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Abstract—The sixth generation (6G) of mobile communica-
tions, expected to be deployed around the year 2030, is predicted
to be characterized by ubiquitous connected intelligence. With
Artificial Intelligence (AI) operations being deployed in every
aspect of future network infrastructure, network security will
also evolve from current solutions to intelligent architectures. To
meet the massive amount of operations computed by AI models,
photonic hardware can be exploited, delivering higher processing
speed and computing density and lower power consumption with
respect to electronic counterparts.

In this paper, we propose a photonic-based Convolutional
Neural Network (CNN) solution able to work on real-time traffic,
capable of identifying Denial of Service (DoS) Hulk attacks with
99.73 mean F1-score when exploiting 4 bits. We also compared
photonic accelerators with their electronic counterparts, showing
limited F1-score degradation, especially in the 4 and 8 bit
scenarios.

I. INTRODUCTION

In the foreseeable 6G [1] along with continuous ad-
vancements of 5G services, i.e., enhanced Mobile Broadband
(eMBB), massive Machine Type Communications (mMTC),
and Ultra Reliable Low Latency Communications (URLLC),
new 6G services are expected to emerge [2], such as truly
immersive extended reality, high-fidelity mobile hologram, and
many more. To meet the requirements of new services and
new use-cases, 6G networks need to be enhanced in many
aspects when compared to 5G, such as data rate and end-to-
end latency.

Among the enabling technologies, Artificial Intelligence
(AI) techniques will have a relevant role [3]. It is expected
that AI systems will be deployed already in 5G networks
within the next few years in at least three main scenarios:
(i) replacing model-based Layer 1 and Layer 2 algorithms,
e.g., channel estimation; (ii) network deployment optimization
without human intervention, e.g., finding the optimal number
of parameters at the time of deployment; (iii) localization
of end devices exploiting learning techniques for improved
accuracy [1]. However, the integration of AI models in 6G net-
work architecture will be deeper, switching from AI-enhanced
network functions to AI-driven network infrastructure.

AI serving as a foundation for future network architecture
will pave the way for a paradigm shift, with a Radio Access
Network (RAN)-Core Network (CN) convergence, both in the

user-plane and the control-plane [2], [4]. In current 5G net-
works, although some flexibility can be adopted, the definition
of Network Functions (NFs) and network protocols strictly
separate the RAN and the CN, limiting the levels of flexibility
and efficiency provided by the network. In future 6G networks,
a new approach will be exploited providing more flexibility in
network deployment, where the RAN and the CN functions
can be converged in the same platform and optimized together
according to the use-case requirements [2], [4]. Therefore, the
entire network architecture should be reconsidered as a collec-
tion of intelligent nodes, each one capable of making decisions
independently. This paradigm shift will fulfill the so-called
collective network intelligence [5], where AI techniques are
exploited to provide distributed autonomy and at the same time
federate nodes to collaboratively learn and make decisions. To
support this 6G vision, network functions must be deployed in
a federated manner among base stations. Among the features
of 6G networks to enable distributed autonomy, high security,
secrecy, and privacy will have primary importance in critical
scenarios such as finance and military [6].

However, one main drawback of this network vision is the
amount of computations performed by AI techniques, which
will exponentially increase due to the ubiquitous presence of
intelligent operations in every aspect of network management.
Hence, to both support the large quantity of data processed by
Machine Learning (ML) models, reduce their computational
burden, and comply with 6G vision on green computing [7],
[8], new hardware platforms for Deep Learning (DL) inference
are investigated [9], [10]. Photonics-based solutions attracted
a lot of interest with the promise of outperforming electronic
counterparts in speed, power consumption, and computing
density [11], [12]. Photonic-based accelerators also comply
with energy efficiency requirements of future network gener-
ations [7], making them the perfect candidates for DL model
deployment.

In this paper, we exploit photonic hardware, i.e., Photonic-
Aware Neural Network (PANN) [13], to implement a threat
mitigation system at the base station level, performing DL
computations in the analog optical domain. This solution,
leveraging neuromorphic processors deployed at base stations,
complies with the aforementioned 6G visions : (i) the proposed
system enables 6G nodes to automatically detect Denial of
Service (DoS) attacks , fulfilling node autonomy and intelli-
gence; (ii) by relying on photonic solutions, it can perform DL



computations with sub-microsecond latencies, high bandwidth,
and low energy consumption satisfying the 6G vision on green
computing.

In the following: (i) related works on AI solutions ded-
icated to intrusion detection systems are reviewed; (ii) the
proposed system architecture is described, highlighting the
enabling technologies of such a solution; (iii) photonic acceler-
ators are also discussed, showing the advantages with respect
to electronic counterparts and the limitations introduced by
the underlying hardware and how they affect Neural Network
(NN) computations; (iv) experiments to validate the proposed
PANN architectures are carried out, discussing their theoretical
performance over electronic counterparts. Finally, possible
future research directions are highlighted.

II. RELATED WORKS

Recently, many works try to address threat mitigation
aspects leveraging statistical and AI techniques, to enable
the deployment of future network infrastructure in critical
scenarios.

Towards this direction, authors in [14] propose to use
the Deep Neural Networks (DNNs) to detect DoS attacks
on network traffic. However, the discussed solution works on
statistical features extracted from traffic flows, preventing real-
time detection.

In [15] an optimal feature selection algorithm and a Con-
volutional Neural Network (CNN) model for threat detection
in Software Defined Networking (SDN) are developed. The
discussed solution suffers from limitations in terms of com-
putational workload since it requires very deep convolutional
layers. Even though it is possible to accelerate these layers
by exploiting conventional hardware, i.e., Graphics Processing
Units (GPU) and Field Programmable Gate Array (FPGA),
the power consumption and packet arrival rate would make
this solution unamenable for a 6G network.

Another interesting work [16] proposes a Xilinx Zynq Z-
7020 FPGA implementation of a Fully-Connected (FC) NN ca-
pable of detecting malicious traffic. Although supporting high
throughput, this solution suffers from both energy consumption
issues, being based on electronics, and limitations concerning
real-time suitability since it employs statistics extracted on
complete traffic flows.

Finally, in [17] a hierarchical architecture for protecting
5G-enabled Internet of Things (IoT) networks is discussed. The
model exploits Markov stochastic process to predict and detect
malicious device behavior. Leveraging the Markov process
enables this type of solution to be deployed at the edge of
the network. However, the system is based on log files and
IoT devices, limiting the scalability of the architecture to
known device types. On the other hand, a DL technique can
automatically extract features and potentially work on all types
of traffic packets.

Compared to currently proposed solutions, we are the first
to exploit NN algorithms and neuromorphic photonic hardware
to address all the issues related to a threat mitigation system
amenable to 6G implementations.
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Fig. 1. Proposed architecture. 6G base station is deployed along with a local
CN and PANN accelerator. For the sake of clarity, only the two NFs discussed
are depicted.

III. PROPOSED ARCHITECTURE

In this section, we detail how the proposed architecture
can be implemented in a future 6G base station. As dis-
cussed above, 6G network cloudification will provide less strict
separation between RAN and CN, ultimately leading to the
convergence of the two. With each 6G base station equipped
with functionalities coming from both CN and RAN, it will
be possible to deploy a local CN on top of each node.

Among the novel NFs, the Network Data Analytics Func-
tion (NWDAF) will become more important in 6G networks,
with its use becoming more prominent for delivering network
intelligence. The NWDAF can be deployed in each base
station, providing data analytics upon request from any other
NFs [18].

With security becoming the pillar of 6G networks, NWDAF
can be exploited to perform intelligent threat mitigation on
user data. Hence, the NWDAF can collect User Plane Function
(UPF) data coming from the various User Equipments (UEs)
and use them as input to the DL system to identify malicious
traffic. With this architecture, a possible threat can be directly
identified at the base station level , without forwarding it to the
rest of the network. Moving security functionalities as close as
possible to where possible threats can be generated is essential.
Furthermore, real-time detection is a fundamental aspect of this
scenario. Indeed, it is estimated that the average cost of service



disruption can reach 5600$ per minute [19]. Hence, a solution
placed at the base station level that can perform real-time threat
mitigation on user data is of paramount importance.

To perform traffic classification and identify malicious
packets, the solution proposed in this paper exploits CNN. In
particular, packets belonging to the same flow are collected
to create input matrices [20] . However, DL architectures are
characterized by a heavy computational burden (especially due
to the large number of required Multiply-Accumulate (MAC)
operations). Indeed, NNs are resource-intensive algorithms,
which might increase the latency and thus the response time
of the node. To have a solution compliant with the massive
amount of traffic expected in 6G networks, novel technological
solutions need to be explored.

In particular, in this paper, we resort to photonic acceler-
ators to speed up NN computations. Photonic hardware can
outperform electronic counterparts in energy (> 102), speed
(103), and compute density (102) [21]. To further unleash
the potential of a drastic reduction in power consumption,
several photonic solutions also leverage passive components to
implement NN weights, i.e., not requiring energy besides input
generation and output acquisition [13]. Hence, the underlying
photonic hardware can improve the system’s energy efficiency
and realize sustainable green networks, one of the main goals
of 6G vision [22].

The proposed system architecture is depicted in Fig. 1.
For the sake of brevity, we report only the NFs in the CN
that we use for this solution, i.e., UPF and NWDAF. The
developed method leverages photonic accelerators that receive
packets collected by the NWDAF from the UPF and perform
classification at a very high rate and with time-of-flight latency.

The proposed solution is based on a mesh of Mach-Zender
Interferometer (MZI) performing the typical NN computations,
i.e., matrix-vector multiplications [23]. The photonic hardware
relies on a parallel architecture with data stored and processed
in the same place, i.e., within the MZI elements. The MZI
mesh physically implements the matrix of interest by singular
value decomposition. Once in the optical domain, the time
needed to perform MAC operations corresponds to the time-
of-flight of the photonic chip. Thus, the throughput of PANN
architectures is mainly limited by the driving electronics in
the input layer, reaching tens of GHz or even more than one
hundred with the lithium-niobate on insulator platform [24].
However, analog photonic hardware introduces some limita-
tions, typically not encountered in electronics, that must be
faced in both the training and inference phases. We present
them in Sec. III-A, discussing the methods to make these
accelerators compliant with NN computations.

A. Photonic-Aware Neural Networks

Although being one of the most promising NN accelerators,
photonic hardware still presents several limitations [9]. The
most important aspect regards the training phase: exploiting the
optical domain to perform training is very cumbersome. Hence,
photonic solutions are being investigated with the aim of car-
rying out just the inference phase [25]. Furthermore, photonic
accelerators are analog engines, working with analog values
that can in principle vary in a continuous set. Nonetheless, the
resolution is constrained by noise and distortions. A particular
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Fig. 2. PANN training strategy. A layer is defined along with an input
quantizer and a kernel quantizer.

aspect is that noise does not depend on the represented
values [26]. Hence, photonic accelerators have constant noise
intervals. For this reason, photonic devices can distinguish
only a finite number of different equally-spaced levels. This
behavior justifies the exploitation of the Effective Number Of
Bits (ENOB) to relate the number of distinguishable values to
the corresponding number of bits needed for digital storage. In
the context of PANNs, the typical bit resolution is very limited
i.e., ≤ 8 bits [11], [27]. This is in contrast with the typical
bit resolution, i.e., 32-bit floating point, used in the digital
electronic implementation of NNs. Thus equally-spaced types,
i.e., fixed-point format, on a low number of bits are suitable
for PANN computations. In addition to this, such accelerators
suffer from a trade-off between attainable operation speed and
supported resolution, as well as power consumption [27].

To overcome this issue, as we already proposed in [13],
in this paper, we exploit reduced-precision fixed-point type
for PANN inference and present a suited training approach.
Indeed, the direct quantization of the weights computed us-
ing floats significantly reduces the accuracy of the obtained
NN [28].

The PANN training process is shown in Fig. 2. Leveraging
this method, we can alleviate the issue of accuracy loss
due to quantization. A layer is defined along with an input
quantizer and a kernel quantizer, which describe the strategy to
quantize the incoming inputs and weights, respectively. Hence,
a quantized layer computes the activation y as:

y = σ(f(qkernel(w), qinput(x)) + b)

with full precision weights w, arbitrary precision input x, layer
operation f , activation function σ and bias b.

An essential aspect regards the latent weights, which take
into account the quantization loss at training time. Indeed,



latent weights are full-precision (i.e., 32-bit floating point)
copies of the quantized weights, which are used to store the
gradient updates computed during the training phase. In the
forward pass, a quantized version of these weights is used.
Finally, when a model has finished the training phase, only
the quantized weights are kept and used in the inference phase.
Concerning the quantizers exploited for the PANN training-to-
inference strategy, DoReFa quantizers [29] are chosen since
they allow to flexibly define the bitwidths on both inputs and
weights.

Additionally, photonic hardware presents constraints con-
cerning the NN inputs. Indeed, inputs are required to be
positive-valued, since they are encoded in the intensity of
optical signals. This imposes to have both normalization and
activation functions with positive values. ReLU and sigmoid
functions are suitable candidates for PANN architectures.

Another constraint imposed by the underlying photonic
hardware concerns the maximum number of inputs, i.e., fan-in,
to each neuron. MZI meshes, on which the proposed solution is
based, can perform block operations at the expense of several
electro-optical conversions: the maximum number of inputs is
about 200 for these implementations.

A final limitation due to the underlying hardware concerns
the maximum kernel size in convolutional layers. Given the
current experimentally validated photonic convolutional kernel
implementations [23], the maximum kernel size is equal to
3× 3 elements.

IV. EXPERIMENTS

The experiments are carried out using CIC-IDS 2017 net-
work traffic dataset collected over several days, which includes
DoS attacks [30]. Both raw packets, i.e., PCAP files, and the
results of the network traffic analysis in the form of flow
statistics, i.e., CSV files, are available.

The baseline model is an NN architecture working with fea-
tures extracted from network traffic. This approach, afterward
called offline, can be considered as a theoretical benchmark for
the proposed system: this solution does not provide real-time
response and thus it is not amenable for a 6G environment.
Instead, the proposed system architecture, working on matrices
of raw packets directly collected at the base station, i.e.,
real-time, can be seamlessly implemented in 6G nodes. In
particular, this approach works on matrices of shape N ×M ,
where N is the number of packets for each flow and M
represents the number of features extracted from packets. In
particular, during our experiments we set N = 10 to keep
the length of the matrices small and M = 11, selecting the
features that intuitively help the model generalize better, i.e.,
discarding those features that are too deterministic such as
source/destination address/port.

Concerning the NN models, two main architectures have
been developed: (i) FC-NN used in both offline, i.e., working
on statistics, and real-time FC scenarios, i.e., working on
flattened matrices. The number of input features of the two
models is changed accordingly: 40 for the offline model and
110 for the real-time architecture; (ii) CNN used for the real-
time convolutional experiment. Regarding the first model, 5 FC
layers are deployed, with 200, 192, 128, 64, 32 and 1 neurons,
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Fig. 3. Comparison among the theoretical baseline, i.e., Offline, and two
real-time models, i.e., FC and CNN.

respectively. Dropout layers are deployed among FC layers
with 0.1 rate. The second model is composed of 5 convolu-
tional layers with 2, 4, 6, 8, 16, 32 filters, respectively, each one
leveraging 3 × 3 kernel. In both the models, ReLU has been
adopted as activation function, except for the last layer that
uses Sigmoid to perform binary classification. Both models
comply with PANN constraints in terms of input features,
kernel size, and activation function. Each training phase has
been composed of 30 epochs, using Adam as optimizer and a
batch size of 128.

To evaluate our proposed architectures, we considered DoS
Hulk attack types, that generate unique requests bypassing
caching engines. Concerning the training set, we resort to
random oversampling techniques to have the same data dis-
tribution among benign and malicious classes. On the other
hand, the test set must be as close as possible to real-world
scenarios, hence its distribution has been kept imbalanced.
In particular, we test our models in a scenario where a DoS
attack is currently being performed to the network, resulting
in a 14%− 86% balancing among normal and attack packets.
Regarding the metrics, we resort to F1-score since it can give
a better understanding of the classification performance when
dealing with imbalanced data.

To identify the candidate for photonic implementation, a
first comparison among full-precision FC and CNN models
has been carried out, with the offline model providing an
upper bound to the detection performance. Results are shown
in Fig. 3 in terms of average F1 score and confidence intervals
at 95% confidence level computed with 10 training phases.

The model with the highest F1 is the offline model,
i.e., 99.96%. This approach, working on statistics, slightly
outperforms both the FC and CNN approaches by 0.12% and
0.06%, respectively. This behavior can be traced back to the
fact that working on statistics extracted from complete traffic
flows gives the AI model deeper insights on the traffic. Instead,
both the full-precision real-time models, working on 10 packets
each time, have a less comprehensive view of the traffic flows.
The CNN achieves a slightly higher F1 score, i.e., 0.06% with
respect to its FC counterparts: the exploitation of spatial in-
formation helps identify between benign and malicious traffic.
This validates the convolutional model as the best candidate
for a photonic implementation, losing only 0.06% with respect
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Fig. 4. PANN implementation of the CNN model. The floating-point baseline, i.e., electronic implementation, is also reported.

to the offline approach.

Based on these results, we focused on the theoretical
performance of a PANN architecture leveraging the same
architecture of the CNN model. As aforementioned, PANN
architectures have a focus on the inference phase leveraging
fixed-point with limited resolution. Thus we report the results
for varying bitwidths compliant with photonic resolution con-
straint, i.e., 2, 4, 8, in Fig. 4.

As expected, results show an F1-score increase for increas-
ing bitwidth, even though the differences among the different
resolutions are minimal. The highest value is obtained by
exploiting 8 bits, i.e., 99.87%, with a 0.03% decrease with re-
spect to the floating-point baseline. Exploiting a higher number
of bits can indeed alleviate the loss due to the quantization.
Further evidence for this is provided by the 2-bit scenario that
reaches the lowest F1-score, i.e., 98.74%.When comparing the
4 and 8-bit experiments with each other, the F1-score decrease
is only 0.14%.

Finally, photonic architectures suffer from a trade-off be-
tween computing speed and resolution: a higher operation
speed leads to a lower bit resolution [27]. Thus, the 4-bit
configurations can leverage all the advantages of photonic
accelerators, without experiencing a high drop of speed [31] ,
while achieving good F1-score values.

V. CONCLUSION

In this paper, to embrace the 6G vision of distributed au-
tonomy we proposed AI-based solution to distinguish between
normal and malicious packets at the base station level. This
architecture, while fulfilling intelligent security, is compatible
with the RAN-CN convergence that will be deployed in 6G
networks. Moreover, thanks to the exploitation of photonic
hardware, the neuromorphic computations will satisfy 6G
green computing requirements, outperforming electronic coun-
terparts in terms of energy, speed, and computing density.

Experiments exploiting FC architectures and CNN archi-
tectures reach good F1-score values, with the latter slightly
outperforming the former. Thus, we have proposed a PANN
architecture based on convolutions, highlighting the trade-off

between bitwidths and performance, i.e., both in terms of speed
and accuracy. In this scenario, the best compromise is given
by the 4-bit experiment.

Finally, this work is a first demonstration of how two key
enabling technologies, i.e., photonics and AI, can be leveraged
to fulfill 6G vision. To really have 6G-proof base stations,
other aspects should be examined. Among the others, creating
a federation of nodes that can collaboratively learn will be
of primary importance for a sustainable and intelligent 6G
network.
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