An Introduction to Array Programming in Petalisp

Marco Heisig
Sandoghdar Division
Max Planck Institute for the Science of Light
Erlangen, Germany
marco.heisig@mpl.mpg.de

Abstract

Petalisp is a purely functional array programming language embed-
ded into Common Lisp. It provides simple yet powerful mechanisms
for reordering, broadcasting, and combining arrays, as well as an
operator for element-wise mapping of arbitrary Common Lisp func-
tions over any number of arrays.

This introduction covers the process of writing high-performance
array programs in Petalisp and showcases its main concepts and
interfaces. It continues with a simple example of an iterative method
and some benchmarks, and concludes with a tour of the Petalisp
implementation and a discussion how it achieves high performance
and a low memory footprint.

ACM Reference Format:

Marco Heisig. 2024. An Introduction to Array Programming in Petalisp. In
Proceedings of the 17th European Lisp Symposium (ELS’24). ACM, New York,
NY, USA, 4 pages. https://doi.org/10.5281/zenodo.11062314

1 Introduction

At the 11th European Lisp Symposium in Marbella we proposed
a lazy, functional array programming language with significant
potential for automatic parallelization. We showed a working pro-
totype and some promising benchmarks that place its performance
somewhere above NumPy and below C++[2]. Our hope was that
this prototype could be quickly extended to cover more sophisti-
cated problems, and to actually reach the performance of C++. This
endeavor turned out to be substantially harder than expected. A
key challenge we had to overcome was that of choosing memory
layouts with good spatial and temporal locality, and to fairly dis-
tribute work across multiple cores. Now, after six years of hard
work, we can finally say we have overcome these problems. We
proudly present the first production-quality version of Petalisp, and
are looking forward to receiving community feedback.

Petalisp is free software. The full source code and many examples
can be found at https://github.com/marcoheisig/Petalisp. It can be
installed with Quicklisp by typing (ql:quickload :petalisp).

2 Related Work

Array programming is a discipline with a long history. The first
array programming language was Kenneth E. Iverson’s APL[6],
whose terse notation and productivity benefits inspired a multi-
tude of derivatives. Many recent array programming languages,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’24, March 06—07, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.11062314

e.g., Repa[7] or Futhark[5], have shifted towards the functional
programming paradigm, but sacrificed some amount of interac-
tivity and dynamism on the way. Petalisp delivers all the benefits
of purely functional programming while retaining the interactive
nature of Common Lisp. A project with a similar goal is the APL
compiler April[8], that also targets Common Lisp.

3 Concepts

There are many approaches to designing a programming language.
The one extreme is the big ball of mud approach, where more and
more potentially competing features are added over time. The other
extreme is to have a minimal set of orthogonal features. Petalisp
pursues the latter extreme: It features only one data structure — the
lazy array, six ways to reorder arrays, one function for combining
arrays, and one function for mapping Common Lisp functions over
any number of arrays.

3.1 Lazy Arrays

All data manipulated by Petalisp is represented as lazy arrays, which
are similar to regular Common Lisp arrays except that their contents
cannot be accessed directly, and that they support a more general
notion of an array shape. Where the shape of a regular array is
defined by its list of dimensions, the shape of a lazy array is defined
by a list of ranges. Each range is a set of integers x defined by an
inclusive lower bound a, an exclusive upper bound b, and a step
size s in the following way:

a<x<b (xisboundedbyaandb)
s|(x—a) (sdivides (x —a))
a,bs,x € Z

Formally, the shape of each lazy array is defined as the Cartesian
product of its sequence of ranges. Informally, this means that lazy
array have a numbering that doesn’t necessarily start from zero,
and that each axis can have holes in it as long as those holes are all
regularly spaced.

Lazy array shapes have their own shorthand notation, which is
a list consisting of tilde symbols and integers. Each tilde must be
followed by one, two, or three integers, describing the size, start and
end, or start, end, and step of the range in the corresponding axis,
respectively. In this notation, a 2 X 3 array has a shape of (~ 2 ~ 3),
and a vector with step size two and four elements has the shape
(~072.

Lazy arrays can be created as copies of existing regular arrays
or scalars with the lazy-array constructor. All Petalisp functions
use this constructor to automatically convert their arguments to
lazy arrays, so there is usually no need to call it explicitly. For

https://orcid.org/0000-0003-2285-179X
https://doi.org/10.5281/zenodo.11062314
https://github.com/marcoheisig/Petalisp
https://doi.org/10.5281/zenodo.11062314

ELS’24, March 06-07, 2024, Vienna, Austria

efficiency reasons there exists a second constructor called lazy-
index-components for creating lazy arrays whose contents are fully
described by a range and an axis. This second constructor is special
because the resulting lazy arrays have a memory footprint of zero.

3.2 Evaluation

As mentioned in section 3.1, there is no way to access elements
of a lazy array directly. Instead, a user has to convert lazy arrays
into the equivalent regular arrays with an explicit function call.
The main interface for doing so is the function compute. It receives
any number of lazy arrays, moves them such that their shapes have
a start of zero and a step size of one, and returns the equivalent
regular arrays.

3.3 Lazy Map

There are only two mechanisms with which Petalisp communicates
with its host language Common Lisp. The first mechanism is the
conversion from Common Lisp arrays to Petalisp lazy arrays and
vice versa. The second mechanism is that of mapping Common Lisp
functions over lazy arrays to obtain new lazy arrays. The higher-
order function for doing so is called lazy — a rare case of a function
whose name is an adjective. The first argument to lazy must be a
function f of k arguments, followed by k lazy arrays ao, ..., ar_1
that are broadcast to have the same shape. The result is a lazy array
r of the same shape as the arguments, whose element at index I is
defined as

r(I) = f (ap(D), ..., ap_1(I)) .

Listing 1 illustrates the behavior of lazy. There is also another
function for lazy mapping called lazy-multiple-value that can be
used to map functions with multiple return values and gather each
of those values in a separate lazy array.

(compute (lazy #'x))
=> 1

(compute (lazy #'+ 2 3))
=> 5

(compute (lazy #'+ 2 #(12345)))
= #(34567)

(compute (lazy #'x #(2 3) #2A((1 2) (3 4))))
=> #20((2 4) (9 12))

Listing 1: Examples for using the function lazy.

3.4 Lazy Reshape

True to the goal of being a minimalist programming language,
Petalisp offers a single function, named lazy-reshape, for moving
data. It can be used to select, reorder, or broadcast elements of
a particular lazy array. All its operations can be described as the
superposition of six elementary operations, which are shown in
Figure 1.

Marco Heisig

0 1 0 1 0 0 1 2 3
0 select 0 0 broadcast 0
1 1 1
i NEEn N z
(~3+~2) (~032~12)|(~3~1) (~3~4)
0 1 0 1 0 1 0 1 2
0 0 0
move scale .
1 — 1 1 1
20 | [[|2 0 W
(~3~1) (~3~12) [(~3~2) (~3~032)
0 0 1 0 1 2
0 add/remove 0 permute @
axis axes
1 —> 1 1 —> 1
2 2 2 (~2~3)
(~3~1) (~3) (~3~2)

Figure 1: The six elementary reshape operations.

The first argument to lazy reshape is the lazy array that is be-
ing reshaped, and all the remaining arguments are so-called modi-
fiers that are processed left-to-right and each describe a particular
combination of elementary operations. One possible modifier is a
shape, in which case the result is a lazy array of that shape and the
modification is a combination of selecting, broadcasting, and mov-
ing of data. Another possible modifier is that of a transformation,
which describes some combination of moving, scaling, permuting,
adding, or removing of axes. Transformations can be created us-
ing a lambda-like syntax with the transform macro, or using the
make-transformation constructor. Examples of the various kinds of
modifiers and their effect are shown in Listing 2

(compute (lazy-reshape #(1 2 3 4) (~12)))
=> #(2)

(compute (lazy-reshape #(1 2 3 4) (~ 2 ~ 3)))
= #20((111) (22 2)

(compute (lazy-reshape #(1 2 3 4) (~ 4 ~ 2)))
= #20((11) (22) (33) (44)

(compute (lazy-reshape #2A((1 2) (3 4))
(transform i j to j i)))
=> #20((1 3) (2 4))

(compute (lazy-reshape #(1 2 3 4)
(transform i to (- 1))))
= #(4321)

Listing 2: Examples for using the function lazy-reshape.

3.5 Lazy Fuse

The final piece of functionality that makes up Petalisp is that of
fusing multiple arrays into one. The function for doing so is called

An Introduction to Array Programming in Petalisp

lazy-fuse. It takes any number of non-overlapping lazy arrays,
determines the shape that covers all these lazy arrays, and returns
the array with that shape that contains all the data of the original
arrays. An error is signaled in case any of the supplied lazy arrays
overlap, or if they cannot be covered precisely with a single shape.

4 The Standard Library
4.1 Moving Data

Shapes and transformations aren’t the only valid modifiers accepted
by lazy-reshape. It also accepts modifiers that are functions that
take a shape of the lazy array being mutated, and return any num-
ber of further modifiers as multiple values. These functions are
called reshapers, and they are a generalization of NumPy’s relative
addressing with negative indices. Petalisp features three built-in
functions for constructing reshapers: peeler, for removing some of
the outer layers of a lazy array, deflater, for shifting a lazy array to
have a start of zero and a step size of one, and slicer, for selecting
a particular subset of a lazy array using relative indices.

4.2 Reducing

The function lazy-reduce combines the contents of k arrays with
a function of 2k arguments and k return values. It is an improved
version of the multiple value reduction we presented at the 12th
European Lisp Symposium in Genova[3].

4.3 Sorting

The function lazy-sort constructs a sorting network that sorts the
supplied lazy array along the first axis using some predicate and
optional key.

4.4 Differentiating

The function differentiator can be applied to a list of lazy arrays
and a list of gradients at those lazy arrays to return a function that
computes the gradient of each input of any of those lazy arrays.
This is achieved by using our type inference Typo to compute
the derivatives of Common Lisp functions. This functionality can
serve as the staring point for writing a machine learning toolkit in
Petalisp.

5 Example: Jacobi’s Method

Listing 3 shows an implementation of a simple numerical scheme
in two dimensions. Although this code is purely functional and has
a very high level of abstraction, our benchmark results in Figure 2
show that it has a multi-core performance that is close to hand-
optimized C++ code, and even outperforms the popular machine
learning framework JAX.

6 The Implementation

Each call to compute or any of the other evaluation functions entails
a full run through our optimization and code generation pipeline.
With a careful choice of algorithms, data structures, and caching
schemes, we managed to squeeze the time to execute this entire
pipeline to something on the order of a few hundred microsec-
onds. Because of these extremely fast compilation times we can

ELS’24, March 06-07, 2024, Vienna, Austria

(defun lazy-jacobi-2d (u)
(with-lazy-arrays (u)
(let ((p (lazy-reshape u (peeler 1 1))))
(lazy-overwrite-and-harmonize u
(lazy #'« 1/4
(lazy #'+
(lazy-reshape u (transform i j to (1+ i) j) p)
(lazy-reshape u (transform i j to (1- i) j) p)

(lazy-reshape u (transform i j to i (1+ j)) p)
(lazy-reshape u (transform i j to i (1- j)) p)))))))

Listing 3: Jacobi’s method on arrays of rank two.

Jacobi Performance
2.5x10%0

T

Petalisp

C (serial)

C (omp dynamic)

C (omp static)

2x1010 | NumPy |
Jax (CPU) ——

1.5x10%0

1x10%0 [

floating-point operations per second

5x10°

0 500000 1x10° 1.5x108 2x10° 2.5x108 3x10° 3.5x106 4x10°

domain size in bytes

Figure 2: Benchmark results for various implementations of
Jacobi’s method.

pretend that Petalisp is an interactive language, yet receive all the
performance advantages of static compilation.

6.1 Data flow graphs

Initially, each Petalisp program is represented as a data flow graph
whose nodes are lazy arrays and whose edges are direct data depen-
dencies. This graph is assembled by invoking Petalisp functions such
as lazy-reshape or lazy-fuse. Several optimizations are already car-
ried out during graph assembly: consecutive reshape operations are
combined into one, nodes with no effect are discarded, and fusions
of reshape operations that are equivalent to a single broadcasting
reshape are represented as such.

The most important optimization at this stage is to narrow down
the element types of all lazy arrays produced by lazy mapping,
which is a prerequisite for choosing a memory-efficient represen-
tation during execution. To do so, we wrote a portable and ex-
tremely fast type inference library named Typo that is available at
https://github.com/marcoheisig/Typo. Typo can derive the (approx-
imate) return types of almost all standard Common Lisp functions,
and it can rewrite calls to polymorphic functions with specialized
arguments into calls to more specialized functions.

https://github.com/marcoheisig/Typo

ELS’24, March 06-07, 2024, Vienna, Austria

6.2 Kernels and Buffers

Once a data flow graph of lazy arrays is submitted for evaluation, it
is converted to the Petalisp intermediate representation, which is a
bipartite graph of kernels and buffers. Each kernel represents some
number of nested loops whose body contains loads, stores, and
function calls. Each buffer represents a virtual memory region. We
developed an algorithm that ensures that most values are produced
and consumed in the same kernel so that the size and number of
necessary buffers is minimal.

Once a program is converted to this intermediate representation,
it is subject to several optimizations: kernels and buffers are rotated
in a way that maximizes memory locality, all shapes and iteration
spaces are normalized to have a starting index of zero and a step size
of one, and buffers that are involved in reduction-like patterns are
eliminated and replaced by additional instructions in the adjacent
kernels.

6.3 Partitioning

The next step in the optimization pipeline is to break up buffers
and the kernels writing to them into shards of roughly equal com-
putational cost, which is a prerequisite for scheduling them onto
parallel hardware. We developed an iterative partitioning algorithm
that minimizes the amount of synchronization and communication.

6.4 Scheduling

The partitioned intermediate representation is fed into our schedul-
ing algorithm, which is a variant of Blelloch’s parallel depth-first
scheduler algorithm[1] with several tweaks that improve memory
locality. Our custom scheduler has several advantages over gen-
eral purpose schedulers: It has full knowledge about the origins of
each load and the users of each store and the partitioning step has
already ensured that all tasks have roughly the same size.

6.5 Allocation

At the end of the scheduling phase, each buffer shard is assigned a
particular memory allocation in the following way: buffer shards
of similar size are all grouped into one bin, and within each worker
and each particular bin, a register-coloring algorithm is used to
assign an allocation to each buffer shard while keeping the total
number of allocations small.

6.6 Code Generation

When executing the schedule, each kernel is converted to an op-
timized Lisp function that is invoked on three arguments: The
iteration space of a kernel shard, the memory corresponding to
each buffer shard, and a vector of all functions that are called in
the kernel. Because kernel compilation is rather costly, each kernel
is first converted to a hash-consed minimal representation that can
be used as a key for caching, and compilation only occurs when a
kernel is invoked for the first time.

We already have code generators for turning kernels into Com-
mon Lisp code and for turning a subset of kernels into C++ or CUDA
code. Right now, our strategy is to use C++ and GCC when possible,
and Common Lisp code otherwise. In the future, we plan to make
the C++ generator obsolete by using SIMD optimized Common Lisp

Marco Heisig

instead. Doing so would build on our previous work on sh-simd that
we presented at the 15th European Lisp Symposium in Porto[4].

7 Conclusions

We presented a data flow programming language that masquerades
as a Common Lisp library for manipulating arrays. The language
stands out by having an extremely simple set of core operations, a
versatile standard library, and a mature implementation. A major
achievement of our implementation is that it can already outper-
form optimized C++ code in certain cases — both in execution time
and memory consumption. In the past, the manipulation of high-
dimensional arrays in Common Lisp has been tedious and often
inefficient. Petalisp addresses this issue thoroughly, and turns Com-
mon Lisp into an excellent tool for all sorts of massively parallel
array programming tasks.

References

[1] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling
for languages with fine-grained parallelism. J. ACM, 46(2):281-321, mar 1999. ISSN
0004-5411. doi: 10.1145/301970.301974. URL https://doi.org/10.1145/301970.301974.

[2] Marco Heisig. Petalisp: A common lisp library for data parallel programming.
In Proceedings of the 11th European Lisp Symposium on European Lisp Sympo-
sium, ELS2018. European Lisp Scientific Activities Association, 2018. ISBN
9782955747421.

[3] Marco Heisig. Lazy, parallel multiple value reductions in Common Lisp. In
Proceedings of the 12th European Lisp Symposium, European Lisp Symposium, 2019.
ISBN 978-2-9557474-3-8. doi: 10.5281/zenodo.2642164. URL https://european-lisp-
symposium.org/static/proceedings/2019.pdf.

[4] Marco Heisig and Harald Késtler. Closing the performance gap between lisp and
c. In Proceedings of the 15th European Lisp Symposium, ELS2022. Zenodo, March
2022. doi: 10.5281/zenodo.6335627. URL https://doi.org/10.5281/zenodo.6335627.

[5] Troels Henriksen. Design and Implementation of the Futhark Programming Lan-
guage. Universitetsparken 5, 2100 Kebenhavn, 11 2017.

[6] Kenneth E Iverson. A Programming Language. John Wiley & Sons, Nashville, TN,
December 1962.

[7] Ben Lippmeier, Manuel Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Guiding parallel array fusion with indexed types. In Proceedings of the 2012 Haskell
Symposium, Haskell 12, page 25-36, New York, NY, USA, 2012. Association for
Computing Machinery. ISBN 9781450315746. doi: 10.1145/2364506.2364511. URL
https://doi.org/10.1145/2364506.2364511.

[8] Andrew Sengul. April: Apl compiling to common lisp. In Proceedings of the 15th
European Lisp Symposium, European Lisp Symposium. Zenodo, March 2022. doi:
10.5281/zenodo.6381963. URL https://doi.org/10.5281/zenodo.6381963.

https://doi.org/10.1145/301970.301974
https://european-lisp-symposium.org/static/proceedings/2019.pdf
https://european-lisp-symposium.org/static/proceedings/2019.pdf
https://doi.org/10.5281/zenodo.6335627
https://doi.org/10.1145/2364506.2364511
https://doi.org/10.5281/zenodo.6381963

	Abstract
	1 Introduction
	2 Related Work
	3 Concepts
	3.1 Lazy Arrays
	3.2 Evaluation
	3.3 Lazy Map
	3.4 Lazy Reshape
	3.5 Lazy Fuse

	4 The Standard Library
	4.1 Moving Data
	4.2 Reducing
	4.3 Sorting
	4.4 Differentiating

	5 Example: Jacobi's Method
	6 The Implementation
	6.1 Data flow graphs
	6.2 Kernels and Buffers
	6.3 Partitioning
	6.4 Scheduling
	6.5 Allocation
	6.6 Code Generation

	7 Conclusions
	References

