penalty for overly brief translations. This
metric provides a score ranging from 0 to 1, where a score closer to 1 indicates a greater similarity
between the machine translation and the human reference, suggesting higher translation quality.
BLEU is praised for its simplicity and objectivity, making it a standard benchmark in the field of
natural language processing for comparing the performance of different translation systems.
The overall BLEU score is calculated as:

1
BLEU = BP - exp (; Nlogpn), (12)
where BP is the brevity penalty, N is the maximum n-gram length, and p, is the precision of
n-grams. The brevity penalty is used to penalize overly short translations, and the precision of
n-grams is calculated as the ratio of the number of n-grams in the machine translation that appear
in the reference translations to the total number of n-grams in the machine translation. The BLEU
score is the geometric mean of the precision of n-grams, with the brevity penalty applied to the
score. The brevity penalty is calculated as:

1 ifc>r,
BP = , (13)
exp(1-£%) ife<r,

For each n-gram level (e.g., unigram, bigram, trigram, etc.), the precision is calculated as:

Z clip,, cclipn

Pn = s (14)

Zcountn Ccount,,
where clip,, is the number of n-grams that appear in the machine translation and the reference
translations, count, is the number of n-grams in the machine translation, and cgjip, and ccount,,
are the corresponding counts. The BLEU score is the weighted geometric mean of the precision
of n-grams, with the weights being the inverse of the number of n-grams. The weights are used
to balance the contributions of different n-gram levels to the overall score, with higher weights
assigned to longer n-grams. This is done to reflect the fact that longer n-grams are more informative
and carry more meaning, and thus should be given more importance in the evaluation.

A.1.2 CodeBLEU. CodeBLEU [57] is an evaluation metric specifically designed for assessing
the quality of code generated by machine learning models in programming tasks. It extends the
principles of the BLEU metric, traditionally used in natural language processing for evaluating
machine translations, to the domain of source code generation. CodeBLEU takes into account
not only the syntactic accuracy by comparing n-grams between the generated code and the
reference code, but also incorporates semantic and structural aspects unique to programming
languages. This includes considering code abstract syntax trees (ASTs), data flow, and logical
control structures to better capture the functional correctness of the generated code relative to the
reference implementations. By integrating these dimensions, CodeBLEU aims to provide a more
comprehensive and meaningful assessment of code generation models, reflecting both the stylistic
and functional fidelity of the produced source code. This metric has become increasingly important

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

101:26 Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li

as the field of code generation and software engineering assisted by artificial intelligence continues
to evolve. CodeBLEU can be defined as the weighted combination of four parts:

CodeBLEU = a - BLEU + 8 - BLEUeight + ¥ - Match,g + 8 - Matchyy. (15)

where BLEU is calculated by standard BLEU [51], BLEUy.igh: is the weighted n-gram match,
obtained by comparing the hypothesis code and the reference code toekns with different weights,
Match,g; is the syntactic AST match, exploring the syntactic information of the code, and Matchg¢
is the semantic data flow match, capturing the semantic information of the code. The weights «, f3,
y and § are used to balance the contributions of these four parts.

A.2 Details of Datasets and Tasks

In our experiments, we consider the following five widely-used tasks, (1) defect detection, (2) clone
detection, (3) authorship attribution, (4) code translation as well as (5) code summarization.

o Defect detection: Given a source code, this task is to identify whether it contains defects that
may be used to attack software systems, such as resource leaks, use-after-free vulnerabilities
and DoS attack. In our experiments, we use the dataset provided by Zhou et al® [87]. It
consists of 27,318 functions collected from two large C-language open-source projects that
are popular among developers and diversified in functionality, i.e., FFmpeg* and Qemu®. The
defect detection task is treated as binary classification. The positive label indicates that the
current project has defects while the negative one represents the opposite case.

e Clone detection: Given two code snippets as input, clone detection task aims to check whether
they are equivalent in terms of operational semantics. This paper considers the widely
used clone detection benchmark BigCloneBench [63] in our experiment. It consists over
6,000, 000 true clone pairs and 260, 000 false clone pairs from 10 different functionalities.
In BigCloneBench, each code fragment is a Java method. Following the settings of Zhou et
al. [72], we discard those unlabeled data while we use 901, 028 code fragments for training
and the other 415, 416 ones for validation and testing purposes.

o Authorship attribution: The purpose of this task is to identify the author of a given code

snippet. In this paper, we use the Python dataset provided by Alsulami et al. [3]. It is collected
from the Google Code Jam1 (GCJ)®, an annual competition held by Google since 2008. This
dataset consists of solutions to 10 problems implemented by 70 authors.

e Code translation: This task aims to migrate legacy software from one programming language
in a platform to another. The training data for code translation is the code pairs with equivalent
functionality in two programming languages. In this paper, we use the dataset provided by
Lu et al. [41]. It is collected from 4 open-source projects including Lucene’, POI®, JGit® and
Ant1r!® These projects are originally developed in Java and subsequently translated into C#.
This dataset consists of 11, 800 pairs of functions or methods, from which 500 pairs have been
randomly selected for validation purposes and the other 1, 000 pairs are used for testing.

e Code summarization: The objective of code summarization is to generate a natural language
comment for a given code snippet. In this paper, we use the CodeSearchNet dataset [31] that

3https://sites.google.com/view/devign
4https://github.com/FFmpeg/FFmpeg
Shttps://github.com/qemu/qemu
®https://codingcompetitions.withgoogle.com/codejam
"https://lucene.apache.org/

8https://poi.apache.org/

“https://eclipse.dev/jgit/

Ohttps://github.com/antlr/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

https://sites.google.com/view/devign
https://github.com/FFmpeg/FFmpeg
https://github.com/qemu/qemu
https://codingcompetitions.withgoogle.com/codejam
https://lucene.apache.org/
https://poi.apache.org/
https://eclipse.dev/jgit/
https://github.com/antlr/

Evolutionary Multi-objective Optimization for Contextual Adversarial Example Generation 101:27

consists of six programming languages, including Python, Java, JavaScript, PHP, Ruby, and
Go. The data are collected from publicly available open-source non-fork GitHub repositories,
with each documentation representing in the first paragraph of the code. To enhance its
overall quality, we employ a filtering process according to the guidelines outlined in [41].
The statistics about the filtered CodeSearchNet dataset is listed in Table 3.

Table 3. Data statistics about the filtered CodeSearchNet dataset.

Language Training Validation Testing

GO 167,288 7,325 8,122
Java 164,923 5,183 10,955
JavaScript 58,025 3,885 3,291
PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,261

A.3 Details of Evaluation Metrics
To quantitatively evaluate the performance different methods, we consider the following four
metrics in our empirical study.
e Attack success rate (ASR): the percentage of the number of successful adversarial attacks ex-
amples (denoted as Niyc.) w.r.t. the total number of examples generated by the corresponding
algorithm (denoted as Nyozq):

succ

N,
ASR = —— X 100%. (16)
total
More specifically, for classification tasks, adversarial examples that lead to inconsistencies
between the victim model’s predictions and the original classification results are considered
successful. For generation tasks, following the approach in NLP of setting a threshold [17, 60],
we consider adversarial examples successful when the BLEU [51] or CodeBLEU [57] scores
are below 50% of the original values. The higher the ASR is, the better performance of the
algorithm achieves.
o Average adversarial loss (AAL): the average value of adversarial loss.

Nisuce

P (17)

i=1

1

AAL =
NSUCC

o Average semantic similarity (ASS): the average value of semantic similarity.

Nisuce

D B (18)

i=1

ASS =

NSUCC

Average modification rate (AMR): the average ratio of the perturbation tokens w.r.t. the total
number of tokens:

Nisuce

D A, (19)

i=1

1
NSuCC

AMR =

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

101:28 Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li

e Average query count (AQC): the average number of queries (denoted as Nyyerry) W.r.t. the
victim model to find a successful adversarial example:

Niuce

Nquerry- (20)
i=1

AQC =

Nsucc

It is important to note that the primary goal of MOAA is to generate a diversity trade-off AEs, in
contrast to existing methods which only focus on finding an AE. To ensure a fair comparison
with AQC, we evaluate the efficiency of algorithms based on the number of query required
to generate the first AE.

Recap from Section 2.2 that we have defined our objectives as to minimize AL, SS and MR.
Consequently, we would expect algorithms that yield AAL, ASS, AMR and AQC as low as possible.

= Corr: -0.3812 Corr: -0.5323 b= Corr: -0.4589 Corr: -0.7689
20 10
Corr: 0.5803 R 5r Corr: 0.5802
0
0.2
=
=010
0 | | 0 | LT |
0.5 1.00 10 200 01 0.2 02 04 06 08 0 5 00 01 02
AL ss MR AL ss MR
(a) CodeBERT (b) GraphCodeBERT
b= Corr: -0.3480 Corr: -0.6649

Corr: 0.6219
b fb‘/
02 04 06 080 10 200 0.1 0.2
AL SS MR

(c) CodeT5

Fig. 15. Scatter plot of matrices (SPLOM) visualizes the correlation of AL, SS and MR values for CodeBERT,
GraphCodeBERT and CodeT5 models on defect detection task.

A.4 Introduction of peer algorithms

In this section, we introduce the mechanism of each algorithm we adopted as peer algorithms.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

Evolutionary Multi-objective Optimization for Contextual Adversarial Example Generation 101:29

MHM: Zhang et al. [83] formalized the process of AE generation as a sampling problem. The
problem can be decomposed into an iterative process consisiting of three stages: 1) selection
of the identifier to be renamed, 2) selection of substitutions and 3) acceptance or rejection
decision. To generate AEs for models of code, They proposed Metropolis-Hastings Modifier
(MHM), a Metropolis-Hastings sampling-based [25, 46] identifier renaming technique. This
method is a black-box attack that randomly selects replacements for local variables and
then strategically deciding whether to accept or reject these replacements. This decision is
informed by both predicted lables and the corresponding confidence of the victim models,
enabling more effective AE generation. MHM employs a pre-defined extensive collection of
identifier names, from which the replacements are selected.

Greedy Attack: Yang et al [78] used identifier renaming as the AE generation technique
and explored how to produce AEs that are natural. They defined a metric to measure the
importance of identifier names in a code snippet and started to substitue identifiers with
the highest importance. Greedy Attack greedily selects the replacements (out of all natural
substitues), from which the generated AE makes the victtim model produce lower confidence
on the ground truth label. If it fails to change the prediction results, Greedy Attack continues
to replace the next identifier until all the identifiers are considered or an AE is obtained.
ALERT: Yang et al. [78] think that finding appropriate substitutes to generate AEs is essentially
a combinatorial optimization problem, whose objective is to find the optimal combination
of identifiers and corresponding substitues that minimizes the victim model’s confidence
on the ground truth label. Thus, they design an attack based on genetic algorithms, called
ALERT to solve the problem that Greedy Attack may be stuck in a sub-optimal solution.
If the Greedy Attack fails to find a successful adversarial example, they apply ALERT to
search more comprehensively. ALERT first represents chromosomes as a list of identifiers pairs
which means replacing the identifier by the replacement, and then initialized the population.
Subsequently, it performs genetic operators to generate new solution, and keep solutions
with larger fitness values in the population. In the end, the algorithm returns the solution
with the highest fitness value.

B EXTENDED RESULTS

B.1

Relationship between objective functions

Fig. 15, Fig. 16, and Fig. 17 shows the scatter plot of matrices (SPLOM) visualizes the correla-
tion of AAL, ASS and AMR values for CodeBERT, GraphCodeBERT and CodeT5 models on defect
detection, clone detection and authorship attribution tasks, respectively. The correlation
between AL and SS is positive, while the correlation between AL and MR is negative. The correlation
between SS and MR is negative. The results indicate that the three objective functions are not
independent, and the relationship between them is complex. This validates the rationale of our
multi-objective optimization formulation.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

101:30 Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li

= J Corr: -0.3164 Corr: -0.4800 3 Corr: -0.1365 Corr: -0.1906
Al
20F 20F
Corr: 0.7110 2 1 A Corr: 0.7176
0.15
£0.10
=1
0.05
L 0 1
0 10 20 . 0.6 . 0 0 10 20 0 0.1
SS MR AL Ss MR
(a) CodeBERT (b) GraphCodeBERT
= Corr: -0.5474 Corr: -0.6190
20
2 10 Corr: 0.7363
0
0.15
©0.10
=1
0.05
‘
0 10 20 0 0.1
ss MR

(c) CodeT5

Fig. 16. Scatter plot of matrices (SPLOM) visualizes the correlation of AL, SS and MR values for CodeBERT,
GraphCodeBERT and CodeT5 models on clone detection task.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

Evolutionary Multi-objective Optimization for Contextual Adversarial Example Generation 101:31
i Corr: -0.1145 Corr: -0.2455 i Corr: -0.06528 Corr: -0.1615
Corr: 0.5373 Corr: 0.5160
0 0.1 0.2 6 0 0.1 02
MR MR
(a) CodeBERT (b) GraphCodeBERT
2 Corr: -0.0699 Corr: -0.2797
Corr: 0.6973
0 0.1 0.2
MR

(c) CodeT5

Fig. 17. Scatter plot of matrices (SPLOM) visualizes the correlation of AL, SS and MR values for CodeBERT,

GraphCodeBERT and CodeT5 models on authorship attribution task.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

101:32 Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li

B.2 Comparison Results

The Table 4 shows the comparison results of ASR, AAL, ASS AMR and AQC values obtained
by MOAA and the other three selected peer algorithms on defect detection, clone detection,
authorship attribution, code translation and code summarization tasks.

In addition to attack effeiciency, MOAA is also competitive in maintaining the semantic similarity
and modification rate of the generated AEs. Note that in Fig. 4, MOAA does not exhibit statistically
significant differences in terms of ASS and AMR scores. This is because MOAA generates a set of AEs
with diverse trade-offs between the three objectives. When calculating these metrics, we aggregate
the values across the entire population, and thus the reported ASS and AMR represent the centric
values of the whole population, which can be obscured by extreme AEs that solely focusing on
optimizing the adversarial loss (see Fig. 18 for an example).

Fig. 18 visualizes the distribution of generated AEs by MOAA for two examples in defect detection
dataset in the objective space. The ‘A’ represents the mean values of the entire population. From the
right half of the figure, we can observe the mean value of f3, i.e. MR, is influenced by the distribution
of the population, resulting in an increase. Furthermore, Fig. 19 demonstrates the results for AL, SS
and MR when selecting the minimum, median and mean values in the AE population genereated
by MOAA. The bar charts shows that the optimal values within the population generate by MOAA
significantly surpass the baseline algorithms, indicating the superiority of our algorithm.

0.15

° AEs
A Mean Value

fs
I3

5-1072)< @ A 0.2 |

Fig. 18. Visualization of the distribution of generated AEs by MOAA for two examples in defect detection
dataset in the objective space.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

Evolutionary Multi-objective Optimization for Contextual Adversarial Example Generation 101:33

Table 4. Comparison results of ASR, AAL, ASS AMR and AQC values obtained by MOAA and the other
three selected peer algorithms on defect detection, clone detection, authorship attribution, code
translation and code summarization tasks.

Task Model i [Greedy Attack Model Metric [Greedy Attack ALERT MOAA
349634(11816)T 503288(22824)7 515962(2.0390) ASR(7) | 733126(2.1967)7 80.9632(2.1015)7 86.4264(2.1147)T
0.4048(0.0044)F 0.4008(0.0042)7 0.4158(0.0024)F AAL 0589(0.6537)1 6.9282(04812)F 6.3648(0.4720)F
CodeBERT 1.1752(0.0717)¢ 1.0904(0.0324)% 177060.2364) | _ CodeBERT 1.9247(0.0164)F 2.0397(0.0748)F 2.1460(0.0317)f
B 11.0479(0.5489)F 9.7054(0.2470) 102937(0.3540) | S AMR(%) 13.3919(0.7708) 133661(0.9694) 13.6364(1.3100)
z 1054.4211(44.2738) 643.9245(16.9197) 647.5264(15.1203) | & Q 1329.3666(16.4602)% 1359.2694(17.0333)F 1708.4422(14.7381)
2 SZ2I(16509) 663950(1L5099)7 70.4752(Z 00031 = ASR(7) | 60.4947(19984)T 66.2204(15590)7 74.2207(LA9T6)T
2 0.4371(0.0037)F 0.4260(0.0027 0.4241(0.0034)7 g AAL 6.9529(0.0774)F 6.9803(0.0721)7 6.6467(0.0250)F
5 GraphCodeBERT 1.12010.0352)¢ [OB6T7(00305)EN 1.0175(0.0265)% 121720.0287) | 5 GraphCodeBERT 1.3706(0.0031) 1.3386(0.0073) 1.3281(0.0024)
3 9.9979(0.3142)F 8.3062(0.3161)7 8.8675(0.2732)1 o AMR(%) 16.1356(1.2271) 158896(L7858)F 16.3406(1.5793)
& 1545.6196(49.7182)F _ 213.1684(4.2550)1 _ 600.6114(32.2701)F 3 Q 1260.9188(7.6357)% 1327.1169(125701)F 1536.6321(12.7392)
S8.6701(11650)T 59.1292(18468)7 62.9700(1L9411)7 © ASR(7) | 75.4062(2.5589)7 80.6288(2.2577)7 85.1743(2.3457)T
0.4383(0.0034)F 0.4525(0.0038)7 0.4527(0.0033)F AAL 7.1635(0.3958)F 6.9374(0.4176)7 6.9158(0.3109)F
CodeTs 1.0376(0.0933)% 1.0502(0.0724); 13728(0.0820) CodeTs 1.7395(0.0754) 1.7989(0.3910)F 1.7382(0.0227)
9.1843(1.1961) 9.2658(1.1559) 9.2280(0.5606) AMR(%) | 13.6795(0.8142) 13.9038(1.0768) 13.7450(1.2203)
1201.2857(32.0083)F _ 269.4983(4.5513) _ 468.4779(4.1553)F AQC | 1022.4953(10.5874) 1139.4655(9.4255) _ 909.0473(7.2948)
9.4743(03979)F _ 24.8216(0.7862)F 27.4664(1.2258) ASR(%) | 71.9599(2.1537)7 78.8542(2.1126)7 83.2597(2.1489)T
0.0137(0.0025)% 0.0140(0.0021)% 0.0608(0.0104) AAL 8.5247(1.1589)F 8.1258(0.9196)7 8.4839(0.9260)F
CodeBERT 1406200527)F 1.5233(0.0358)% 326550.1381) | CodeBERT AsS 1.0395(0.0610) 1.0382(0.0042) 12173(0.0744)
s 7.2608(0.2271)% 8.3348(0.2251)% 9.923100.2942) | § AMR(%) | 10.6472(0.0906)7 10.1908(0.0808) 10.1842(0.0763)
2 343.0625(65172)F _ 2157.2774(79.6103)7 _ 887.0185(83498) | % AQC 756.1951(4.0936)F 889.3219(6.0982) 1316.6049(11.8694)
g 4.8072(0.3733)F 5.9498(0.4230)1 T77290.6346) T ASR(Z) | 74.1837(1.9567) 82.7395(2.3089)1 83.3326(2A1I8)T
3 0.0706(0.0115) 0.0657(0.0088) 008570.0070) | 8.4296(0.6698)F 8.1521(0.9947)7 8.3189(0.7406)F
o | GraphCodeBERT 2.1519(0.1083)% 3.5807(0.0723) | 5 GraphCodeBERT 1.0917(0.6462) 1.0982(0.6871) 1.1728(0.7549)
5 10.2701(0.4624) 1140840.4162) 10.2541(0.0139) | g AMR(%) | 10.1801(0.1246)F 9.9435(0.1538) 9.8547(0.1273)
o 575.7493(6.2874)% 1127.6145(12.2368) _1464.4348(9.8952) | B Q 1354.8251(0.6596) 743.8721(62546)F _ 1354.1853(8.4509)
T33097(1.9351)1 _ 15.0468(1.8145)F 206125(15927) | ASR(7) | 70.8053(2.4352)7 82.5873(2.0992)7 82.5139(1.8564)T
0.0463(0.0034) 0.0177(0.0018)F 0.03751(0.0032) AAL 5.4889(0.2460) 8.3756(0.6413)7 8.3665(0.4718)F
CodeT5 1.4551(0.07417)% 1.3787(0.0660)% 3.0523(0.0729) CodeT5 ASS |WINEZI3(0005) 1.1355(0.0042) 1.1298(0.0034) 1.1950(0.0072)
6.8009(0.3439)F 8.5879(0.4739) 9.0597(0.2077) AMR(%) | 10.0251(0.3275) 10.0554(0.4416) 10.0320(0.3695)
609.6146(8.5868) _ 872.9426(9.2412)F _589.6741(5.8253) AQC | 1105.2413(10.5993) 958.0157(9.2413) _ 1098.8810(15.0116)
33.0841(15639)7 33.4579(3.9871)F 41.6822(0.5119)7 ASR(%) | 72.8792(14754)7 79.4468(18328)7 83.7764(18792)7
AAL | 0.1993(0.0091)F 0.1074(0.0105) 0.2186(0.0072)F AAL 7.3475(0.0031)F 7.4288(0.0022) 7.3414(0.0025)F
5 CodeBERT 2.5588(0.0523)F 1.4009(0.0253) 1.6340(0.0809) CodeBERT ASS 1.0251(0.042) 1.0203(0.074) 1.0279(0.062)
) 13.0903(0.3598)F 7.1008(0.2668) 9.1250(0.3438) ¢ g AMR(%) | 10.0326(0.2601) 9.7083(0.3337) 9.6685(0.2719)
- 1997.6822(22.7374)t _ 468.7500(5.8089) _ 2292.5208(15.7111)% Rl AQC 1131.9847(1.8096) 1228.1297(8.7176) 1022.6524(14.4693)
g 2 03)T 30.5769(1.2537)1 34.0385(1.9939)7 E i‘. "ASR(%) 66.0817(2.5152)F 783215(0.9378)7 79.1885(1.0357)7
< | 0:0152(0:0007)F 1| 0.0579(0.0030) 0.0605(0.0043) 0.0464(0.0024) | S 9 AAL 7.3072(0.0064)F 7.2462(0.0117)¢ 7.2539(0.0105)F
S | GraphCodeBERT 1.9383(0.2116)F 2.0739(0.0851) 2.2065(0.0775)F £ © | GraphCodeBERT 1.4139(0.0893) 1.4130(0.0759) 1.4078(0.0267)
K 10.1498(1L0148) 10.1945(0.5468)F 10.6832(0.2184)% S AMR(%) | 10.1872(0.0324)% 10.1652(0.0274)% 11.4227(0.0423)
s 1011.0235(12.4738)F 669.5794(5.2947) 720.5902(5.7387) 2 Q 9704263(5.1902)F 7513329(3.7841) 850.2802(7.3768)
B G0.0430(08487)T 77.1429(04318)f 77.3333(0.4259) 7 © ASR(A) | 72.4293(1.721)T T93692(2.1395)7 814914202681
0.3542(0.0023)F 0.3252(0.0022)7 0.3250(0.0028)7 AAL 7.3166(0.0114)F 7.1265(0.0250) 7.1176(0.0276)F
CodeT5 1 Y 1.6612(0.00: 1 CodeT5 1.0376(0.0589) 1.0236(0.0762) 1.0709(0.0341)
7.7451(0.0569)F 8.5215(0.0492)7 8.5428(0.0476)1 AMR(%) 9.8112(0.0758)F 9.7931(0.1876)§ 10.0085(0.0953)
948.2614(8.7978) 7 382.6635(1.7551) _ 410.7524(3.6198) AQ 818.6516(4.0134)7 289.5082(1.0374) 244.0604(0.9513)
19.4652(1.3840)F 24.3496(1.3817)F 6091(1.8849) 7 ASR(%) | 26.5319(1.6192)F 419822(18452)7 42.3215(1.7456)T
42.7687(17746)T 41.9823(2.1617)F X AAL 9.4605(0.0583)F 9.4158(0.1463)7 9.4669(0.1768)F
CodeBERT 1.7456(0.7682) 1.7513(0.2381) 2.4386(0.6145) CodeBERT ASS 1.9928(0.0645)F 2.0991(0.1163)F 2.0209(0.1306)F
s 9.3106(0.2972)F 9.1883(0.5519)% 12.6639(0.7013) | § AMR(%) | 18.4112(0.4339) 18.0986(0.2963) 18.7691(0.1200)
N 1433.7221(9.7696) 898.7626(6.1487) 908.4528(5.0057) | & AQC 852.0959(4.9375) 853.9002(8.4915) 770.0263(8.0428)
) T95062(1.6495)1 24.8468(19070)7 28.0031(1.8538)7 N ASR(Z) | 30.1248(1.7048)7 41.6237(1.2523) 45.0556(1.2634)T
21 A13063(25773)7 418398(2.1493)f 41.8472(2.0611)F 5 AAI 7.1494(0.6472)F 7.2328(0.6517)F 7.2936(0.6423)F
& 7 | GraphCodeBERT 1.8506(0.5873) 1.8874(0.5308) 2.4532(0.6886) | 5 GraphCodeBERT | Ass 1.2833(0.0447) 1.2649(0.0896) 1.3251(0.0691)
22 12.3073(1.0978) 123223(14532) 125108(14730) | AMR(%) 18774709233 18.9937(0.7181)F 20.0072(0.5571)
3 289.8176(15.5111) 1364.2602(8.2487) 14145173(13.7891) | § Q 801.6217(9.9239)F 969.5867(3.6068)F 629.7227(6.5213)
20.5098(10747)T 26.8906(1.0908)] _ 28.5673(1.3533)7 © ASR(7) | 36.9622(21720)T 49.8849(2.0637)7 5737790232000
413249(12622)F 414436(14165)F 41.4580(1.0861)F AAL 7.3179(0.5612)F 7.3456(0.4658) 7.3067(0.7206)F
CodeT5 1.6575(0.2732)% 1.7724(0.1845)F 2.4986(0.4058) CodeT5 1.5138(0.0572) 1.5071(0.0660) 1.6217(0.0877)
123851(0.0874) 12.1407(0.0942) 13.4673(0.1248) AMR(%) 17.2729(0.4249); 17.4266(0.2022) 19.6417(0.4120)
AQC | 1115.8959(8.5798)¢ 785.9483(8.3591) _ 707.5491(3.5932) 11416404(15.1902)F _ 792.7308(9.8947) _ 1077.4974(114656)¢
283817(1094)T 33.0786(13050)F 33.6216(1.9560)7 ASR(%) | 603187(11769)F 67.2979(1.4735)1 _ 72.9829(1.7450)1
AAL | 375315010342 36.8309(1.2786)F 38.9662(14164)7 AAL 5.8629(0.0143)F 5.4959(0.0079)¢ 5.8479(0.0118)F
CodeBERT 1.8972(0.45552) 1.9275(0.1957) 1.9706(0.2002) CodeBERT 1.0756(0.2583) 1.0763(0.2206) 1.1286(0.0753)
s 8.6149(1.3091)F 8.7062(1.5883)F 13.6125(1.2368) | § AMR(%) 14.6887(0.0944) 15.6528(0.2067)F 15.7683(0.2237)t [/18:4196(0:1064) |
T A \QC | 1118.3492(11.5706)f 326.1112(45417) 2503528(3.9131) | & AQC | 998.2624(14.2460) 905.4322(9.8221) 960.6993(7.6981)
52 29.6756(0.9634)T 34.8186(1.2498)F 35.9256(1.0662)) "ASR(%) 65.7519(2.0489)7 72.7107(2.3153) 76.5041(2.0043) 7
23 AAL | 39251303761)F 359514(0.7908)F 36.0817(0.1020)7 5 AAL 5.5424(0.5721)F 5.6221(0.6601)F 5.9094(0.6487)F
£ 1| GraphcodeseRT 1.7402(0.7869) 1.7519(0.5615)F 2361703879 | & & | GraphCodeBERT | 55 12667(0.0947) 1.2516(0.0881) 1.2694(0.0754)
< 5.1708(0.8651)% 8.639504379)F 13.2705(0.6994) | D AMR(%) | 15.2882(0.6079) 15.5355(0.4816) 15.6184(0.6568)
3 1434.9513(16.9056) 665.5925(8.1927) 532.9388(6.9820) | 8 AQC | 515.1050(12.8312) 322.4893(10.1972)% 683.7195(6.9023)
32.1931(09267)T 36.4419(0.9254)7 38.2741(1.1782) < ASR(7) | 69.2103(23417)T 78.0914(2.0706)7 80.9588(2.4502)1
38.6196(10257)F 36.4782(1.2261)F 36.4940(1.2745)% AAL 5.9790(0.0048)F 5.9635(0.0085)F 5.9655(0.0057)F
CodeT5 1.8047(0.3979) 1.9286(0.3356) 1.9347(0.7024) CodeT5 ASS 1.2781(0.057) 1.2947(0.073) 1.3233(0.0992)
9.3126(0.5787)% 9.3171(0.1983)% 14.5387(0.7553) AMR(7) | 13.8472(0.1820) 14.6355(0.7457) 14.9510(0.7319)
828.7284(3.8754)F 587.8209(7.1875) 636.3316(6.8927) AQC [[IT1919139(145362)F] 1348.7448(10.3948) 1591.6591(3.7099) 1401.9790(5.7011)

T denotes the performance of MOAA is significantly better than other peers according to the Wilcoxon’s rank sum test at a 0.05 significance
level;
I denotes the corresponding algorithm significantly outperforms MOAA.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li

101:34
= 7
< <
. e vuM BBGreedy Attack@@ ALERT
é\o/ BEMOAA minfll MOAA median HNEMOAA mean
]
=
<

Fig. 19. The AAL, ASS, and AMR metrics when selecting the minimum, median, and average values from the
population generated by MOAA for the defect detection task.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

Evolutionary Multi-objective Optimization for Contextual Adversarial Example Generation 101:35

B.3 Ablation Study of Importance Score and Identifier Name Prediction

B.3.1 Methods. To investigate the usefulness of importance score and identifier name prediction,

we develop three variations:
e MOAA-v1: This variant considers a vanilla NSGA-II without importance score and identifier
name prediction. Instead, MOAA-v1 use randomly select an identifier name for mutation and

replaced by a token provided by ALERT.
e MOAA-v2: This variant is similar to MOAA-v1 except using the importance score the same as

MOAA to guide the mutation process.
e MOAA-v3: This variant is similar to MOAA except using random selection.

Note that the other parameter settings are kept the same as Section 5.2.

g0
o/ [[FMoAA~T 2%
7 |looMOAA-v2
aMOAA-v3
|| MoAA

S = S
& 0 = g
- << < 0%
20%
60% 60% II |
50% L 16% L fiE so L '
Coq g Co Co % Co
e, ey de- de, ap, de. de de
BERp. bDOdGBERT 75 BERyp. bCDdSBEgT 75 BERy Izcod by 75
Victim Model Victim Model Victim Model
(a) Defect Detection (b) Clone Detection (c) Authorship Attribution

AQC

100 ll ‘ FmE I !
Co, C Gr, C Cc
0q Coq, 0q) o oq Coq
By pzzco eTs By PhCog, T o2ep, T3, sy er5
BEpy ERy
Victim Model Victim Model Victim Model
(d) Defect Detection (e) Clone Detection (f) Authorship Attribution

Fig. 20. Bar charts of the attack success rate and average query count of MOAA-v1, MOAA-v2, MOAA-v3 and
MOAA on three victim models for the defect detection, clone detection and authorship attribution
tasks.

B.3.2 Results and Analysis. Fig. 20 exhibits the result of the ablation study. We observe that MOAA
consistently outperforms the other three variations in terms of ASR and AQC. This means that
both the importence score and identifier name prediction are crucial for the success of MOAA.

B.4 Examples of Generated AEs

Table 5 presents examples of AEs generated by MHM, Greedy Attack, ALERTand MOAAfor CodeBERT
on the Defect Detection dataset. In the first example, only MOAA manages to generate a successful
AE, despite MHM, Greedy Attackattempt to substutute all identifiers in the original code. This shows
the superior effeiciency of the search space utilized by MOAA. Regarding the second example, while
all attackers achieve success, MOAA distinguishes itself by opting to replace ‘mr’ with ‘memory_map’,
a choice informed by the function name ‘set_system_memory_map’. This strategic replacement
demonstrates MOAA’s ability to grasp the broader context implied by the code, as opposed to the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

101:36 Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li

other methods which rely solely on the superficial information provided by the identifier name
‘mr’, thus struggling to comprehend the code’s context.

Table 5. Examples of AEs generated by MHM, Greedy Attack, ALERT and MOAA for CodeBERT on Defect
Detection dataset.

Attacker Input Output Success
int ff_schro_queue_push_back(FFSchroQueue *queue, void *p_data)
{
FFSchroQueueElement *p_new = av_mallocz(sizeof(FFSchroQueueElement));
if (!p_new)
return -1;
p_new—data = p_data;
if (!queue—p_head)
queue—p_head = p_new;
else

Original

queue—p_tail—next = p_new;

queue—p_tail = p_new;
++queue—size;
return 0;

}

queue—port;

p_data—pfdat;

p_new—p_fresh;

size—name

MHM

queue—port;
Greedy Attack size—address; 1 X

p_data—pfdat;
p_new—pockNEW
ALERT N/A

MOAA queue—p_list 0 v

X

void set_system_memory_map(MemoryRegion *mr)

{
memory_region_transaction_begin();
address_space_memory.root = mr;
memory_region_transaction_commit();

Original

}

MHM mr—dr
Greedy Attack | mr—mm
ALERT mr—fr
MOAA mr—memory_map

o|lo|lo|lo
NENENEN

B.5 Subjective Study

Fig. 21 shows the questionnaire used in the subjective study. We also evaluate the naturalness of the
AFEs generated by each algorithm by conducting a user study. Following previous works [67, 78],
we invite 10 non-author participants who possess a Bachelor/Master degree in Computer Secience.
For this study, to accommodate the preferences of the participants, we select tasks of different
programming languages for each of them. To alleviate recognition burden, we then filter the dataset
to exclude code snippets longer than 200 tokens. To make comparison fair, we only select examples
that can be successfully attacked by all four algorithms. We randomly pick up 100 examples from
the remaining code snippets. For each of these examples, we take the AEs generated by each

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

Evolutionary Multi-objective Optimization for Contextual Adversarial Example Generation 101:37

algorithm'!. Therefore, we ask the participants to grade 400 (x, x’) pairs blindly in a 5-point rating
scale. They are instructed to focus on whether the replaced identifiers are natural in the context of
the code snippet.

In this subjective study, we follow the grading criteria as follows:

5 for highly natura and contextually appropriate identifier replacement;

e 4 for natural identifier replacements with minor contextual discrepancies;
e 3 for correct but less natural identifier replacements;

e 2 for awkward or contextually inappropriate identifier replacements;

¢ 1 for incorrect, nonsensical, or misleading identifier replacements.

Table 2 presents the population of AEs generated by MOAA when attacking CodeBERT model for
the Defect Detection dataset. The diversity observed in these exampls underscores a significant
challenge for decision-makers, i.e. determining superiority among the AEs is not straightforward.
This highlights the critical role of diversity when generating AEs.

Received 2023-09-28; accepted 2024-04-16

11For MOAA we randomly select one AE from the generated population.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

101:38 Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li

The Naturalness of Identifier

Welcome to our survey! Your feedback is invaluable in helping us understand how natural the replacement of certain identifiers in code snippets appears to
experienced developers like you. Below, you will find some code excerpt where a specific identifier has been replaced. Your task is to assess the naturalness
of this substitution based on your expertise and intuition about coding practices.

Thank you for participating in our study. Let's get started!

1. Read the following code:

1 AVFrame %avcodec_alloc_frame(void)

2 A

3 AVFrame xframe = av_mallocz(sizeof (AVFrame));
4 if (frame == NULL)

5 return NULL;

6 FF_DISABLE_DEPRECATION_WARNINGS

7 avcodec_get_frame_defaults(frame);

8 FF_ENABLE_DEPRECATION_WARNINGS

9 return frame;

Is ‘buffer’ replace 'frame' natural?

Very Unnatural Unnatural Neutral Natural Very Natural

2. Read the following code:

1 static void cpu_set_irq(void *opaque, int irg, int level)
2 A

3 CPUState xenv = opaque;

4 if (level) {

5 CPUIRQ_DPRINTF("Raise CPU IRQ %d\n", irq);
6 env->halted = 0;

7 env—>pil_in [= 1 << irg;

8 cpu_check_irgs(env);

9 } else {

10 CPUIRQ_DPRINTF("Lower CPU IRQ %d\n", irq);
11 env—>pil_in &= ~(1 << irq);

12 cpu_check_irgs(env);

13 ¥

14}

Is 'que’ replace 'env' natural?

Very Unnatural Unnatural Neutral Natural Very Natural

Fig. 21. The questionnaire used in the subjective study.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 101. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Multi-Objective Adversarial Attack
	2.1 AE Generation Task
	2.2 AE Generation as Multi-Objective Optimization Problem

	3 Methodology
	3.1 Implementation of Our Proposed MOAA
	3.2 Importance Score
	3.3 Model-based Identifier Name Prediction

	4 Experimental Setup
	4.1 Source Code Tasks and Datasets
	4.2 Victim Models
	4.3 Evaluation Metrics

	5 Results and Discussions
	5.1 Relationship between objective functions
	5.2 Performance Comparison with the SOTA baseline Algorithms
	5.3 Comparison of the Generated AEs
	5.4 Explaining the generated AEs

	6 Related Work
	6.1 Evolutionary Multi-Objective Optimization
	6.2 Adversarial Example Generation for Deep Code Models

	7 Threats to Validity
	8 Conclusion
	References
	A Detailed Information
	A.1 Introduction of BLEU and CodeBLEU Metrics
	A.2 Details of Datasets and Tasks
	A.3 Details of Evaluation Metrics
	A.4 Introduction of peer algorithms

	B Extended Results
	B.1 Relationship between objective functions
	B.2 Comparison Results
	B.3 Ablation Study of Importance Score and Identifier Name Prediction
	B.4 Examples of Generated AEs
	B.5 Subjective Study

