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A B S T R A C T   

We present a numerical scheme valid in the range of highly to weakly compressible flows using a single-fluid four 
equation approach together with multi-component thermodynamic models. The approach can easily be included 
into existing finite volume methods on compact stencils and enables handling of compressibility of all involved 
phases including surface tension, cavitation and viscous effects. The mass fraction (indicator function) is 
sharpened in the two-phase interface region using the algebraic interface sharpening technique Tangent of 
Hyperbola for INterface Capturing (THINC). The cell face reconstruction procedure for mass fractions switches 
between an upwind-biased and a THINC-based scheme, along with proper slope limiters and a suitable 
compression coefficient, respectively. For additional sub-grid turbulence modeling, a fourth order central scheme 
is included into the switching process, along with a modified discontinuity sensor. The proposed “All-Mach” 
Riemann solver consistently merges the thermodynamic relationship of the components into the reconstructed 
thermodynamic variables (like density, internal energy), wherefore we call them All-Mach THINC-based 
Thermodynamic-Dependent Update (All-Mach THINC-TDU) method. Both, liquid-gas and liquid-vapor interfaces 
can be sharpened. Surface tension effects are taken into account by using a Continuum Surface Force (CSF) 
model. In order to reduce spurious oscillations at interfaces we decouple the computation of the interface cur-
vature from the computation of the gradient of the Heaviside function. An explicit, four stage low storage Runge- 
Kutta method is used for time integration. The proposed methodology is validated against a series of reference 
cases, such as bubble oscillation/advection/deformation, shock-bubble interaction, a vapor/gas bubble collapse 
and a multi-component shear flow. The results of a near-critical shock/droplet interaction case are superior to 
those obtained by WENO3 and OWENO3 schemes and support that the proposed methodology works well with 
various thermodynamic relations, like the Peng-Robinson equation of state. Finally, the approach is applied to 
simulate the three-dimensional primary break-up of a turbulent diesel jet in a nitrogen/methane mixture 
including surface tension effects under typical dual-fuel conditions. The obtained results demonstrate that the 
methodology enables robust and accurate simulations of compressible multi-phase/multi-component flows on 
compact computational stencils without excessive spurious oscillations or significant numerical diffusion/ 
dissipation.   

1. Introduction 

Simulation of flow processes in internal combustion engines (ICE) 
usually involves multicomponent flows with phenomena such as 
deformation of material interfaces, interaction with shock waves, and 
evaporation and condensation. Here, we focus on compressible two- 

phase flows with multicomponent fluids, with two-phase jet flows or 
droplet breakup in internal combustion engines being practical appli-
cations. Basically, there are two different numerical approaches for such 
flows: Methods that assume sharp interfaces and those that rely on 
mixture assumptions. Since the flow field and material properties are 
generally discontinuous across the interface between different phases or 

* Corresponding author. 
E-mail address: yu.jiao@tum.de (Y. Jiao).  

Contents lists available at ScienceDirect 

Computers and Fluids 

journal homepage: www.elsevier.com/locate/compfluid 

https://doi.org/10.1016/j.compfluid.2024.106186 
Received 30 June 2023; Received in revised form 6 November 2023; Accepted 19 January 2024   

mailto:yu.jiao@tum.de
www.sciencedirect.com/science/journal/00457930
https://www.elsevier.com/locate/compfluid
https://doi.org/10.1016/j.compfluid.2024.106186
https://doi.org/10.1016/j.compfluid.2024.106186
https://doi.org/10.1016/j.compfluid.2024.106186
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2024.106186&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Fluids 274 (2024) 106186

2

components, treating material boundaries becomes a key problem. 

1.1. Sharp interface and diffuse interface methods 

Sharp interfaces are generally achieved by (Interface tracking type) 
Front-Tracking [1,2], (Interface capturing type) Level-Set methods (LS) 
[3–5], Geometric interface reconstruction (GIR) based volume of fluid 
methods (VOF) [6,7] like Piecewise-Linear Interface Calculation (PLIC) 
[8] and the isoAdvector Method [9]. Front tracking attempts to combine 
the characteristics of both Lagrangian and Eulerian schemes to maintain 
a sharp boundary, where Lagrangian markers are adopted to distinguish 
the domains taken by different fluids. However, this is computationally 
expensive for complex geometries especially for strong topological de-
formations of the interface. Furthermore, Front-Tracking methods are 
not mass-conservative without extra treatment. A traditional Level-Set 
(LS) function is a signed-distance function, that represents the shortest 
distance to the interface, where the interface is represented as the zero 
contour. It is accurate in computing surface normals and curvatures with 
naturally smooth LS field and is suitable for determining surface tension. 
However, the additional steps for reinitialization and mass conservation 
involve additional computational cost because the LS function loses its 
signed distance property after the advection step and the mass of each 
phase is not automatically conserved. Moreover, it is expensive if the 
topology changes. GIR methods could also provide a clear/sharp 
two-phase interface, but are also computationally expensive. 

Generally, diffuse interfaces are introduced by phase field models 
(PF) [10–14] or (interface capturing type) algebraic interface sharp-
ening (AIS) based models, where no clear boundary between phases 
exists and the interface often covers more than a single cell. Phase-field 
methods generally adopt the convective Cahn-Hilliard or the Allen-Cahn 
equation to describe interfacial motions and naturally have 
anti-diffusive characteristics. However, these methods require consid-
erable computational effort to resolve interfacial structures and have 
limited applicability to realistic two-phase problems in industry, e.g., jet 
flow in dual-fuel combustion engines, transcritical flow with combus-
tion, bubble collapse with shock wave formation and shock bubble 
interaction. Some recent works analyze the conservative phase field 
model [14] and achieved great progress in shock-free compressible 
domains. However, the applicability of the phase field model for the 
questions defined here as objectives have not yet been demonstrated. 
Typically, the AIS model uses the Heaviside function or indicator func-
tion to distinguish different phases. The AIS method usually takes 
advantage of the natural conservation of mass and the effective capture 
of changes in interface topology, such as the breaking or reconnecting of 
interfaces. The various fluid components are artificially induced to mix 
at the unresolved interface. In this way, a thin mixing zone is created, 
even with non-miscible fluids. This has the great advantage that a single 
set of equations can be used to describe the two-phase flow properties 
throughout the domain, without having to explicitly track the sharp 
interface. 

Approaches with diffuse interfaces are efficient and also suitable for 
three-dimensional cases with different fluid components. The corre-
sponding diffuse interface effects are purely due to numerical processes 
and approximate a sharp gradient with the mesh size approaching zero. 
Diffuse-interface approaches for the simulation of compressible two- 
phase flows can be classified into certain categories: the four-equation 
model, the five-equation model, the Baer-Nunziato model, etc. In the 
four-equation model [15–26], the mass fraction is usually used as the 
Heaviside function, whereas in the five-equation model [27,28], the 
volume fraction is usually considered as the Heaviside function. It is 
noted that the species-mass conservation is always maintained for the 
five-equation model, regardless of the numerical treatment of the vol-
ume fraction of the advection equation, while the conservative form of 
the additional species-mass conservation equation should be carefully 
achieved in the fully conservative four-equation model. The mass 
fraction-based four-equation model can account for an additional 

component with an additional species-mass conservation equation, in 
contrast to the volume fraction-based five-equation model, which re-
quires two equations for an additional species (advection equation for 
the volume fraction and equation for species mass conservation) and 
thus requires additional computational effort. 

An advantage of a mass fraction-based four-equation model [15–26, 
29,30] (over an LS formulation) is that it can handle flows where the 
species front is not initially present but forms during the calculation (as 
in chemical reactions, cavitation, or condensation). While 
Gama-transport based four equation models [31] (mixture of mass, 
momentum, energy and additional advection parameters) are ideal for 
stiffened gas type EOS, mass-fraction-based four equation models can be 
efficiently applied to real fluid models. The disadvantage of 
quasi-conservative models is poor conservation of species masses (the 
mass of each species is not accurately conserved) [15,31–33] and that 
artificial temperature spikes can occur [32]. 

In addition, the Baer-Nunziato equations [34], originally proposed to 
describe reactive multiphase flow (the transition from deflagration to 
detonation), are a set of equations used to study compressible multi-
phase flows [35–37]. The BN model includes conservation equations for 
mass, momentum and energy for each phase, which also take into ac-
count the interfacial dynamics between phases, e.g. the transfer of mass, 
momentum and energy between phases. In general, each phase is 
considered a compressible fluid in local thermodynamic equilibrium, 
while allowing for non-equilibrium conditions across the interface 
within the mixture. This implies that the self-equilibration time scale 
within each phase is significantly shorter than the equilibration time 
scale between the phases [29,38]. The BN model goes beyond traditional 
four- or five-equation models by considering interfacial forces, phase 
changes and phase compressibility [29,30,39], providing a more 
comprehensive approach to modelling compressible multiphase flows 
and enabling a detailed understanding of complex multiphase flows 
involving gases, liquids or mixtures. BN approaches exhibit very high 
numerical complexity including detailed interface tracking and require 
closure models for interface terms. This considerably complicates their 
applicability to industrial problems in the dual-fuel domain. 

In summary, we focus on a four-equation model based on the mass 
fraction, which is easily extensible to additional species (dual-fuel con-
ditions), suitable for real fluids, and usable for complex flows including 
cavitation. Since the working fluids in DFICE always contain a fraction 
of free gas, the proposed model is extended to include such a gas fraction 
in the fluid. 

1.2. Algebraic interface sharpening methods and THINC-based methods 

Algebraic interface sharpening methods (AIS) strive to algebraically 
reconstruct the two-phase interface or modify the RHS of the governing 
equations to avoid excessive interfacial diffusion, at relatively low 
additional computational cost. Examples include the Flux-Corrected 
Transport (FCT) scheme [40–42], post-processing anti-diffusion 
methods [43,44], the Tangent of Hyperbola for INterface Capturing 
(THINC) method [45–47], Compressive Interface Capturing Schemes for 
Arbitrary Meshes (CICSAM) [7], additional (artificial) compression term 
approaches [48–51], bounded variation or TVD methods [52–54], ENO 
or WENO approaches [55–57], Multidimensional Universal Limiters 
with Explicit Solution (MULES) [58,59] and High Resolution Interface 
Capturing schemes (HRIC) [60]. 

Various methods have been developed to bring the numerical two- 
phase interface with the least dissipation into agreement with the 
macroscopic hypothesis of a continuous medium. For example, adjusting 
the limiters in the TVD-MUSCL scheme [59] or the weighting co-
efficients in the WENO scheme [61,62] can help reduce the numerical 
dissipation and avoid oscillations in the discontinuous interface region. 
Furthermore, the reconstruction of the parameter space near the cell 
surfaces(SL and SR) and the development of specific Riemann solvers 
(S*=f(SL,SR)) can reduce the numerical dissipation at interfaces. 
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Among all types of AIS methods, the THINC-based method is an 
interesting option because it generally requires less computational 
effort. In the THINC method presented by Xiao [45], the hyperbolic 
tangent function was used to evaluate the numerical flux for the 
advection equation of the VOF function, which aimed to calculate the 
moving interface algebraically (without complex geometric recon-
struction). For multidimensional calculations, the numerical flux for 
each direction was determined by operator splitting. Then, the research 
focused on improving the description of the interface shape and avoid-
ing the surface curvature. Subsequently, a Boundary Variation Dimin-
ishing (BVD) scheme [63] was proposed and the following studies [47, 
64–66] focus on selecting different reconstruction candidates to mini-
mize jumps at cell boundaries. BVD usually reconstructs variable can-
didates for each cell interface and then decides on the final candidates, 
which results in additional computational resources and communication 
time for parallel computations. We focus on a robust and compact 
four-cell scheme, so further details related to BVD are not part of this 
work. 

So far, the THINC method has been developed and used for multi-
phase flows. However, it should be noted that THINC-based methods 
have been studied to a limited extent for complex compressible multi-
component applications involving shock waves, turbulence, cavitation, 
and moving interfaces, e.g., for high-speed atomization in a compress-
ible multicomponent environment. Daniel [67] use THINC in MUSCL 
scheme for incompressible multiphase flows. To simulate a supersonic 
liquid jet [68], a five-equation model was combined with a volume 
fraction THINC when capillary forces were neglected. A five-equation 
model combined with a density THINC was further implemented to 
simulate atomization [69]. Nonomura et al. [70] developed the THINC 
method with two compressible fluids and sharpened the volume fraction 
only, while Shyue and Xiao [71] presented a single-fluid multicompo-
nent flow model and used the reconstructed volume fraction to extrap-
olate other conservative parameters across the cell interface, both 
neglecting the surface tension. It is further noted that a recent devel-
opment (VOF-based) [72] or ongoing work [73,74] of the THINC-based 
method is the combination with the AMR technique in multiphase 
simulation, but it is still not fully capable for the complex compressible 
simulation involving cavitation flow, turbulent flow and real fluid ef-
fects with increasing computational cost. 

Coupled methods such as THINC-LS [75] and THINC-LS-VOF [76] 
were developed to improve the interface description and numerical 
accuracy, but they generally require significantly more computational 
resources to achieve good performance. The above THINC-based 
method is generally used to reconstruct the volume fraction of a 
five-equation model. Generally such models do not directly consider a 
Riemann solver of the cell interface. Rather, they decouple the rela-
tionship between pressure and density as well as internal energy in the 
reconstruction process. In addition, a realistic-flow such as the viscous 
term, surface tension, gravity, real-fluid and cavitation effects are 
generally ignored or not fully considered. 

1.3. Motivations and aims 

Our findings have inspired the creation of a numerical method that 
possesses the following key properties:  

• Ease of Implementation: The method should be straightforward to 
implement.  

• Robust Performance: It must perform reliably in industrial flow 
problems, even in challenging scenarios like transcritical flows or jet 
flows under internal combustion engine conditions, where the 
combination of high-order schemes and complex real fluid models 
often results in simulation instability. 

• Accuracy and Flexibility: The method should be accurate and flex-
ible, serving as an independent model applicable to various variables 
and capable of extension into higher-order schemes.  

• Suitability for Low Mach Number Flows in pure liquids as well as for 
high Mach numbers in liquid/gas or liquid/vapor mixtures.  

• Direct Combination of Turbulence Models: The method should allow 
for the direct integration of turbulence models.  

• Physical Consistency: It must maintain physical consistency. 

Developing such a method comes with its own set of challenges:  

• Spurious Oscillations: Complex two-phase simulations, particularly 
when dealing with large discontinuities, can lead to spurious 
oscillations.  

• Interface Smearing: Reducing interface smearing while ensuring 
high computational efficiency for practical three-dimensional prob-
lems is not straightforward.  

• Robustness Across Flow Types: Maintaining robustness across 
various flow types is essential.  

• Surface Tension Modeling: Describing surface tension effects with 
low computational cost while minimizing spurious velocities is a 
challenge. 

• Thermodynamic Consistency: Achieving thermodynamic consis-
tency between variables is a requirement. 

To address these challenges, we propose a robust Finite Volume 
Method (FVM) density-based framework with the following features:  

(1) Four-Equation Model: Our approach employs a four-equation 
model without the need for additional advection equations for 
volume fraction. It is fully conservative when no additional 
source terms are introduced. 

(2) THINC-Based Reconstruction: THINC-based reconstruction func-
tions are separately applied for the liquid-gas and liquid-vapor 
interfaces.  

(3) Compact Four-Cell Stencil (4-Cell) Scheme: We use a relatively 
straightforward implementation involving a compact four-cell 
stencil.  

(4) Inclusion of Surface Tension Effects: Our method incorporates 
surface tension effects. 

(5) Thermodynamic Consistency: We ensure thermodynamic con-
sistency between variables through the Thermodynamic- 
Dependent Update (TDU), which incorporates the effects of the 
Riemann solver into the computational interaction process. 

We propose a new four-equation (mass fraction) all-Mach method 
(consistent for Mach number approaching 0), which uses a single-fluid 
thermodynamic model to represent a multicomponent fluid. This 
model accounts for viscosity, surface tension, gravity, real-fluid effects, 
and cavitation effects. It effectively captures two-phase interfaces 
(liquid-gas and liquid-vapor) while maintaining interfacial equilibrium. 
Additionally, the discretization scheme offers implicit subgrid-scale 
modeling capabilities. 

2. Numerical model 

In present work, the proposed numerical model adopts the form of 
the compressible Navier-Stokes equations for two or more compressible 
fluids and adds additional conservation equations for the mass of (at 
least) one of the components. This approach is usually referred as 4 
equation model [16,77], which, in our case, includes viscous effects, 
surface tension and gravity effects. Besides, the approach discussed in 
the following sections can easily be integrated into existing compressible 
finite volume methods with only minor effort due to the compact (4-cell) 
stencil. 

2.1. Governing equations 

The governing equations are the well known Navier-Stokes equations 
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in conservation from for compressible fluids and fluid mixtures. q de-
notes mixture properties as obtained from the total mass, total mo-
mentum and total energy of the mixture and ξGasi denote the mass 
fraction of species “i” for a mixture of i+1 fluids. In the following, the 
governing equations for a compressible mixture of three fluids are 
presented: 

∂tq +∇⋅[C(q) +S(q)] = Q (2–1) 

Where, the state vector q = [ρ, ρu, ρE, ρξGas1, ρξGas2]
T contain the 

conserved variables for density, momentum, total energy and gas spe-
cies. C(q), S(q) and Q refer to convective term, stress term and source 
term, respectively, 

C(q) = uq = u

⎡

⎢
⎢
⎢
⎣

ρ
ρu

ρH
ρξGas1

ρξGas2

⎤

⎥
⎥
⎥
⎦
,S(q) =

⎡

⎢
⎢
⎣

0
pI − τ

− uτ − kc∇T
0
0

⎤

⎥
⎥
⎦, and =

⎡

⎢
⎢
⎣

0
ρf

uρf
0
0

⎤

⎥
⎥
⎦,

(2–2)  

where I refers to the unit tensor; ρH = ρE + p is the total enthalpy; τ is 
the viscous stress tensor, τ = μ(∇u+(∇u)T

− 2 /3(∇⋅u)I) and μ refers to 

the dynamic viscosity; kc refers to the thermal conductivity; f refers to 
the volume force, for surface tension and gravity, f = [f1, f2, f3]

T 
=

[δσkn1, δσkn2 + g, δσkn3]
T; k is the curvature, δ refers to the Dirac func-

tion that is nonzero only on the interface, σ denotes surface tension 
coefficient, n refers to the normal gradient of an indicator function; g 
refers to the gravity term. 

2.2. Barotropic thermodynamics equilibrium model for coupled (one- 
fluid) multi-component flow 

First, we extend a single-fluid model with an additional gas phase to 
a single-fluid multicomponent model with multiple gas components, 
based on prior work by Örley et al. [22] and Trummler et al. [23]. 

A typical three-component two-phase fluid Φ = {L, M, Gas1, Gas2} is 
selected, which refers to a liquid component, a liquid-vapor mixture and 
two gas components denoted as Gas1 and Gas2, respectively. 

For the liquid component 

ρL = ρsat, liq +
1
c2

L
(pL − psat) , pL ≥ psat , (2–3)  

where ρsat, liq is the liquid saturation density at its saturation pressure 
psat. 

For the liquid-vapor mixture 

ρM = ρsat, liq +
1

c2
M
(pM − psat) , pM < psat . (2–4) 

Since c2 = (∂p /∂ρ)|s=const, the mixture speed of sound is approxi-
mated as cM = (psat/ρsat, liq)

1/2. 
For the non-condensable gas phase 

ρGasi =
pGasi

RGasiTrefi
, (2–5)  

i.e., both gas components are treated as ideal gas, RGas1 and RGas2 refer to 
the specific gas constant, Tref1 and Tref2 refer to the corresponding 

temperatures. 
From the volume fraction αΦ = VΦ/V and the mass fraction ξΦ =

mΦ/m of component Φ, it is obvious that ρΦ = mΦ/VΦ = ξΦm/(αΦV) =
ξΦρ/αΦ, and ρ = m/V =

∑

Φ
ξΦρ =

∑

Φ
αΦρΦ. Naturally 

∑

Φ
αΦ = 1 and 

∑

Φ
ξΦ = 1, ρ = αL/MρL/M + αGas1ρGas1 + αGas2ρGas2. 

ρGasi =
ξGasi

αGasi
ρ =

pGasi

RGasiTrefi
. (2-6) 

Where αGasi = ξGasiρRGasiTrefi/pGasi. Thus ρ = αL/MρL/M + αGas1ρGas1 +

αGas2ρGas2 = (1 − αGas1 − αGas2)ρL/M + ξGas1ρ+ ξGas2ρ. Finally, we obtain 
the coupled (one-fluid) multi-component equation of state 
(1 −

∑
ρξGasiRGasiTrefi /pGasi)(ρsat, liq +

1
c2 ( pM − psat)) − (1 −

∑
ξGasi)ρ =

0. It indicates p = f(ρ, ξGasi) with the equilibrium assumption. If the 
pressure is higher than the saturation pressure of the liquid, then is no 
vapor. Otherwise we have 

αv =
Vvap

V
=

⎧
⎨

⎩

(1 − αGas1 − αGas2)
ρsat,liq − ρM

ρsat,liq − ρsat,vap

0

, ρ < ρsat,liq
, ρ ≥ ρsat,liq

. (2–7) 

We assume that there is no pure vapor and limit the largest volume 
fraction of vapor component to 99.5%. The mixtures viscosity is   

The thermodynamic equilibrium model for coupled (one-fluid) 
multi-component flow is detailed in Appendix A. It should also be noted 
that some of the phase transition models [78] can also be applied to the 
diffuse interface method. 

2.3. Surface tension modeling 

For surface tension modeling, the distribution characteristics of the 
indicator function or the Heaviside function (scalar in the two-phase 
flow) generally have a great impact on the surface tension calculation 
at the two-phase interface. By using various methods to sharpen the two- 
phase interface, the accuracy of the surface tension calculation can be 
improved. In addition, numerous numerical methods have been pro-
posed to improve the balance between pressure and surface tension ef-
fects to reduce the parasitic current or velocity. For example, balance 
between compressive and surface tension forces can be achieved by 
discretizing the surface tension and compressive forces at the same 
location. As shown in Table 2.1, we divide the surface stress modeling 
features into three types, according to their expressions and discrete 
forms. In the current work, Continuum Surface Force (CSF) model [79] 
is used(f), along with proper methods to obtain norm-direction gradient 
of scalar(∇H) and curvature(k). Details are explained in Section 3.2. 

2.4. Turbulence modeling 

For turbulence modeling, a high order improvement of THINC-TDU 
is proposed. To model the effects of sub-grid turbulence in the current 
four equation model, an implicit large eddy simulation (iLES) method is 
used. The iLES approach for compact stencils proposed by Egerer et al. 
[24] was based on the Adaptive Local Deconvolution Method (ALDM) by 
Adams et al. [93] and Hickel et al. [94,95] to deal with resolved sub-grid 
turbulence. The truncation error of the discretization scheme is learned 
from the data to serve as a sub-grid scale (SGS) model for turbulence. 
Hickel et al. [95,96] also developed a compressible version of ALDM, 

μmix = (1 − αGas1 − αGas2)
[
(1 − αv)(1+ 5 / 2αv)μliq +αvμvap

]
+ αGas1μGa1 + αGas2μGa2 (2–8)   
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with shock capturing abilities while smooth pressure waves and turbu-
lence are propagated without excessive numerical dissipation. More 
details related to ALDM are given in the work of Hickel [94,97,98] and 
Egerer et al. [24]. The ALDM method has been used by Örley [22,99], 
Trummler [23,100] in the two phase flow, which proves that it is a 
proper method in solving the fully compressible two phase turbulent 
flow. Based on previous work and in order to include the turbulence 
modeling, a high order improvement of THINC-TDU is proposed, in 
which the ALDM reconstruction is implemented to the momentum 
equation. 

Here we briefly summary the iLES method for a scalar nonlinear 
transport equation, 

∂u
∂t

+
∂
∂x

f (u) = 0 (2–9) 

And a linear low-pass filter operation could be represented as [95] 

u(x) =
∫+∞

− ∞

G(x − x‘)u(x‘)dx‘ = G ∗ u (2–10) 

By projecting the filtered continuous function onto the numerical 
grid xN = {xi}, the LES discretization of the transport equation is ob-
tained as 

∂uN

∂t
+ G ∗ ∂xfN(uN) = εsgs (2–11) 

And the sub-grid scale error/residual arises from the nonlinearity of 
f(u) and is obtained as εsgs = G ∗∂xfN(uN) − G ∗∂xfN(u), in which the 
inverse-filter operation uN = G− 1 ∗ uN. 

A finite-volume discretization could be presented as 

∂uN

∂t
+ G ∗ ∂x f̃N(ũN) = 0 (2–12)  

where uN presents the approximately deconvolved parameter, and the 
top-hat filter kernel G is 

G(x − xi) =

{
1/Δx, |x − xi| ≤ Δx/2,

0, otherwise. (2–13) 

A modified differential equation (MDE) can be formulated as [93] 

u(x) =
∫+∞

− ∞

G(x − x‘)u(x‘)dx‘ = G ∗ u (2–14)  

∂uN

∂t
+ G ∗ ∂xfN(uN) = εN (2–15) 

Where εN = G ∗∂xfN(uN) − G ∗∂x f̃N(ũN) presents the truncation error 
owning to the spatial discrete format. 

When the truncation error reproduces the physical properties of the 
exact sub-grid scale error/residual, we call the numerical discretization 
physically consistent. In this case, the numerical truncation error func-
tions as sub-grid scale model and we call the numerical scheme with εN 

an iLES model. In other words, if εN approximates εsgs in some sense for 
finite Δx we obtain an implicit SGS model contained within the dis-
cretization. 

3. Numerical methods 

3.1. Overall description 

Based on the finite volume method CATUM [22–24,99,100] (CAvi-
tation Technical University of Munich), we propose the following nu-
merical scheme where surface tension effects, a modified discontinuity 
sensor and real fluid effects are newly considered. In addition, numerical 
dissipation reduction and thermodynamic consistency at interfaces are 
achieved. 

As shown in Fig. 3.1, the following algorithm is based on a compact 
four-cell stencil, but it can be extended to a higher order with a larger 
stencil. It should be noted that a number of compact schemes have been 
proposed and can be found in the Refs. [101–103]. Here, we give this 
easy-to-implement four-cell stencil algorithm to solve the proposed 
model including viscous effects, surface tension effects, and gravity ef-
fects. The thermodynamic model used in the following part is related to 
the barotropic thermodynamic equilibrium model for coupled (single--
fluid) multicomponent flows proposed in Section 2.2. It can be extended 
to consider internal energy and real fluid effects, see Appendix B. 

In the following, we present the Riemann solver and introduce the 
reconstruction procedure for sharpening the liquid-gas interface. We 
also specifically propose procedures for sharpening the liquid-vapor 
interface, and describing surface tension discretization as well as high 
order improvement with turbulence modeling, finally give the flowchart 

Fig. 3.1. Schematic diagram of four-cell stencil.  

Table 2.1 
Classifications for surface tension modelling methods.  

Types Classification Criteria Terms/ 
Functions 

Examples Comments 

1 Heaviside function and its normal 
gradient 

δsn = ∇H  • Volume fraction function [79]  
• Level set function [4]  
• Dirac delta of ghost fluid method (GFM) [80,81] 

Obtain the unit normal across the interface 

2 Methods for curvature 
calculation 

k  • Smoothed volume fraction method [79]  
• Height function method [82–84]  
• Smooth the original curvature through kernel [85] or weight 

coefficient method [86] 

Obtain accurate curvature 

3 Methods for Surface Tension Force 
discretization (explicit curvature maybe 
not required) 

f  • Continuum surface force (CSF) [79], in some cases the curvature 
and norm-direction gradient of scalar are decoupled (like GFM 
method or level set method)  

• Continuum surface stress(CSS) [87,88]  
• Balanced Continuum surface force (bCSF) method or ghost fluid 

models [89]  
• Improved Riemann solver [90,86]  
• ⋅Sharp Surface Force (SSF) model [91,85]  
• Independent Source item effects methods [92] 

Surface tension acts on pressure field but 
not the velocity field, thus the parasitic 
currents can be reduced  
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of the newly developed algorithm. 

3.2. Description of Riemann solver 

To overcome the low Mach number problem, we use the “all-Mach” 
interface pressure reconstruction (asymptotically consistent pressure 
flux definition) and the modified numerical flux of Schmidt et al. [104]. 
It is important to note that most liquid-vapor two-phase flows exhibit 
low Mach numbers in regions where only the pure liquid phase is pre-
sent. However, as the speed of sound in liquid-vapor mixtures signifi-
cantly decreases, there arises a need for a robust flux formulation 
suitable for (very) high Mach numbers in such mixtures. The flux 
function we’ve selected has been shown to meet both of these re-
quirements (therefore it is called “all-Mach”), as documented in the 
references. Nevertheless, we must emphasize that in simulations 
involving supersonic or hypersonic gas flows, it is advisable to substitute 
this flux function with alternative methods, such as HLLC or the ROE 
flux. 

p∗ =
pL + pR

2
(3–1) 

The following Riemann solver is applied for the interface velocity 
S∗=u∗, which determines the upstream direction. 

u∗ =
ρLcLuL + ρRcRuR + pL − pR

ρLcL + ρRcR
(3–2)  

3.3. Reconstruction of interface variables 

At distinct interfaces between a liquid and a gaseous component or 
mixture we use THINC to reconstruct the mass fraction for the interface 
free-gas component(s) along with TDU to consistently reconstruct 
related thermodynamic quantities. Regions that do not contain (sharp) 
interfaces are treated as single fluid and MUSCL type reconstructions 
along with proper limiters are used. 

Let ξGas denote a scalar quantity, such as the mass fraction of a gas 
component. Let ξ1

Gas through ξ4
Gas be the cell averaged scalars in cells 1 to 

4 as sketched in Fig. 3.1.  

• Discontinuous interface between cells 2 and 3 

In order to compute the flux across the cell interface between cells 2 
and 3 we reconstruct left and right side values of the scalar ξGas as 

ξL
Gas = min

(
ξ1

Gas, ξ3
Gas

)
+

max
(
ξ1

Gas, ξ3
Gas

)
− min

(
ξ1

Gas, ξ3
Gas

)

2(

1+ θ
tanh(β) + E

1 + E⋅tanh(β)

)

,

(3–3)  

where θ =

{
1 if ξ3

Gas ≥ ξ1
Gas

− 1 otherwise
, E =

exp(θβ(2F− 1))/cosh(β)− 1
tanh(β), F =

ξ2
Gas − min(ξ1

Gas , ξ3
Gas)+γ

max(ξ1
Gas , ξ3

Gas)
+ γ 

ξR
Gas = min

(
ξ2

Gas, ξ4
Gas

)
+

max
(
ξ2

Gas, ξ4
Gas

)
− min

(
ξ2

Gas, ξ4
Gas

)

2
(1+ θE),

(3–4)  

where θ =

{
1 if ξ4

Gas ≥ ξ2
Gas

− 1 otherwise
,E =

exp(θβ(2F− 1))/cosh(β)− 1

tanh(β)
)

F=

ξ3
Gas − min(ξ2

Gas , ξ4
Gas)+γ

max(ξ2
Gas , ξ4

Gas)
+ γ )

γ is a small number to avoid division by zero and the parameter β =
1.6 was found to give suitable results. The literature [45,63–67,75,76, 
105–110] discusses values for β in the range between 1.6 and 3.  

• Regions without discontinuous interfaces 

In smooth regions, an All-Mach MUSCL type reconstruction with 
proper limiters is used. Free-gas mass fractions are described here to 
illustrate the process. They are discretized by a second order upwind 
biased reconstruction with proper slope limiter. 

In order to compute the flux across the cell interface between cells 2 
and 3 we reconstruct left and right hand values of the scalar ξGas as 
ξL

Gas = ξ2
Gas + 1/2f(r−i+1/2)(ξ

2
Gas − ξ1

Gas) and ξR
Gas = ξ3

Gas − 1/2f(r+i+1/2)

(ξ4
Gas − ξ3

Gas). f(r) represents the slope limiter function that the ratio of 
upwind to central differences could be adjusted according to various 
limiters, for example, 

⋅Minmod limiter: f(r) = max(0, min(1,2r),min(r,2)). 
⋅Koren limiter 3rd-order accurate for smooth data: When r>0, f(r) =

min(2.0, 2.0∗r, (1.0 + 2.0∗r)/3.0); otherwise f(r) = 0. 
The slope function is decided according to the upwind direction. If 

upwind direction is in the positive direction, r−i+1/2 = (ξ2
Gas −

ξ1
Gas)/(ξ

3
Gas − ξ2

Gas), otherwise, r+i+1/2 = (ξ4
Gas − ξ3

Gas)/(ξ
3
Gas − ξ2

Gas). 
Together with following TDU idea, the All-Mach THINC-TDU 

method is obtained.  

• TDU idea 

Other interfacial parameters are updated based on the interfacial 
pressure and interfacial gas mass fraction according to the thermody-
namic equilibrium function, so that the numerical discrete format of the 
indicator matches the discrete density format and thermodynamic 
consistency is maintained 

ρ∗ = f
(
p∗, ξ∗Gas1, ξ∗Gas2

)
(3–5) 

Another option is to reconstruct the density and then update the mass 
fraction according to function ξ∗Gas1& ξ∗Gas2 = f(p∗, ρ∗). Then we obtain 
the volume fraction according to thermodynamic relations 

α∗
Gas1&α∗

Gas2 = f
(
ρ∗, p∗, ξ∗Gas1, ξ∗Gas2

)
(3–6) 

Besides, reconstruction methods can take internal energy into ac-
count, see Appendix B. 

3.4. Sharpening the liquid-vapor interface 

Moreover, in cases of cavitation/bubble collapse with liquid and 
liquid-vapor components, it is difficult to sharpen the liquid-vapor two- 
phase interface directly because the volume fraction of vapor is deter-
mined according to the barotropic relations in Section 2.2, while in cases 
with liquid and non-condensable gas components, the gas-liquid two- 
phase interface is sharpened according to the above steps. Here, the 
procedure for sharpening the liquid-vapor two-phase interface is further 
elaborated. 

Remark 1. For regions where liquid-vapor two phase interface are 
detected by a sensor, or a discontinuous liquid-vapor interface region 
meets the requirements ε < α < 1 − ε and (αi − αi− 1)(αi+1 − αi) > 0, 
where ε is a small positive parameter comparing with αi, the density is 
constructed by the THINC-based idea, 

ρL = min
(
ρ1, ρ3)+

max(ρ1, ρ3) − min(ρ1, ρ3)

2

(

1+ θ
tanh(β) + E

1 + E⋅tanh(β)

)

,

(3–7)  

herein θ =

{
1 if ρ3 ≥ ρ1

− 1 otherwise
, E =

exp(θβ(2F− 1))/cosh(β)− 1

tanh(β)
)
,

F =

ρ2 − min(ρ1 , ρ3)+γ
max(ρ1 , ρ3)

+ γ ), 
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ρR = min
(
ρ2, ρ4)+

max(ρ2, ρ4) − min(ρ2, ρ4)

2
(1+ θE) (3–8)  

where θ =

{
1 if ρ4 ≥ ρ2

− 1 otherwise ,E =exp(θβ(2F− 1))/cosh(β)− 1

tanh(β)

)

,F= ρ3 − min(ρ2 , ρ4 )+γ
max(ρ2 , ρ4 )

+γ ). γ 

is a small num-

ber to avoid division by zero and the parameter β = 1.6 was found to 
give suitable results. 

Subsequently, according to the thermodynamic relations (2–4) and 
(2–7), the vapor volume fraction is obtained. Other parameters like the 
speed of sound need also to be updated accordingly. Modified sensors 
can be used to detect liquid-vapor two phase regions, which are intro-
duced in Appendix D. 

Remark 2. For complex cases with liquid, liquid vapor, non- 
condensable gas, firstly, THINC is applied for mass fraction of non- 
condensable gas of liquid-gas two phase interface ξ∗Gas1, ξ∗Gas2. Sec-
ondly, TDU is applied to obtain density of liquid-gas two phase interface, 
i.e. ρ∗ = f(p∗, ξ∗Gas1, ξ∗Gas2); then THINC is applied for the density of 
liquid-vapor two phase interface ρ∗ (Remark 1). Finally, TDU is applied 
to obtain vapor of liquid-liquid vapor two phase interface α∗

v = f(p∗, ρ∗,

ξ∗Gas1, ξ∗Gas2) as well as other parameters like speed of sound. 

3.5. Discretization of surface tension 

The calculation of the normal gradient and curvature depends on 
which surface tension model is used. Here we decouple the calculation 
of the gradient of the Heaviside approximation from the curvature 
calculation. We use a Gaussian convolution kernel (filter) to smooth this 
indicator function, and then use the smoothed parameters for the cur-
vature calculation(along with appropriate discrete method with weight 
factors). This simple method attempts to strike a balance between 
robustness and time overhead in all-Mach THINC-based interface 
compression. 

2D Gaussian convolution kernel (filter)
1
16

⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦ (3–9) 

As shown in Fig. 3.2, this 2D kernel is adapted for three dimensional 
cases, where the normalization coefficient is 1/64, 

After the smoothing step, the curvature is obtained from 

k = ∇⋅
(

∇α̃
|∇α̃|

)

(3–10) 

For the calculation of the curvature, the discrete shape of the 
gradient part can follow the Gaussian divergence theorem or the 
following method can be used. 

As shown in Fig. 3.3, the curvature is calculated through adjacent 9 
cells in 2D (27 cells are used for the 3D case). The gradient in each cell 
interface is first calculated repeatedly in x and y directions. Then the 
gradient of the four vertices [i+1/2,j+1/2], [i+1/2,j-1/2], [i-1/2,j+1/ 
2], [i-1/2,j-1/2] is calculated. The last step consists in finding the 
gradient of the middle grid [i, j] by averaging the gradient of the 
smoothed volume fraction in the four vertices [i+1/2,j+1/2], [i+1/2,j- 
1/2], [i-1/2,j+1/2], [i-1/2,j-1/2]. The weights of the smoothed volume 
fraction of the neighboring cells are implicitly considered and act like 
the effects of a Gaussian convolution kernel (filter). 

As explained in Section 2.3, there are some other options/methods to 
describe surface tension effects in a surface tension dominant flow, and 
most of them could give even better results when combined with the 
adaptive mesh refinement (AMR) method. 

For example, the height function (HF) method with 3 × 3 × 3, 3 × 3 
× 5, or 3 × 3 × 7 cells for the 3D case and 3 × 3, 3 × 5, or 3 × 7 cells for 
the 2D case; can provide better accuracy but is more time-consuming. 
With a large number of templates requires special treatment (template 
reduction), which reduces its robustness. Here we give only expressions 
that can be directly combined with the current scheme: k = − ∇⋅n = −

H′‘(x0)/[1 + H′(x0)
2
]
3/2, where, n = − 1

[1+H′(x0)
2]

1/2
(

H′(x0)1
)

, Hi =

∑j+3
j− 3αi,j⋅Δyi,j , H′

(x0) = (Hi+1 − Hi− 1)/2Δx, H′′
(x0) = (Hi+1 + Hi− 1 −

2Hi)/(Δx)2. Δx and Δy are the mesh size in x and y direction respec-
tively. 

Fig. 3.2. 3D Gaussian convolution kernel blurring filters (with the normaliza-
tion coefficient 1/64). 

Fig. 3.3. The diagram to calculate curvature.  

Fig. 3.4. Flowchart of the current numerical scheme.  

Fig. 4.1. Interface only problem: the 1D advection of a square column.  
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An associated Riemann solver with the model for flows with in-
terfaces including capillary effects was proposed [90], by replacing 
the pressure jump condition across contact discontinuities [P] = 0, by 
[P] = − σk[a],ΔP∗ = − σkΔα, s∗ = [pR − pL + ρLuL(sL − uL) − ρRuR(sR −

uR) − σk(αR − αL)]/[ρL(sL − uL) + ρR(sR − uR)]. Therefore, the original 

Riemann solver (such as HLLC) could be improved to balance the surface 
force well and reduce the parasitic currents. Another possibility would 
be the CSS model, which uses the surface tension at the cell surface and 
can be cast in conservative form, but also tends to generate spurious 
currents. The performance of the current surface tension modeling will 
be discussed in details. 

3.6. Flowchart of the current algorithm 

We implement a four-equation model for the compressible single- 
fluid multicomponent flow, which includes the thermodynamic rela-
tion between single-fluid and multicomponent flow. The THINC-based 
reconstruction method is combined with the correction of the thermo-
dynamic relations in the reconstruction step with the Riemann solver 
(TDU). Mass fraction and density as well as the process of internal en-
ergy reconstruction are associated with the same thermodynamic re-
lations (EOS). An explicit, four stage low storage Runge-Kutta method is 
used for time integration. 

Fig. 3.4 shows the flowchart of the newly developed algorithm, 

Table 4.1 
Thermodynamics parameters of current case.  

Component γ R (kJ/(kg⋅ K)) Cv (kJ/(kg⋅ K)) P∞ (Pa) T (K) ρ (kJ/m3) P0 (Pa) U (m/s) 

1 5 7500.75 1875.18 0 300 4.444 107 5 
2 1.6 283.33 472.22 0 300 117.647 107 5  

Table 4.2 
Limiters for scalar transportation.  

Name Expressions 

ri =
Φi − Φi− 1

Φi+1 − Φi  

VanAlbada’s limiter [114] f(r) = (r + r ∗r)/ (1 + r ∗r)
VanLeer’s limiter [115] f(r) = (r + abs(r))/(1.0 + abs(r))
MinMod limiter [116] f(r) = max(0.0, min(1, r)). 
Chatkravathy limiter [117] f(r) = max(0.0, min(1.0,4r))
Monotonized Central (MC) limiter  

[118] 
f(r) = max(0.0, min(2,2r,0.5(1 + r)))

Koren’s limiter [119] f(r) = max(0.0,min(2.0, 2.0∗r, (1.0 +

2.0∗r)/3.0)

Fig. 4.2. Effects of different flux limiters on the 1D interface advection in the convective dominant two phase flow (a) volume fraction distribution using All-Mach 
MUSCL-TVD-TDU method with different limiters or All-Mach THINC-TDU method after 4 times periodic flow, at T=0.16s, (b) zoomed view of (a). 
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which summarizes the procedures shown in Sections 3.2–3.5. After 
applying THINC for the mass fraction reconstruction step (ξ∗Gas) for 
liquid-gas cases, the Riemann solver is used in combination with the EOS 
to update the mass fraction primitive parameters (such as density, ρ∗ =

f(p∗, ξ∗Gas1, ξ∗Gas2)). In this way, some parameters (like density ρ∗) are 
automatically sharpened, maintaining thermodynamic consistency and 

reducing numerical error by using the same numerical scheme. For the 
case with liquid-vapor interface, THINC is applied to the density (ρ∗) 
instead of the scalar. This THINC thermodynamic-dependent update 
(THINC-TDU) method preserves physical compatibility and is conser-
vative. It sharpens the two-phase interface (including the liquid-vapor 
region and the liquid-gas region). An advection equation for the vol-
ume fraction is not required since it can be obtained from thermody-
namic relations. Appendix D describes details of sub-grid turbulence 
model, as an extension. Although the sketch of the algorithm shows 
multiple branches for specific cases or models, the production algorithm 
uses pre-compiler flags to avoid if/else switching during computation. 
The performance and scalability of the system is shown in Chapter 5. 

To provide more specifics, the current THINC-TDU scheme stream-
lines the reconstruction process by reducing the number of independent 
reconstruction methods required for individual parameters. The funda-
mental concept is that certain unknown parameters can be computed 
based on the information available, particularly through thermody-
namic relationships. This approach eliminates the need for independent 
reconstruction of each parameter during the reconstruction step. As a 
result: 

• Some parameters, not directly subject to THINC-based reconstruc-
tion, exhibit sharper effects due to the incorporation of 
thermodynamics.  

• This approach is particularly advantageous for sharpening the liquid- 
vapor interface, where no mass fraction equation is available. 
THINC-TDU assists in initially sharpening density and subsequently 
refining the volume fraction based on thermodynamic relationships. 

Fig. 4.4. The schematic of shock-bubble interaction computational domain 
(sketch map). 

Table 4.3 
Initial conditions for shock bubble interaction case.  

Stage p 
[Pa]

u 
[m /s]

v 
[m /s]

ρ 
[kg /m3]

Non-dimension 
(p,u,v,ρ) 

pre-shocked 
air 

101,325 0 0 1.225 (1,0,0,1) 

post-shocked 
air 

159,059 113.5 0 1.686 (1.5698,- 
0.394,0,1.3764) 

Helium 101,325 0 0 0.169 (1,0,0,0.138)  

Table 4.4 
Gas properties adopted in the shock-bubble interaction simulations [120].  

Gas Component γ R [kJ/(kg⋅ K)] Cv [kJ/(kg⋅ K)] Ms Mesh number 

Air 1.400 0.287 0.720 1.22 14,400 × 1600 (0.055625mm) 
He 1.670 2.080 3.110  

Fig. 4.5. Numerical schlieren images for the evolution of shocked air-helium interaction. (a)32μs, (b)52μs, (c)72μs, (d)102μs, (e)245μs; the first column presents 
current numerical results, while others show results from reference. 

Y. Jiao et al.                                                                                                                                                                                                                                     



Computers and Fluids 274 (2024) 106186

10

• It ensures numerical and thermodynamic consistency when dealing 
with cases involving liquid, vapor, and non-condensable gas. Pa-
rameters are interdependent during the reconstruction step, with 
thermodynamic relationships serving as constraints. 

4. Validations and results 

4.1. Interface only problem 

The “interface only problem” is used to verify the applicability of the 
method for simulating two-phase flows without spurious pressure/ve-
locity oscillations or strong interface smearing. In the following, the one- 
dimensional advection of a two component fluid, representative for 
convection-dominant two-phase flows, is investigated. Initial and 
boundary conditions are shown in Fig. 4.1. A computational domain of 
length 0.2m is discretized with 100 cells in x-direction. Here, we use the 
thermodynamic closure relations presented in Eqs. (2.5) and (2.6) with 
parameters including initial pressure and velocity listed in Table 4.1. 
The detailed proof of this closure is available in Refs. [111–113]. The 
temperature for two components is assumed to be constant throughout 
the process, together with the mechanical and thermal equilibrium 

conditions, to avoid effects from multiple factors and to highlight the 
effects of different methods on interface reconstruction. The CFL number 
is 1.4. 

For the All-Mach MUSCL-TVD-TDU scheme, limiters are used to 
control the reconstruction of the primitive variables at cell interfaces. As 
shown in Table 4.2, we compare various limiters and discuss their 
suitability in the following section. Koren’s limiter is used for velocity 
and various limiters are applied to reconstruct the mass fraction. Density 
and pressure at cell interfaces are obtained as described in Section 
3.2~3.4. 

Fig. 4.2 compares the volume fractions after four flow through times 
(at t=0.16s) as obtained by the investigated limiters and by the proposed 
sharpening methodology “THINC-TDU”. Obviously, the phase interface 
shows significant smearing for most of the limiters, although Korens’ 
limiter gives superior results. However, the proposed methodology 
outperforms all others noticeably as shown in Fig. 4.2. 

As shown in Fig. 4.3 (a), using the All-Mach THINC-TDU method, the 
distribution of the phase interface remains sharp over time. Fig. 4.3 (b), 

Fig. 4.6. Evolution of volume fraction from the interaction of shocked air-helium interaction. (a)32μs, (b)52μs, (c)62μs, (d)72μs, (e)82μs, (f)102μs, (g)245μs, (h) 
437μs, (i)704μs. 

Fig. 4.7. Space-time diagram for three characteristic two phase interface points 
in the shock-bubble problem, comparing with results from Quirk and Karni. Fig. 4.8. Computation domain of rising bubble test case.  

Y. Jiao et al.                                                                                                                                                                                                                                     



Computers and Fluids 274 (2024) 106186

11

4.3 (c) show that pressure as well as velocity maintain in their initial 
condition even after four periodic flow through times, which proves that 
the method can keep interface sharp and avoid pressure or velocity 
oscillations. 

4.2. Shock wave interaction with a helium cylinder 

In this part we assess the ability of the proposed methodology to 
capture the shock-wave bubble interaction processes on example of a the 
well-known test-case specified in [120]. The computational domain and 
the initial conditions are shown in Fig. 4.4 and summarized below. A 
uniform mesh with 14,400 × 1600 cells in stream-wise and normal di-
rection (0.055625mm resolution) are adopted. The upper and lower 
boundary of the computational domain are inviscid solid walls while on 
the left and right boundary zero gradients for the flow variables [120, 
121] are prescribed. Table 4.4 shows the fluid properties and their 
thermodynamic modeling. The thermodynamic closure relations used in 
this case are given in Eqs. (A.1.1)–(A.1.5) of Appendix A. 

During the evolution process, the two phase interface is kept sharp by 
the proposed methodology. 

The specific conditions are presented in Table 4.3, which correspond 
to the non-dimensionalized initial conditions in [121] 

As shown in Fig. 4.5, we can see that the results of the helium-air test- 
case are in good agreement with the results from Quirk and Karni [120]. 
Highly detailed structures are obtained and shown in Fig. 4.6. The 

methodology clearly resolves the physical phenomena while ensuring 
robust performance. 

For the idealized Schlieren images, the following form to set pseudo- 
schlieren values is adopted, 

∅ = exp
(

− C
|∇ρ| + A

B + A

)

(4–1) 

Here, ∅ refers to the pseudo-schlieren value, |∇ρ| =
[(∂ρ/∂x)2

+ (∂ρ/∂y)2
]
1/2, and the three values A,B,C can be adjusted ac-

cording to display effects. Generally, A=0 and B = |∇ρ|max and it decays 
to ∅ = exp( − C|∇ρ| /|∇ρ|max). The displayed gray scales are adjusted 
according to the method recommended in the Ref. [120]. 

The evolution time steps selected are most close to the reference 
time, so small deviation are acceptable since results of the reference time 
could not be perfectly found. 

As shown in Fig. 4.7, the evolution history of three characteristic two 
phase interface points are also in very good agreement with Quirk and 
Karni [120]. 

4.3. Rising bubble 

In order to validate the proposed methodology with respect to effects 
caused by surface tension, viscous forces as well as gravity, we simulate 
the classical rising bubble case [122] with a mesh resolution of 100 ×
200 cells for Case1 and 160 × 320 cells for Case2 in x- and y-direction. 
The computational domain is shown in Fig. 4.8. As illustrated in 
Table 4.5, two different cases are investigated. The thermodynamic 
closure relations presented in Eqs. (2-3)–(2-8) are used. The CFL number 
is 1.4. 

In order to demonstrate the significant improvement of the proposed 
methodology compared to previous work we first show results obtained 

Table 4.5 
parameters for two rising bubble cases.   

ρ1 (kg/m3) ρ2(kg/m3) μ1(Pa⋅s) μ2(Pa⋅s) g(m/s2) σ(N/m) 

Case1 1000 100 10 1.0 0.98 24.5 
Case2 1000 1.0 10 0.1 0.98 1.96  

Fig. 4.9. Rising bubble evolution of case1 at t=0s, 0.5s, 1s, 1.5s, 2s, 2.5s, 3s (from left to right) (a)Results of All-Mach MUSCL-TVD-TDU method, (b)Results of All- 
Mach THINC-TDU, (c)Comparison of results between Ref. [124] and All-Mach THINC-TDU. 
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with the All-Mach MUSCL-TVD-TDU in Figs. 4.9(a) and 4.10(a). As one 
can see, the two phase interface heavily smears out, although positions 
and shapes show reasonable agreement with the references given in 
Figs. 4.9(c) and 4.10(c) [123,124], respectively. In contrast, the pro-
posed All-Mach THINC-TDU method produces excellent results as shown 
in Figs. 4.9(b) and 4.10(b) [123,124]. Thus, the applicability of our 
numerical scheme for the cases including low Mach numbers, surface 

tension, viscous effects, large density rations as well as gravity is 
demonstrated. 

4.4. Oscillating ellipsoidal drop 

An oscillating ellipsoidal drop is used to verify the ability of the 
method to predict the dynamics of surface tension. We use the 

Fig. 4.10. Rising bubble evolution of case2, at t=0s, 1s, 2s, 2.4s, 3s (from left to right), (a)All-Mach MUSCL-TVD-TDU method, (b)All-Mach THINC-TDU results, (c) 
Comparison of results between Reference marked with dotted line [123] and All-Mach THINC-TDU. 

Table 4.6 
Thermodynamics parameters of current case.  

Component γ R (kJ/(kg⋅ K)) Cv (kJ/(kg⋅ K)) P∞ 

(Pa) 
T 
(K) 

ρ 
(kJ/m3) 

P0 

(Pa) 
U0 

(m/s) 

1 5 7500.75 1875.18 0 300 4.444 107 (0,0) 
2 1.6 283.33 472.22 0 300 117.647 107 (0,0)  
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thermodynamic closure relations presented in Eqs. (A.1.1)–(A.1.5) with 
parameters shown in Table 4.6, 

The quadratic computational domain is (1.58 × 10− 3) × (1.58 ×
10− 3) m2 which is discretized with 158 × 158 square cells. Initial 
pressure is P0 = 107Pa. Non-reflective boundary conditions are used. 
The original bubble shape is 

(10000x − 7.9)2

42 +
(10000y − 7.9)2

32 = 1 (4–2) 

We compare our results with an analytic expression for the oscilla-
tion period of the liquid droplet given by Fyfe et al. [125,126]: 

T = 2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ρ1 + ρ2)(ab)3/2

48σ

√

(4–3) 

In our case, the densities are 117.647 kg/m3 and 4.444kg/m3, 
respectively. The initial ellipsoid has short axis a=6 × 10− 4 m and major 
axis b=8 × 10− 4 m, surface tension coefficient is σ = 80N /m, thus a 

periodic time is T ≈ 2 × 10− 5s is obtained [86,125–128] . 
In Fig. 4.11, the oscillating bubble shape evolution are shown. The 

bubble shape changes into a circular shape at times T2=5 × 10− 6s and 
T4=1.5 × 10− 5s, while at T5=2 × 10− 5s the ellipsoidal shape is 
recovered. Fig. 4.12 it shows the temporal evolution of the semi-length 
of the minor axis, from which an oscillation period of T=2 × 10− 5s is 
found in accordance to the analytic expression. 

After an initial transient we compute averaged pressure fields inside 
and outside of the bubble and obtain a value of 241017Pa. Since the 
equivalent radius of the ellipsoidal bubble is R=0.346 mm and the 
surface tension coefficient is 80N/m, 

[P] =
σ
R

(4–4)  

the theoretical value of the pressure jump for a spherical bubble is about 
231214Pa, corresponding to a relative pressure error of about 4.24%, 
which is acceptable for the given mesh resolution. 

4.5. Recovery of circular or spherical shape 

In this section we investigate a two-dimensional and a three- 
dimensional transition from a quadratic or cubic “bubble” towards its 
circular or spherical shape. The two-dimensional case is identical to the 
one presented in the Ref. [129], where the computational domain is 
0.75m × 0.75m with mesh resolution of 150 × 150 cells in x-direction 
and y-direction, respectively. A square bubble is centred in the compu-
tational domain with an initial side length L=0.2m. The surface tension 
coefficient is 800N/m and the density ratio between the liquid bubble 
and the gaseous ambient is 1000, with ρgas = 1kg/m3 and ρliquid =

1000kg/m3. Non-reflective boundary conditions are used. Viscous ef-
fects as well as gravity are neglected. For this test-case, all substances are 
modeled by barotropic thermodynamic relations according to Eqs. (2-3) 

Fig. 4.11. Oscillating bubble shape at (a)T1=0s, (b)T2=5 × 10− 6s, (c)T3=10− 5s, (d)T4=1.5 × 10− 5s (e)T5=2 × 10− 5s.  

Fig. 4.12. The time dependent semi-length of minor axis.  
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till (2-8), where, 

ρsat, liq = 1000kg
/

m3, psat = 2340, T = 336.9K, c = 1500m
/

s, p0

= 1bar, RGas = 296.8, kGas = 1.4 

Our results presented in Fig. 4.13(a) are in very good agreement with 
the reference shown in Fig. 4.13(b) [129]. Note that, contrary to the 
reference, we show the volume fraction while “magnified schlieren 
images of the mixture density” are shown in the reference but a 
description of the numerical method to generate schlieren images is 
missing. 

We extend this two-dimensional recovery case to three dimensions. 
As shown in Fig. 4.13(c)–(f), a spherical bubble evolves from an initially 
cubic “bubble” under the effects of surface tension, which proves the 
ability of current methodology to predict three-dimensional flow physics 

including surface tension effects. 

4.6. Two dimensional simulation of primary breakup 

We apply the proposed algorithm to one of our target applications, 
which cover dual fuel internal combustion engine (DFICE) flow physics. 
In order to demonstrate the benefits of the interface sharpening 
approach, we simulate a two-dimensional planar shear layer under 
typical DFICE conditions. Fig. 4.14 shows the numerical domain and the 
boundary conditions. The characteristic length is D=89.4 μm and the 
grid resolution is 0.75 μm. Identical to the upcoming chapter 4.7, the 
fluid properties correspond to the “SprayA-210,675″ test-case [130], 
where liquid n-Dodecane and a gas mixture of 20% Methane and 80% 
Nitrogen enter the domain from left, separated by a viscous wall. Sym-
metry boundary conditions at the top and at the bottom surfaces are 
prescribed. The initial chamber and ambient pressure is 60MPa. The 
inlet velocity of the liquid is 500 m/s and the velocity of the gas mixture 
is 450 m/s. For this test-case, all substances are modeled by barotropic 
thermodynamic relations according to Eqs.(2-3) till (2-8). 

In Fig. 4.15 we compare the predicted evolution of the two-phase 
interface and its sharpness using our standard model (a and c, left) 
and the recently developed sharpening approach (b and d, right). The 
later one leads to a significant improvement in the prediction quality, 
preventing the interface from getting smeared and allowing for higher 
details, such as the liquid tip. Since the numerical complexity of both 
approaches compares well, the improved interface quality either allows 

Fig. 4.14. Sketch Map of “SprayA- 210,675 model” Benchmark Case.  

Fig. 4.13. Bubble shape evolution using volume fraction contour (a) current two dimensional recovery bubble case with uniform mesh resolution 0.005m and 
surface tension coefficient is 800N/m, (b) Reference of two dimensional recovery bubble case with uniform mesh resolution 0.005m and surface tension coefficient is 
800N/m [129], (c)~(f) evolution of three dimension recovery bubble case. 
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for a reduction in mesh resolution or in a gain in quality. 
Moreover, according to Section 2.4 and Appendix D, we compare the 

results of our original iLES scheme and the newly developed THINC-TDU 
high-order iLES algorithm. It is evident that the improved iLES scheme 
yields sharper two-phase interfaces. Moreover, the viscous sublattice 
effects (structures) in Fig. 4.15 (e)(f) obtained with the iLES scheme are 
more obvious than those in Fig. 4.15 (a)(b) obtained with the scheme 
without SGS model (Section 4.6). In Sections 4.7 and 4.8, we will show 
three-dimensional cases simulated with the THINC-TDU and THINC- 
TDU-iLES high-order algorithms. 

4.7. Three dimensional simulation of primary breakup in dual-fuel 
conditions by THINC-TDU scheme 

This test-case demonstrates the ability and robustness of the two- 
phase interface treatment methodology to be applied in engineering 
applications such as a high speed liquid jet discharging into a dual-fuel 
ambient. The test-case is commonly referred as “SprayA-210,675″ [130]. 
A block-structured o-grid with a total number of 55 million cells at a 
resolution of minimum 0.04μm at a time-step of 0.1 nanoseconds is used. 
As shown in Fig. 4.16, the computational domain is 10D × 10D × 20D 
(D=89.4μm) in x/y/z-direction, respectively. The initial chamber and 
ambient pressure is 60MPa and the discharge velocity of the jet is 500 
m/s. The liquid jet consists of n-Dodecane and the gas mixtures includes 

20% Methane and 80% Nitrogen. For this test-case, all substances are 
modeled by barotropic thermodynamic relations according to Eqs. (2-3) 
through (2-8). Due to the high inertia of the jet and as our focus is on the 
robustness of the methodology, we neglect surface tension and gravity. 

In Fig. 4.17, the mushroom head shape, bridges, lobes, droplets, and 
other typical structures can be seen in this high-resolution simulation, 
showing the robust performance of our method. This three-dimensional 
simulation represents an under-resolved DNS of high-speed primary 
breakup, with inherent numerical dissipation keeping the computation 
stable. In this case, the compression method is applied only to the region 
of the two-phase interface, so some nearly pure fluid regions still exhibit 
a tendency to smear, but it is minor. 

Fig. 4.15. Two phase interface evolution of 2D “SprayA-210,675 model” Benchmark Case (60Mpa, ΔV=50m/s), All-Mach MUSCL-TVD-TDU: (a) and (c), All-Mach 
THINC-TDU: (b) and(d), Original iLES (e), and high order THINC-TDU-iLES:(f). 

Fig. 4.16. Computational domain for “Spray A-210,675 model” (a) and detail 
of the o-grid (b). 
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4.8. Three dimensional simulation of turbulent jet flow in dual-fuel 
conditions 

In this section we extend the two dimensional case of Fig. 4.14 to a 
three dimensional counterpart shown in Fig. 4.18 by applying periodic 
boundary conditions in span-wise direction. The smallest mesh size near 
the wall is 0.1μm, which meets the requirement y+ < 1 based on liquid 
diesel properties and the relative velocity between liquid and gas. We 
compare the three dimensional results from the original iLES and the 
current high order THINC-TDU-iLES algorithm(Appendix D) along with 
surface tension. The surface tension coefficient of diesel adopted is 
0.028N/m. The initial pressure and the ambient pressure is 6 MPa, lower 
than case of Section 4.7, while other parameters are identical. Actually, 
the effects of surface tension can be ignored in this convectional- 
dominant flow with large Weber number (in the region near the 
nozzle exit). However, we includes viscous effects as well as surface 
tension in order to show the performance and robustness of the current 
scheme. 

The development of the shear layer is shown in Fig. 4.19 (a). It is 
obvious in Fig. 4.19 that the improved iLES method (Fig. 4.19 (a), (c)) 
provides sharper interfaces than the original one (Fig. 4.19 (b), (d)) and 
the primary breakup is well captured (Fig. 4.19 (b), (d)). 

4.9. Gas/vapor bubble collapse with interface sharpening 

In the following, vapor and gas bubble collapses are simulated using 
the method of interface sharpening and TDU. In this simulation, we use 
the thermodynamic relations from Section 2.2 and Appendix A. All 
configuration settings such as initial pressure distribution and initial 
bubble position are similar to [131]. As shown in Fig. 4.20, the distance 
between the gas or vapor bubble and the wall is H=440µm and the 
radius of the bubble is R=400 µm. As shown in Fig. 4.21, the meshes 

near the bubble are refined and the mesh size is 4µm. Around the 
far-field region, the meshes are enlarged. For the gas bubble we use the 
initial gas pressure of 3000 Pa and for the vapor bubble we assume a 
vapor pressure of 1342 Pa. From Figs. 4.21–4.23, it can be seen that the 
present scheme is suitable for bubble collapses with a sharp two-phase 
interface between liquid and gas or (condensable) vapor, which allows 
for more complicated applications such as turbulent cavitating liquid 
jets into a gas environment. 

5. Performance and scalability 

The parallel computational framework of our in-house code CATUM 
has been optimized for better parallel scalability and has been used for 
many large computational problems on supercomputers [21–24,99,100, 
104]. The now newly proposed scheme retains the original framework of 
CATUM, while only minor modifications are required to verify and 
validate the proposed model and numerical method. The compact 
four-cells FVM framework remains unchanged and no additional equa-
tions are added. On the other hand, diffuse interface methods are 
recognized [14] to be inherently less expensive and easier to parallelize 
than sharp interface methods, since no expensive and localized geo-
metric reconstruction of the interface is required, which could poten-
tially lead to load balancing problems. The diffuse interface method, in 
conjunction with compact four-cell methods, provides a cost-effective, 
robust, and scalable method. In particular, for the turbulent jet flow 
problem shown in Section 4.8 and the gas bubble collapse problem 
shown in Section 4.9, the new combined scheme significantly reduces 
diffusion while requiring only about 6.65% and 2.06% additional cost 
(on the Linux cluster at Leibniz Computing Center), respectively, 
compared to the original scheme shown in the respective chapters. 

To evaluate the parallelization efficiency of this new scheme of the 
in-house CATUM solver, strong-scaling and weak-scaling tests were 
performed on the Leibniz Computing Center (LRZ) for the case in Section 
4.2. The results of the strong-scaling test are shown in Fig. 5.1(a), where 
the actual speedup is compared to the ideal speedup. The results of the 
weak scaling test are shown in Fig. 5.1(b), where the ideal time and the 
actual time are plotted against the number of cores. The results show 
that the weak scaling is nearly constant up to 1372 cores. After that, the 
efficiency drops to about 76% for 1792 cores. The strong scaling test 
results show good performance for large grid sizes per core (51.2K cells/ 
core, 12.8K cells/core). Increasing the number of processors leads to a 
decrease in the problem size (number of cells) per core. The difference 
between the ideal and actual speedup is due to a higher communication 
overhead compared to the computation time for smaller grid sizes. This 
could be caused by a very low total computation time per time step [14], 
which is the result of an optimized single-core performance of the solver 
and a low-cost numerical method, leading to a higher ratio of commu-
nication to computation time and a non-ideal parallel scalability. 
Overall, a deviation from ideal performance is expected due to the 
increasing amount of MPI communication. 

6. Conclusions 

In this work we propose a robust four equation model using one-fluid 
multi-component thermodynamics relations as well as an All-Mach 
number consistent THINC-TDU method, which prevents two-phase in-
terfaces from smearing. Surface tension effects, viscous effects, gravity 
effects, as well as shock-wave phenomena have been assessed and the 
results are in very good agreement with well-known reference results. 
Our simulation of a liquid jet in a dual-fuel environment demonstrates 
the suitability of the methodology to complex real-world engineering 
applications. An implementation of the methodology into existing 
MUSCLE or WENO-type compressible finite volume methods on block- 
structured meshes is presented. A significant improvement of pre-
dicted details in compressible two-phase flows is reached while the 
additional computational costs are negligible. This is achieved by 

Fig. 4.18. Sketch Map of “SprayA- 210,675 model” three dimensional Bench-
mark Case. 

Fig. 4.17. Volume fraction of Mixture gas in stream-wise middle plane with 
interface sharpening at T= 4.79026 × 10− 6s, (a) contour of volume fraction (b) 
ISO-surface of 50%. 
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Fig. 4.19. 2D density contour (a)–(c), and 3D density contour (d), (e) .  
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combining an algebraic sharpening method with a thermodynamically 
consistent correction procedure in the flux computation without the 
need of complex geometric reconstruction approaches. The approach 
has been implemented into our in-house code CATUM validated against 
a series of references and has extended to be suitable for sub-grid tur-
bulence modelling. A shock-droplet test-case in near critical conditions 
with a real fluid model show that current results are superior to WENO3- 
JS and OWENO3 schemes (if using the same mesh resolution). In addi-
tion to gas bubble collapse, vapor bubble collapse was also performed to 

Fig. 4.20. Sketch map of bubble collapse.  

Fig. 4.21. Sketch map of bubble collapse mesh (a), enlarged mesh around bubble (b) with smallest mesh resolution 4μm.  

Fig. 4.22. Gas bubble collapse with smallest mesh resolution 4μm: density contour of All-Mach MUSCL-TVD-TDU method:(a); density contour of All-Mach THINC- 
TDU:(b). 

Fig. 4.23. Vapor Bubble collapse with smallest mesh resolution 4μm.  
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prove that the two-phase interface between liquid and vapor can also be 
sharpened using the current scheme. This demonstrates the ability of the 
current scheme to handle cavitation-related cases containing both con-
densable vapor and non-condensable gas, such as atomization using 
cavitation nozzles. The simulation of a three-dimensional turbulent jet 
flow with surface tension and viscous effects also demonstrates the high 
performance of the current scheme. 
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Appendix A. Thermodynamics equilibrium model for coupled (one-fluid) multi-component flow 

A.1. Stiffened gas equation of state 

In this part we take internal energy into account. The variables of the mixtures in the one-fluid multi-component model are shown in Table A.1. The 
detailed prove of thermodynamic equilibrium closure could be observed in Refs. [111–113]. It is noted that Noble-Abel Stiffened-Gas equation of state 
degenerates to the Stiffened-Gas equation of state by setting the covolume of the fluid b=0.  

Table A.1 
Variables of the mixtures in the one-fluid multi-component model.  

Variables Descriptions 

Volume fractions αGas1 + αGas2 + αL = 1 
Mass fractions ξGas1 + ξGas2 + ξL = 1, ξGas1 = αGas1ρGas1/ρ, ξGas2 = αGas2ρGas2/ρ, ξL = αLρL/ρ 
Pressure P = (αGas2 + αGas2 + αL)P = (ξGas1 + ξGas2 + ξL)P 
Density ρ = αGas1ρGas1 + αGas2ρGas2 + αLρL = (ξGas1 + ξGas2 + ξL)ρ 
Specific total energy E = e + |u2|/2 
Internal energy ρe = αGas1ρGas1eGas1 + αGas2ρGas2eGas2 + αLρLeL = ρξGas1eGas1 + ρξGas2eGas2 + ρξLeL 

e = ξGas1eGas1 + ξGas2eGas2 + ξLeL 

Specific total enthalpy H = E + P /ρ = e + |u2|/2 + P /ρ 
Specific enthalpy ρh = αGas1ρGas1hGas1 + αGas2ρGas2hGas2 + αLρLhL = ξGas1ρhGas1 + ξGas2ρhGas2 + ξLρhL 

Mixed viscosity μmix = (1 − αGas1 − αGas2)[(1 − αv)(1 + 5 /2αv)μliq + αvμvap] + αGas1μGa1 + αGas2μGa2  

Here we use “stiffened Gas” EOS for liquid and two gas components, 

P = (γ − 1)ρ(e − q) − γP∞ (A.1.1)  

where,γ is the heat capacity ratio CP/CV. In this way, ρL = (PL +γLP∞,L)/((γL − 1)(eL − qL)). Gas fluid could decay to ideal gas with P∞,Gas=0. Generally, 
for ideal gas q=0, PGas = (γGas − 1)ρGaseGas and ρGas = PGas/((γGas − 1)eGas); the specific heat capacity RGas = CP,Gas − CV,Gas = γGasCV,Gas − CV,Gas =

(γGas − 1)CV,Gas, eGas = CV,GasTGas, thus PGas = (γGas − 1)ρGaseGas = (γGas − 1)ρGasCV,GasTGas = ρGasRGasTGas, ρGas = PGas/(γGas − 1)CV,GasTGas = PGas 

/(RGasTGas). 
Then the mixture density is 

ρ = αGas1ρGas1 + αGas2ρGas2 + αLρL = αGas1
PGas1

(γGas1 − 1)CV,Gas1TGas1
+ αGas2

PGas2

(γGas2 − 1)CV,Gas2TGas2
+ αL

PL + γLP∞,L

(γL − 1)(eL − qL)
(A.1.2) 

Fig. 5.1. Scaling of the CATUM on the Linux-Cluster at Leibniz Supercomputing Centre, (a) Strong scaling, the number above the lines is the number of cores used, 
the number below the lines is the number of grids per core; (b) Weak scaling. 
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The internal energy for liquid is eL(PL, ρL) = (PL + γLP∞,L)/((γL − 1)ρL)+ qL, internal energy for gas is eGas(PGas, ρGas) = PGas/(γGas − 1)ρGas, thus 
internal energy for fluid mixtures are 

e = ξGas1eGas1 + ξGas2eGas2 + ξLeL = ξGas1CV,Gas1TGas1 + ξGas2CV,Gas2TGas2 + ξL

(
PL + γLP∞,L

(γL − 1)ρL
+ qL

)

(A.1.3) 

The speed of sound for liquid and gas could be obtained through cL =
̅̅̅̅̅̅
γL(

√
PL + P∞,L)/ρL =

̅̅̅̅̅̅
γL(

√
PL + P∞,L)/(ρξL/αL) and cGas =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γGasPGas/

√
ρGas =̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γGasRGasTGas
√

. 
The volume fraction for components are 

αGasi = ξGasi
ρ

ρGasi
= ξGasi

ρ
PGasi

(γGasi − 1)eGasi

= ξGasi
ρ

PGasi
(γGasi − 1)CV,GasiTGasi

=
ξGasiρ(γGasi − 1)CV,GasiTGasi

PGasi
(A.1.4)  

αL = 1 −
∑

αGasi (A.1.5)  

A.2.1. Peng-Robinson Equation of State 

Besides, the “Peng-Robinson” EOS [132] is also combined into current four equation scheme and the related test case, near-critical shock droplet 
interaction, is presented in A.2.2. 

For the liquid and gas components, 

p =
RT

v − b
−

a
v2 + 2bv − b2 (A.2.1)  

where T is the temperature; R is the universal gas constant; V is the molar volume, V = M/ρ, M is the molar mass. Coefficients a =
∑N

α=1
∑N

β=1XαXβaαβ 

and b =
∑N

α=1Xαbα. Xα is the mole fraction of species α and in-total species number is N; coefficients aαβ = 0.457236(RTc,αβ)
2
/pc,αβ(1 + cαβ(1 −

̅̅̅̅̅̅
T/

√
Tc,αβ ))

2 and bα = 0.077796RTc,α/pc,α are obtained according to the mixing rules [133]. pc,αβ is the critical mixture pressure and pc,αβ =
Zc,αβRTc,αβ

νc,αβ
, cαβ 

= 0.37464 + 1.5422ωαβ − 0.26992ω2
αβ,Tc,αβ is the critical mixture temperature and Tc,αβ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Tc,αTc,β

√
(1 − kαβ)Tc,α. and Tc,β are critical temperature 

for species α and β, kαβ is the binary interaction parameter. The critical mixture molar volume νc,αβ, the critical mixture compressibility Zc,αβ, the 
acentric factor ωαβ denote as νc,αβ = 1/8(ν1/3

c,α + ν1/3
c,β )

3
, Zc,αβ = 1/2(Zc,α + Zc,β), ωαβ = 1/2(ωα + ωβ), where ν1/3

c,α and ν1/3
c,β are critical molar volume for 

species α and β, Zc,α and Zc,β are critical compressibility factor for species α and β, ωα and ωβ are acentric factor for species α and β. 
Besides, Ref. [134] provides the parameters for the NASA polynomials, which would be used to obtain the internal energy, enthalpy, and entropy. 

A.2.2. PR-EOS for (near-critical) Shock Droplet Interaction 

We validate the shock interaction in a nitrogen environment with a sphere of n-Dodecane droplet [135] in order to show the performance of 
current numerical scheme in complex realistic conditions. Same parameters are adopted as the reference except for the mesh resolution. The uniform 
mesh size(0.115mm) is adopted near the droplet, which is finer than that of reference(0.23mm). In this way, it should be noted that higher mesh 
resolution is adopted for current scheme in order to be comparable to results from high order WENO5 scheme of reference. Ref. [134] provides the 
parameters for the NASA polynomials. Numerical scheme could be found in the Appendix B. 

In Fig. A.2.1, results show good agreement with those from Ref. [135]. It shows that current scheme could be combined with real fluid model 
directly, further proving its robust performance. Moreover, based on same meth resolution(0.115mm) and same initial conditions, current results are 
superior to these of WENO3(HLLC) and OWENO3(HLLC) scheme, especially near the two phase interface, which simply shows its comparable per-
formance over higher order method.

Fig. A.2.1. Shock n-Dodecane in the Nitrogen environment:115μs,(a), (d), (g), (j);140μs,(b), (e), (h), (k);185μs,(c), (f), (i), (l). Current results (a–c); Reference (d–f) 
[135];WENO3 (g–i);OWENO3 (j–l). 
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Appendix B. Internal energy and real fluid effects 

Internal energy, as an additional parameter, needs to be taken into account. Most procedures, such as step adopting All-Mach Riemann solver and 
reconstruction steps for mass fraction, are the same as those in Chapter3. While following aspects are excepted. 

The thermodynamic model adopted here is related to Appendix A. Variables including velocities, pressure, mass fraction and temperature are 
given, others like density and internal energy could be obtained according to the thermodynamic relations, ρ = f(p, T, ξGasi), e = f(ρ,T,ξGasi). 

In a general way, variables u∗, v∗, w∗, ρ∗, p∗, ξ∗Gasi adopt the same reconstruction method as explained in Chapter3 and internal energy e∗ just 
need follow the reconstruction method of density ρ∗. While in the current scheme, after obtaining the interface internal energy e∗, the TDU idea would 
be applied to update variables like density ρ∗. Specifically, during the reconstruction process, interface parameters like density are updated from the 
interface pressure, as mass fraction and internal energy, ρ∗ = f(p∗, ξ∗Gasi, e∗), thus the numerical format of density keeps numerical consistent with 
other variables. Moreover, volume fraction could be obtained according to α∗

i = f(ρ∗, p∗,ξ∗Gasi, e∗). 
If the current FC scheme is combined with thermodynamics relations from Appendix.A.2.1, temperature is updated firstly according to internal 

energy, density, species mass fraction T = f(e, ρ, ξGasi) (by Gradient descent/Newton method), then pressure is updated from temperature, density 
and species mass fraction p = f(ρ, T, ξGasi). A small note is that the convergence speed of the Gradient descent/Newton method in obtaining the 
temperature could be improved by storing the temperature from the previous time step and using it as the initial guess to calculate the updated 
temperature. In the FC scheme, the numerical flux evaluated from the two neighboring cells of the face is exactly the same, which guaranty strict 
conservation of all variables. 

Appendix C. A spherical drop in static equilibrium 

A spherical drop in static equilibrium is adopted to show the balanced effects between pressure and surface tension force since imbalance between 
them induce the parasitic velocities. Parameters are adopted according to the classical Ref. [136]. Density ratio of two in-viscid fluids is 10. The side 
length of computational cube domain is 8 and 40 uniform meshes are applied in every direction. Initial pressure drop between inside fluid and outside 
fluid is equal to the theoretical equilibrium value, σ = 73,R = 2, thus pinside − poutside = 2σ/R = 73. 

For our current method, the max-mum parasitic speed at t≈0.001s and t≈0.05s are about 0.004m/s and 0.11m/s respectively (Fig. C.1), which is 
comparable to best results 0.0855m/s and 0.386m/s shown in the Ref. [136]. Thus, current surface tension model performs well.

Fig. C.1. The velocity vector (vector length is grid units divide magnitude) field of an x-y plane. Plots (a) is at t≈0.001s with vector length 40, (b) is at t≈0.05s with 
vector length 1.5. 

Appendix D. High order improvement with turbulence modeling (iLES) 

In order to include the turbulence modeling, a high order improvement of All-Mach THINC-TDU is proposed with iLES approach, two extra gas 
components as well as modified sensor. For the iLES scheme of the Ref. [24], if discontinues region is detected by sensor, upwind-basied reconstruction 
(density) would be adopted. While in current scheme, the cell interface value reconstruction procedure is switched among an upwind-biased, a 
centered reconstruction and a THINC-based scheme. And TDU idea is adopted to continually keep the thermodynamic relationship coupled among 
variables(pressure, density, gas mass fraction).  

• Upwind-biased reconstruction scheme 

Procedures(Regions without discontinuous interfaces) shown in 3.3 are adopted for the upwind-biased reconstructions of variables.  

• Central reconstruction scheme 

The above upwind-biased scheme has intrinsic numerical dissipation, thus the central reconstruction scheme is needed to reduce dissipation. And 
proper sensor function is used to switch between candidate schemes. A linear fourth order central scheme is applied, 

Φ∗,C
i+1/2 =

[
u∗, v∗, w∗, p∗, ξ∗Gas1, ξ∗Gas2

] C
i+1/2 = 1

/
12[7(Φi +Φi+1) − Φi− 1 − Φi+2] (D.1)  

Φ∗,C
i+1/2 = [ρ∗] C

i+1/2 = 1
/

2
(

Φ∗
I− 1/2 +Φ∗

I+1/2

)
(D.2)    

• THINC-based reconstruction scheme 
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In order to compute the flux across the cell interface between cells 2 and 3, we reconstruct left and right hand side values of the scalar ξGas as the 
equations from (3-3) to (3-4) shown in 3.3. It’s also noted that discontinuous two-phase interface region generally meet the requirements ε < ξi < 1 
− ε and (ξi − ξi− 1)(ξi+1 − ξi) > 0, where ε could be a small positive parameter comparing with ξi.  

• Modified sensor 

This newly modified discontinuity sensor is used to identify the discontinues region. The flow field smoothness is identified via a function of 
smooth sensor, which works as a switch to change the type of the reconstruction method for the primitive variables u, v, w, ρ, p, ξGas1, ξGas2 on the 
cell interface. The primitive variables on the cell interface denote: 

Φ∗
i+1/2 = [1 − f (θ)]Φsmooth + f (θ)Φdiscontinues = [1 − f (θ)]Φ∗,C

i+1/2 + f (θ)(
(

1 − σ)Φ∗,U
i+1/2 + σΦ∗,Th

i+1/2

)
(D.3)  

σ is a Dirichlet function, which could be adjustable according to needed: generally for reconstruction step of pressure and velocity it becomes zero; for 
reconstruction step of two phase interface region, it becomes one while for other region it becomes zero. 

Specifically, we use vorticity-dilation sensor developed by Ducros et al. [137] to detect the compressible shock and expansion waves in present 
fully compressible flow: θD = (∇⋅u)2

/((∇⋅u)2 + (∇ × u)2
+ ϵ), where, ϵ denotes a very small value (ϵ = 10− 20), making denominator non-zero. 

Two-phase interface are detected with the variation of the total gas volume fraction in all three spatial directions: θGas = vari(Gas)+ varj(Gas) +

vark(Gas), where, vari(Gas) = ‖ αGas1, i + αGas2, i − (αGas1, i− 1 + αGas2, i− 1)‖ + ‖ αGas1, i+1 + αGas2, i+1 − (αGas1, i + αGas2, i)‖. Same expressions are 
adopted for vapor volume fraction and its detector is denoted as θα. 

Subsequently, we give the switch criteria: 

f
(
θD, θα, θGas) =

{
1, if θD > θD

th

⃒
⃒| θα〉θα

th

⃒
⃒
⃒
⃒ θGas〉θGas

th

0, others
(D.4) 

It means that if one or more sensor exceeds its threshold value (θD > θD
th or/and θα > θα

th or/and θGas > θGas
th ), the numerical scheme switches to the 

discontinues reconstructions Φ∗
i+1/2 = Φdiscontinues = (1 − σ)Φ∗,U

i+1/2 + σΦ∗,Th
i+1/2. The threshold values θD

th = 0.95 is suggested by Egerer et al. [24] and θGas
th 

= 0.4 is for the volume fraction of total gas phase suggested by Trummler et al. [23]. And these proposed modifications could help to avoid pressure 
oscillations while keeping contact waves crisp without artificial smearing. 

Specifically, for smooth region, velocity and pressure adopt the linear 4th order reconstruction process, while a linear 2nd order central 
approximation reconstruction is implemented for the density, internal energy(if have), as well as two additional mass fraction field. For discontinues 
fields, a upwind biased reconstruction is generally implemented Φdiscontinues = Φ∗,U

i+1/2. Generally, velocity components are reconstructed using the third 
order slope limiter Koren [119] and the thermodynamic quantities density, pressure, internal energy(if have), two additional mass fraction are 
reconstructed using the second order Minmod slope limiter [116]. It should be noted that the new mass fraction ξ generally keep the same recon-
struction scheme of density, ξdiscontinues = ξ∗,Ui+1/2. While in the discontinuous region of two phase interface, instead of using upwind biased recon-

struction with slop limiter for two additional mass fraction(or density), THINC is combined for mass fraction(or density) ξdiscontinues = (1 − σ)ξ∗,Ui+1/2 +

σξ∗,Th
i+1/2, and TDU idea is then adopted for density(or mass fraction) ρdiscontinues = f(ξdiscontinues,pdiscontinues). In this way, variables are updated consistently, 

interface is sharpened and pressure oscillation is avoided. 
Besides, the transport velocity and interface pressure are represented as 

u∗ = (1 − f (θ))

(

u∗,C
i+1/2 −

▵3p∗
i+1/2

IL + IR

)

+ f (θ)
ILuL + IRuR + pL − pR

IL + IR
(D.5)  

p∗ = (1 − f (θ))p∗,C
i+1/2 + f (θ)

(pL + pR

2

)
(D.6) 

IL = ((3ρi + ρi+1) ∗max(cl,i,cl,i+1))/4, IR = ((ρi + 3ρi+1) ∗max(cl,i,cl,i+1))/4, ▵3p∗
i+1/2 is an approximation of the third pressure derivative, the acoustic 

impedances are IL and IR, max(cl,i, cl,i+1) is the maximum liquid speed of sound. 
Other procedures (Remarks) are consistent with Charpter3. Through complete implementation, liquid-liquid vapor and liquid-gas two phase 

interface are sharpened and dispassion of discontinues region are reduced. 
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