
Nearest Neighbor Analysis is a method for classifying cases based on their similarity to other 
cases. In machine learning, it was developed as a way to recognize patterns of data without 
requiring an exact match to any stored patterns, or cases. Similar cases are near each other and 
dissimilar cases are distant from each other. Thus, the distance between two cases is a measure 
of their dissimilarity.

Cases that are near each other are said to be “neighbors.” When a new case (holdout) is presented, 
its distance from each of the cases in the model is computed. The classifications of the most 
similar cases – the nearest neighbors – are tallied and the new case is placed into the category that 
contains the greatest number of nearest neighbors.

You can specify the number of nearest neighbors to examine; this value is called k. The pictures 
show how a new case would be classified using two different values of k. When k = 5, the new 
case is placed in category 1 because a majority of the nearest neighbors belong to category  1.
However, when k = 9, the new case is placed in category 0 because a majority of the nearest 
neighbors belong to category 0.

Nearest neighbor analysis can also be used to compute values for a continuous target. In this 
situation, the average or median target value of the nearest neighbors is used to obtain the 
predicted value for the new case.

The following notation is used throughout this chapter unless otherwise stated:

Y Optional 1×N vector of responses with element , where n=1,...,N
indexes the cases.

X0 P0×N matrix of features with element , where p=1,...,P0 indexes the
features and n=1,...,N indexes the cases.

X P×N matrix of encoded features with element , where p=1,...,P
indexes the features and n=1,...,N indexes the cases.

P Dimensionality of the feature space; the number of continuous features
plus the number of categories across all categorical features.

N Total number of cases.
The number of cases with Y = j, where Y is a response variable  with
J categories

                                   The number of cases which belong to class j and are correctly classified 
as j.

                                  The total number of cases which are classified as j.

Features are coded to account for differences in measurement scale.



Continuous features are optionally coded using adjusted normalization:

where is the normalized value of input feature p for case n, is the original value of the 
feature for case n, is the minimum value of the feature for all training cases, and

is the maximum value for all training cases.

Categorical features are always temporarily recoded using one-of-c coding.  If a feature has
c categories, then it is is stored as c vectors, with the first category denoted (1,0,...,0), the next 
category (0,1,0,...,0), ..., and the final category (0,0,...,0,1).

Training a nearest neighbor model involves computing the distances between cases based upon 
their values in the feature set. The nearest neighbors to a given case have the smallest distances 
from that case. The distance metric, choice of number of nearest neighbors, and choice of the 
feature set have the following options.

We use one of the following metrics to measure the similarity of query cases and their nearest 
neighbors.

The distance between two cases is the square root of the sum, over all 
dimensions, of the weighted squared differences between the values for the cases.

The distance between two cases is the sum, over all dimensions, of the 
weighted absolute differences between the values for the cases.



The feature weight is equal to 1 when feature importance is not used to weight distances; 
otherwise, it is equal to the normalized feature importance:

See “Output Statistics ” for the computation of feature importance .

Cross validation is used for automatic selection of the number of nearest neighbors, between a 
minimum and maximum . Suppose that the training set has a cross validation variable 
with the integer values 1,2,..., V. Then the cross validation algorithm is as follows:

For each , compute the average error rate or sum-of square error of k:
                         , where is the error rate or sum-of square error when we apply the Nearest 

Neighbor model to make predictions on the cases with ; that is, when we use the other
cases as the training dataset.

Select the optimal k as: .

Note: If multiple values of k are tied on the lowest average error, we select the smallest k among 
those that are tied.

Feature selection is based on the wrapper approach of Cunningham and Delany (2007) and uses 
forward selection which starts from features which are entered into the model. Further 
features are chosen sequentially; the chosen feature at each step is the one that causes the largest 
decrease in the error rate or sum-of squares error.

Let represent the set of J features that are currently chosen to be included, represents the 
set of remaining features and represents the error rate or sum-of-squares error associated
with the model based on .

The algorithm is as follows:

Start with features.

For each feature in , fit the k nearest neighbor model with this feature plus the existing features 
in and calculate the error rate or sum-of square error for each model. The feature in whose 
model has the smallest error rate or sum-of square error is the one to be added to create .

Check the selected stopping criterion.  If satisfied, stop and report the chosen feature subset.
Otherwise, J=J+1 and go back to the previous step.

Note: the set of encoded features associated with a categorical predictor are considered and added 
together as a set for the purpose of feature selection.



One of two stopping criteria can be applied to the feature selection algorithm.

The algorithm adds a fixed number of features, , in addition to those 
forced into the model. The final feature subset will have features. may be 
user-specified or computed automatically; if computed automatically the value is

When this is the stopping criterion, the feature selection algorithm stops when features 
have been added to the model; that is, when , stop and report as the chosen 
feature subset.

Note:  if       , no features are added and with is reported as the chosen 
feature subset.

The algorithm stops when the change in the absolute 
error ratio indicates that the model cannot be further improved by adding more  features.
Specifically, if or and

where is the specified minimum change, stop and report as the chosen feature subset.

If and

stop and report as the chosen feature subset.

Note: if for , no features are added and with is reported as 
the chosen feature subset.

The following method is used for combined neighbors and features selection.

1. For each k, use the forward selection method for feature selection.

2. Select the k, and accompanying feature set, with the lowest error rate or the lowest sum-of-squares 
error.

All records with missing values for any input or output field are excluded from the estimation of 
the model.



The following statistics are available.

where is the estimated value of .

Suppose there are              in the model from the forward selection 
process with the error rate or sum-of-squares error e.  The importance of feature in the 
model is computed by the following method.

Delete the feature from the model, make predictions and evaluate the error rate or 
sum-of-squares error based on features .

Compute the error ratio .

The feature importance of is



After we find the k nearest neighbors of a case, we can classify it or predict its response value.

Classify each case by majority vote of its k nearest neighbors among the training cases.

If multiple categories are tied on the highest predicted probability, then the tie should be broken by 
choosing the category with largest number of cases in training set.

If multiple categories are tied on the largest number of cases in the training set, then choose the 
category with the smallest data value among the tied categories. In this case, categories are 
assumed to be in the ascending sort or lexical order of the data values.

We can also compute the predicted probability of each category.  Suppose is the number of 
cases of the jth category among the k nearest neighbors. Instead of simply estimating the predicted 
probability for the jth category by , we apply a Laplace correction as follows:

where J is the number of categories in the training data set.

The effect of the Laplace correction is to shrink the probability estimates towards to 1/J when the 
number of nearest neighbors is small. In addition, if a query case has k nearest neighbors with the 
same response value, the probability estimates are less than 1 and larger than 0, instead of 1 or 0.

Predict each case using the mean or median function.

                                     , where is the index set of those cases                       
that are the nearest neighbors of case n and is the value of the continuous response variable 
for case m.

Suppose that are the values of the continuous response 
variable, and we arrange from the lowest value to the highest value and
denote them as , then the median is

is odd

is even

Records with missing values for any input field cannot be scored and are assigned a predicted 
value and probability value(s) of .
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