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This documentation describes the main features of T1dH (Temperature diffusion in 1d 

using the enthalpy (H) method). T1dh is set of MATLAB routines that can be used to 

calculate the temperature evolution in 1 dimension using the enthalpy method. This 

approach allows for the incorporation of latent-heat effects on cooling/exhuming regions. 

The routines must all be placed in a common folder. These routines are: 

• T1dh.m 

• Make_Enthalpy.m 

and the main code can be run by typing T1dh in the MATLAB command window. The 

Make_Enthalpy.m function provided was developed for a particular application. Other 

applications may require a modification of this function. 

The code has been written in general form using functions that would allow the more 

transparent presentation of the results. More technical details follow below. The software 

and the present documentation are provided free of charge1 and they are mostly intended 

for research and teaching purposes. At this point, all the provided routines have been tested 

for compatibility with OCTAVE. 
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Introduction 

The purpose of the present document is not to provide a detailed review of the literature 

on thermal diffusion or the enthalpy method but to provide a concise introduction on the 

methods that are implemented in T1dH and to show the respective governing equations. We 

have tried to keep the text to a minimum and show how the program can be easily used. Our 

algorithms have been evaluated and the results have been compared to various analytical 

solutions (benchmarks).  The benchmark comparisons and a detailed description of the code 

inputs are given in the following parts of this documentation. 

Governing Equations and solution procedure 

The partial differential equation that describes the evolution of enthalpy in 1 dimension is 

(e.g. Powers, 2016): 

𝜌
𝑑𝐻

𝑑𝑡
=

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) +

𝑑𝑃

𝑑𝑡
+ 𝐴 (1) 

where 𝑡 is time, 𝑧 is the spatial direction (here taken as depth; increasing downwards), 

𝐻(𝑧, 𝑡) indicates the mass-specific enthalpy (in J/kg), and 𝑘: 𝑘(𝑧, 𝑡) represents the heat 

conduction coefficient. All variables are given in SI units unless otherwise specified. In 

addition, 𝜌: (𝑧, 𝑡) is the density of the material, 𝑃: 𝑃(𝑧, 𝑡) is the negative mean stress 

(pressure) and 𝐴: 𝐴(𝑧, 𝑡) is the volumetric rate of radiogenic heat production. The terms 𝜌, 𝑘 

and 𝐴 are assumed to be known functions of depth (𝑧) and in our case 𝜌, 𝑘 are considered 

constant. The term 𝑑𝑃/𝑑𝑡 denotes the adiabatic heating term. This term takes negative 

values in case of cooling.  

As a first approximation, we can consider that the pressure is lithostatic, i.e. 𝑃 ≈ 𝜌𝑔𝑧 (𝑔 

being the gravity acceleration). Then, the pressure time derivative is given by the following 

formula (for constant density, velocity and gravity acceleration): 

𝑑𝑃

𝑑𝑡
≈ 𝜌𝑔

𝑑𝑧

𝑑𝑡
= 𝜌𝑔𝑣𝑧 (2) 

At this point we should mention that the total derivative operator 𝑑/𝑑𝑧 includes the 

advection contribution, that is: 

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝑣𝑧

𝜕

𝜕𝑧
 (3) 
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For Eulerian coordinate systems, and for the case where temperature (and enthalpy as well) 

is fixed at the surface of the Earth (Dirichlet boundary condition), eq. [3] can be written as: 

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
− 𝑣𝑒𝑥ℎ

𝜕

𝜕𝑧
 (4) 

where 𝑣𝑒𝑥ℎ is the exhumation rate (with units of velocity). Using eqs. [2,4], equation [1] 

becomes: 

𝑑𝐻

𝑑𝑡
=

1

𝜌

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) − 𝑔𝑣𝑒𝑥ℎ +

𝐴

𝜌
 (5) 

Equation [5] is the main equation that is solved in T1dH.m. We use an explicit time 

integration scheme (forward Euler scheme) and use eq. [5] to update for the enthalpy (𝐻). 

Then, the temperature is updated by interpolation using a known 𝐻: 𝐻(𝑇) relation. 

The explicit form for the enthalpy function 𝐻(𝑇) depends on the particular application. In 

this work, we consider that the specific enthalpy has two major contributions, one from the 

heat capacity term and one from the latent heat of mineral reactions/melting. The heat 

capacity contribution to the enthalpy is given by:  

𝐻0 = 𝐶𝑝𝑇 (6) 

In addition, the latent heat contribution is given by a logistic function of the form: 

Δ𝐻 =
𝐿𝐻

1 + 𝑒𝑥𝑝(−𝜆𝑟𝑒(𝑇 − 𝑇𝑟𝑒))
 (7) 

where 𝑇𝑟𝑒 is the temperature of the reaction/melting and 𝜆𝑟𝑒 is a parameter defining the 

width of the reaction/melting zone. For the case of melting this zone is also referred to as 

the “mushy” zone. 𝐿𝐻 is the latent heat of reaction/melting in units of J/kg. 𝑇𝑟𝑒 and 𝜆𝑟𝑒 are 

given by the following formulas: 

𝑇𝑟𝑒 = 0.5(𝑇𝑙 + 𝑇𝑠) 

𝜆𝑟𝑒 =
10

0.5(𝑇𝑙 − 𝑇𝑠)
 

(8a) 

(8b) 

In our specific case where we investigate the latent heat during magma crystallization, 𝑇𝑙 

and 𝑇𝑠 represent the liquidus and solidus temperatures. For other applications (e.g. latent 

heat of hydration reactions) 𝑇𝑟𝑒 and 𝜆𝑟𝑒 have to be specified by the user depending on the 

particular thermodynamic relations (e.g. Schorn et al., 2024). 

The final expression for the enthalpy is given by: 
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𝐻 = 𝐻0 + Δ𝐻 (9) 

The boundary conditions that have been implemented for the bottom are Dirichlet or 

Neumann (flux-specific) and can change accordingly. The top boundary condition assumes 

that the temperature at the surface is constant and equal to 0 °C (Dirichlet boundary 

condition). 

Benchmarking 

We have performed various benchmarks to verify the accuracy of our results. For all the 

benchmark solutions we have assumed that 𝑘 =  3, 𝐶𝑃 = 1050 and 𝜌 = 2700. Initially, we 

consider the classic half-space cooling problem that has a temperature evolution given by 

the following form: 

𝑇 = 𝑇𝑏 + Δ𝑇𝑒𝑟𝑓 (
𝑧

2√𝐷𝑡
) (10) 

where 𝑇𝑏 is the boundary temperature value (1450°C) and Δ𝑇 is a temperature difference 

(here (-)100°C) from that value. The thermal diffusivity is given by 𝐷 = 𝑘/(𝜌𝐶𝑃). The results 

are shown in the figure below: 

 

Fig. 1 Comparison of the numerical and the analytical solution for the half-space 

cooling problem. The solution is evaluated for  the time of 100,000 yrs. 
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Note that the previous solution is not accurate for large timescales because our domain is 

finite and the analytical solution assumes boundary conditions at infinity. For this case, the 

contributions from latent heat, radiogenic heat, adiabatic heat, and exhumation are ignored. 

An additional benchmark solution that can be used is the analytical solution for the 

steady state exhumation assuming Dirichlet boundary conditions. The solution can be found 

in Braun et al., (2006, p. 79) and it’s given by the equation below: 

𝑇(𝑧′) =
1 − 𝑒𝑥𝑝(−𝑃𝑒 ∙ 𝑧′)

1 − 𝑒𝑥𝑝(−𝑃𝑒)
∆𝑇 (11) 

where 𝑃𝑒 is the Peclet number given by 𝑃𝑒 =
𝑣𝑒𝑥ℎ𝐿

𝐷
, 𝐿 is the total domain length,  𝑧′ =

𝑧

𝐿
  , 

and ∆𝑇 is the temperature difference between the lower and upper boundary (here 500 

°C). Note that since eq. [11] is valid for the steady state, we calculated the numerical 

solution for a sufficiently large time duration. The result is shown in the following figure: 

 

Fig. 2 Comparison of the numerical and the analytical solution for the steady-

state exhumation problem. The solution is evaluated for 2 million years.  
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Note that for the previous example (Fig. 2), the adiabatic and radiogenic heat contributions 

were neglected. 

An additional benchmark that we can calculate is the classic Stefan problem (Turcotte & 

Schubert, 2014, p. 196). In this case, the initial condition is similar to the half-space cooling 

problem (Fig. 1). However, in our case, we consider a latent heat of fusion given by eqs. [7-

9]. The classic Stefan problem considers the discontinuous enthalpy at the melting 

temperature, for this reason, and only for the purpose of the benchmarking, we have 

considered that 𝑇𝑙 = 1350.05 °C and 𝑇𝑠 = 1350.00 °C and 𝐿𝐻 =400,000 J/kg. The results 

are shown in Fig. 3 below. 

 

Fig. 3 Left panel: Temperature distribution after 1 million years. Right panel: The 

position (in depth) of the solid/liquid interface as a function of time.  For the 

calculation of this benchmark both the spatial resolution and the resolution 

needed to describe eq. [7] where increased from the default values.  

The analytical solution for the migration of the solid/liquid front is given by: 

𝑋(𝑡) = 2𝜆√𝐷𝑡 (12) 

where 𝜆 is given by the Stefan condition: 

𝐶𝑃

√𝜋 ∙ 𝐿𝐻
(𝑇𝑚 − 𝑇(0,0)) = 𝜆 ∙ 𝑒𝑥𝑝(𝜆2) ∙ 𝑒𝑟𝑓(𝜆) (13) 

Equation [13] is a transcendental equation and needs to be solved iteratively. 
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Code description 

The main routine of T1dH is T1dH.m. To understand the code, we provide short 

descriptions of specific code snippets (shown below) that can help the user understand the 

inputs needed. In the beginning of the code the user needs to specify if the plots need to be 

shown in every iteration (plot_on = 1), and if the thermal history needs to be saved (saveTt = 

1)2. In addition, the basal boundary condition can be chosen using Bas_f = 1 (for Neumann 

boundary condition) or Bas_f = 0 (for Dirichlet boundary condition). In any case, the values 

of the temperature or its gradient at the boundary conditions are as in the initial condition. 

 

Physical parameters 

In the next part of the code the user can specify the material parameters, the exhumation 

rate and the total run duration (𝑘, 𝐴, 𝜌, 𝐶𝑃 , 𝑣𝑒𝑥ℎ). Note that for transparency, 𝑣𝑒𝑥ℎ is 

provided in mm per year (VE_mm).  

 

In case of two layers with different properties (e.g. different values of 𝐴) are needed, the 

user can specify the depth of the top layer where the material properties and/or 

Temperature change (zup). Note that, for our specific application, we have used zup to 

specify the full length of the domain (zmax variable; described further below).  

 
2 By setting these variables to zero the results will not be saved. 
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In the case where the initial temperature and radiogenic heat distribution are distinctly 

different in the top layer, they must be specified in the lines shown below: 

 

In our case, the initial domain is Ndom times the dept of zup. Therefore, it is advisable to 

keep using zup as a variable even if the lines that define Tup and Aup are commented (see 

code snippet above). Finally, if the thermal history of a particular point is needed (e.g. if 

saveTt = 1), the initial coordinates of this point can be specified (zmark). 

The relation of enthalpy and temperature is created in the following lines using the function 

make_Enthalpy.m. 

 

Numerical parameters3 

The numerical (spatial) resolution can be increased by increasing the variable nx shown 

below (nx must take integer values). Note however that very large values of nx will lead to 

slower computational performance due to the timestep restrictions required by the explicit 

time stepping (CFL condition; Courant et al., 1928). 

 

Setting the initial temperature profile (initial condition) 

The initial temperature condition is specified using the formula for the steady state 

temperature distribution. This formula reads: 

𝑇(𝑧) = 𝑇𝑠𝑢𝑟𝑓 +
𝑄𝑠

𝑘
𝑧 −

𝐴

2𝑘
𝑧2 (14) 

where 𝑄𝑠 is the surface heat flux that is specified in the beginning (Qs). 
 

3 Note that the maximum depth of the domain is not a numerical parameter, but it is calculated from Ndom 

that was defined previously. 



10 
 

Running the code 

Once all the previous parameters are specified the user can type T1dh in the Matlab (or 

Octave) command line. In case where the saveTt option is set to 1, then the results of the 

temperature evolution of the marker will be stored as a mat file. These results include the 

following variables: 

Tpath: the temperature values of the marker’s history (in K) 

Ppath: the pressure values of the marker’s history (in Pa) 

tpath: the time values of the marker’s history (in years) 

CRate: the effective cooling rates provided in K/year (same as °C/year) 

tpathc: the time values corresponding to the cooling rate array4 (in years) 

 

Using T1dH in OCTAVE 

Although T1dH was written originally in MATLAB, compatibility with octave has been 

checked and the codes work normally. The only issues are related to labeling during plotting. 

In that case, the option “’intepreter’,’latex’” and he symbol “$” must be deleted from the 

axis labels/titles. 
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4 The cooling rates were calculated using numerical differentiation. Therefore, the array CRate has a 

different size than the array Tpath. For this reason, tpath should be used (e.g. in plotting) with Tpath and Ppath 
whereas tpathc should be used with CRate. 
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