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ABSTRACT Trials and deployments of sixth Generation (6G) wireless networks, delivering extreme
capacity, reliability, and efficiency, are expected as early as 2030. Attempts from both industry and academia
are trying to define the next generation network infrastructure. 6G will set in motion the fourth industrial
revolution, delivering global, integrated intelligence. In this scenario, Artificial Intelligence (AI)-assisted
architecture for 6G networks will realize knowledge discovery, automatic network adjustment and intelligent
service provisioning. The long-term vision for implementing 6G security is to implement an autonomous,
self-learning AI-assisted architecture that can perform threat mitigation without disrupting the normal use,
enabling the resilience and reliability of the network and fulfilling security automation. This work proposes
a first implementation of a proactive threat discovery service to be deployed at 6G base stations, paving
the way for collective network intelligence in the context of cybersecurity mechanisms. Specifically, a fully
unsupervised Deep Learning (DL) model is presented, able to recognize both Denial of Service (DoS) Hulk
and DoS Goldeneye, with 97.0% and 92.2% mean F1-score respectively.

INDEX TERMS DoS attack detection, Machine Learning, Autoencoder, 6G, real-time detection, au-
tonomous networks, Artificial Intelligence.

I. INTRODUCTION

THE the deployment of 5G network infrastructure has
already begun, with a widespread growth expected in the

coming years [1]. Hence academy and industries are now fo-
cusing towards 6G to fulfill the requirements of applications
of the next decade. Indeed, various scenarios highlight the
limitations of 5G networks in terms of data speed, latency,
global coverage, and more [2]. Emerging applications like
extended reality, holographic communications, and digital
twin technologies will exploit the development of 6G network
infrastructures to fully unlock their potentials [3].

6G networks will deliver extreme capacity, reliability, and
efficiency. A key technology will be Artificial Intelligence
(AI), enabling the transition from connected things to col-
lective network intelligence [4], where Deep Learning (DL)
is exploited to provide distributed autonomy. To enable the
potentials of fully autonomous networks, AI systems need

to be integrated in every aspect of network management.
Although some works have proposed the exploitation of AI
algorithms at the communication infrastructure level [5], none
of the most recent advancements, such as AI-powered net-
work functionalities using collective network intelligence,
has been demonstrated in the context of 6G [2].

The emergence of AI-powered capabilities in 6G will un-
leash the potentials of proactive networks. Such networks
can perform operations in an autonomous way, such as self-
managing to maintain the desired network performance level,
or self-protection to secure the network and deal with threats.
Thus, security design exploiting AI systems will become
more critical to autonomously detect and mitigate threats
rather than current cryptographic methods [1].

In this context, the pivotal elements for enabling future
networks, particularly in critical scenarios like military and
banking applications, will be threat mitigation systems. Ad-

VOLUME 11, 2023 1



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ditionally, the massive device connections to 6G networks
will also pose new challenges to Denial of Service (DoS)
attack detection. These attacks represent a malicious effort to
overwhelm a target’s online services or infrastructure, making
them inaccessible to legitimate users. Such attacks can also be
distributed, involving a network of compromised devices, of-
ten referred to as a "botnet," coordinated to flood a target with
an overwhelming volume of traffic or requests. Among most
common DoS attacks, Hulk flood generates a unique pattern
at each and every request, with the intention of increasing the
load on the servers as well as evading any intrusion detection
and prevention systems. In addition, DoS GoldenEye is also
very common, exploiting HTTP Keep Alive and NoCache as
flags in the HTTP header. By exploiting keep alive, an HTTP
persistent connection is created, and thus a single TCP con-
nection remains open for multiple HTTP requests/responses.
Hence, multiple persistent HTTP connections with no cache
lead to a situation in which the web service’s resource pool
gets exhausted, because there is no controlling mechanism to
throttle down the requests.

Traditional methods for mitigating DoS attacks are be-
coming obsolete due to the rapid alteration and manipulation
of attack patterns and mechanisms [6], [7]. Consequently,
statistical and AI-driven methodologies can effectively ad-
dress various forms of malicious traffic [8], by identifying,
mitigating, and preventing these attacks. In addition, unsu-
pervised learning methods can be exploited to perform threat
mitigation without any prior knowledge of malicious traffic.
This is of particular interest in the identification of new types
of DoS attacks, for which data are not available during the
training phase.

Hence, with the long-term vision of realizing an au-
tonomous and self-learning network that can independently
perform threat mitigation without causing disruption to nor-
mal use, in this work we propose an unsupervised method to
perform DoS attacks detection based on DL. Specifically, the
proposed solution relies on a particular type of unsupervised
Neural Network (NN) models to perform feature learning on
unlabelled traffic flows, namely autoencoder; on top of the au-
toencoder latent space a Gaussian Mixture Model (GMM) [9]
is used to detect malicious packets. It is worth noting that the
system works on flows collected directly at the base station
level and not on statistics of traffic extracted offline, i.e., it
provides a robust real-time protection for future autonomous
networks. The real-time characteristic of the system is essen-
tial to alleviate the DoS attack damage as it is estimated that
the average cost of service disruption can reach 5600$ per
minute [10].

The remainder of this paper is structured as follows: in
Sec. II, related works are surveyed, highlighting the differ-
ence with the proposed approach and their suitability for 6G
networks. Sec. III presents the system architecture, providing
an insight on how it can be efficiently implemented at the
base station of 6G network infrastructure. Sec. IV reports
the experiments and discusses the results. Finally, Sec. V
concludes the paper.

II. RELATED WORKS
Enhancing network security is paramount for the safe deploy-
ment of different 6G verticals [11]–[13].
To address specific security challenges, researchers have

focused on innovative strategies tailored for 5G/6G networks.
Notably, DL systems have exhibited encouraging outcomes in
countering threats [14], owing to their adeptness in extracting
high-level features.
As an example, [15] introduces an Intrusion Detection

System (IDS) created using a Convolutional Neural Network
(CNN), designed to classify traffic flows. A comparison is
drawn between this proposed approach and an Recurrent
Neural Network (RNN) model, revealing the benefits of the
feed-forward architecture over the recurrent alternative. Al-
though the architecture seems promising, several limitations
might hamper its deployment in future network infrastruc-
tures. First of all, it requires a supervised learning phase, thus
making it unsuitable for discovering new types of attacks,
emerging every day [16]. Furthermore, the training of the
AI model is performed on statistics extracted from traffic
flows; this approach is not suited to work on real-time traffic
due to the need to wait for full traffic flows at the base
station. Similarly, in [17] an RNN with an autoencoder is
proposed to detect DoS attacks in Software Defined Net-
working (SDN) environments. This approach suffers from
the same supervised training issue mentioned before. Thus,
even this solution is biased by the training set that cannot
represent all the possible attacks to a 6G network. In addition,
new attacks appear every day, thus making this approach less
effective over time. In [18] the problem of real-time threat
identification is tackled. To this aim, the authors propose
to pre-process packets in matrices classified by a CNN. In
particular, by defining both the length of the segments of
traffic flows and the time window to collect the packets, the
developed solution can produce traffic observations in the
form of matrices that can be used for online attack detection.
The proposed system is trained in a supervised way, again
limiting the threat mitigation ability to known attacks.
Hence, all the aforementioned works have limitations that

hamper their deployment in future 6G network infrastruc-
tures, either concerning the issues with real-time detection
or the bias given by supervised approach used in the train-
ing phase. Instead, the solution proposed in this work can
address both aspects, providing a real-time and completely
unsupervised threat mitigation system for a fully autonomous
6G network.
Another recent work [19] proposes a novel feature selec-

tion technique for a DNN-based IDS, exploiting standard
deviation and difference of mean and median. Experiments
using a DNN showed a better performance compared to ex-
isting feature selection techniques for all considered intrusion
detection datasets with a reduced execution time. However,
this work still relies on statistics extracted from complete
traffic flows, making it unsuitable for 6G networks.
In the context of real-time unsupervised learning ap-

proaches, authors in [20] propose time-based features over
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TABLE 1. A summary of considered related works.

Work Main contribution Open challenges for deployment in 6G networks

[15] IDS based on CNN Supervised learning phase required and training of the CNN model
performed on statistics extracted from traffic flows.

[17] RNN with an autoencoder to detect DoS attacks in SDN environments Supervised learning phase is required.

[18] Techniques to pre-process packets in matrices and classification using
a CNN

Supervised learning phase is required.

[19] DNN with fusion of statistical importance for feature selection Work with statistical feature.

[20] Time-based features over multiple time windows to detect anomalous
DDoS traffic

Single class problem relying on reconstruction error. Explainability
missing.

multiple time windows to detect anomalous DoS traffic.
However, the authors tested a single-class problem, in which
attacks are identified exploiting reconstruction error of an
autoencoder. On the contrary, this work paves the way for
explainability, relying on a latent representation that can give
more insights and enable future works to recognize threats
never seen before.

A summary of the reported related works is presented in
Table 1, highlighting the main contribution and the open
challenges for deployment in 6G networks. The aim of this
paper is to overcome the open challenges, targeting a solution
suited for a 6G network base station-level implementation.

III. SYSTEM ARCHITECTURE
This section presents the proposed autonomous DoS attack
detection system, with an overview of the possible integration
of the proposed solution at the Radio Access Network (RAN)
level in Sec. III-A and an insight on the DL algorithms
highlighted in Sec. III-B.

A. INTEGRATION WITHIN THE NETWORK
INFRASTRUCTURE
5G base stations, also known as next generation eNBs
(gNBs), are crucial components of the wireless network in-
frastructure, providing connectivity to 5G devices, namely
User Equipments (UEs).

The solution proposed in this work complies with the cur-
rent gNB architecture and it is expected to be suited for future
6G base stations even though the architecture may slightly
change. As depicted in Fig. 1, the presented threat mitigation
system is deployed directly at the base station level, moving
security functionalities to the edge, to alleviate the load of the
core network and providing intelligence to the 6G nodes. In
particular, such an approach can be deployed by implement-
ing some of the 5G core network functionalities on top of
the base station. This choice goes in the direction of the CN-
RAN convergence, as highlighted in [21], [22]. For instance,
implementing a local User Plane Function (UPF) at the base
station will allow the gNB to perform computation on user
packets. Moving security functionalities to the edge of the
network is really important in the context of mobile networks,
primarily because of the anticipated costs linked to service
disruptions, as indicated in [10]. Hence, a solution placed

6G base station

Proposed threats
mitigation system


flow 1

flow 2

flow 3

flow 2

Matrix for flow x

Unsupervised
DL model

ThreatNon-threat

FIGURE 1. Proposed integration of the model in a future 6G base station.

as near as possible to where possible threats are generated
is of paramount importance. As a result, the development
of an on-site solution at the base station level capable of
efficiently identifying threats in real-time becomes of primary
importance for the evolution of NextG wireless networks.
The processing capabilities of the 6G base stations will be

leveraged to collect packets coming from the same flow to
form the matrix to be passed as input to the unsupervised DL
model.
The proposed implementation enables the evolution of the

gNB, used so far with the main goal of providing connectivity
to UEs. Indeed, to deploy fully-autonomous networks, base
stations should be realized as intelligent nodes, each one with
its own computational resources, able to make decisions on
their own. Thus, the deployment of a system at the gNB-
level, trainable in a totally unsupervised way and capable of
recognizing threats, fits well within this vision.

B. DL MODEL
In order to be amenable for a 6G architecture, in this work
we address two aspects: (i) capability of the DL model of
performing real-time detection and (ii) use an unsupervised
DL model.
Concerning the first aspect, packet flows are inspected

when they are relayed into the GPRS Tunnelling Protocol
(GTP) tunnel at the gNB level. This is realized exploiting an
UPF service deployed directly at the base station, forming
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Algorithm 1 Expectation-Maximization for Gaussian Mix-
ture Model (GMM)

1: Initialize cluster means µ(0), covariances σ(0), and mix-
ing coefficients ϕ(0)

2: Initialize convergence threshold ϵ
3: Initialize iteration counter t ← 0
4: while not converged do
5: E-step:
6: for each data point xi do
7: for each cluster k do
8: Compute the probability γ

(t)
i,k using:

9: γ
(t)
i,k ←

ϕ
(t)
k ·N (xi|µ(t)

k ,σ
(t)
k )∑K

j=1 ϕ
(t)
j ·N (xi|µ(t)

j ,σ
(t)
j )

10: end for
11: end for
12: M-step:
13: for each cluster k do
14: Update cluster parameters:

15: µ
(t+1)
k ←

∑N
i=1 γ

(t)
i,k ·xi∑N

i=1 γ
(t)
i,k

16: σ
(t+1)
k ←

∑N
i=1 γ

(t)
i,k ·(xi−µ

(t+1)
k )·(xi−µ

(t+1)
k )T∑N

i=1 γ
(t)
i,k

17: ϕ
(t+1)
k ← 1

N

∑N
i=1 γ

(t)
i,k

18: end for
19: Increment iteration counter t ← t + 1
20: Check for convergence: If ∥µ(t) − µ(t−1)∥ < ϵ and
∥σ(t) − σ(t−1)∥ < ϵ and ∥ϕ(t) − ϕ(t−1)∥ < ϵ, exit loop

21: end while

a local core network. To perform real-time computations,
instead of directly forwarding the incoming packets to the
core network, these are pre-processed at the gNB to extract
relevant features needed as inputs to the threat mitigation
system. The method pre-processes packets belonging to the
same flow to create a matrix of shape n × f as input to the
DL algorithm, where f represents the number of features and
n is the maximum number of packets for each flow within the
time window t [18]. Mathematically, supposing each packet
is represented by a vector of f features, i.e., p ∈ Rf , the
concatenation of n packets corresponds to amatrixm ∈ Rn×f .
To enforce a real-time strategy, when less than N packets
are gathered within the specified time window, the matrix is
augmented with zeros. This flexibility enables the method to
accommodate scenarios characterized by extended intervals
between packet arrivals. Ultimately, every attribute is scaled
to fit within the range of [0,1].

Regarding the second aspect, i.e., unsupervised learning,
we resort to autoencoders [23], i.e., data compression algo-
rithms based on NNs. Autoencoders are particularly interest-
ing for their capabilities to learn useful representations of data
without the need for labels. These structures are composed of
two parts: an encoder and a decoder. The encoder compresses
the input data to lower dimensional features, while the de-
coder takes the compressed features as input and computes its
output to be as close as possible to the original data. Working

on the compressed feature space of the autoencoders, i.e.,
the latent space, can lead to good results since computa-
tions are performed on learned features. Mathematically, an
autoencoder can be defined as two functions: (i) encoder
f (x) = h, with x representing the input data and h the latent
variable, and (ii) decoder g(h) = x′, with x′ representing
the reconstructed input. The encoder part of the autoencoder
can be represented as a non-linear mapping of inputs into
the latent space. To train this architecture, a loss function is
used to measure the difference between the original input data
and the reconstructed input. The goal is to minimize this loss
function so that the reconstructed input data is as close to the
original input data as possible. A very common loss function
is the Mean Squared Error (MSE), defined in Equation 1.

L =
1

N

N∑
i=1

(xi − x
′

i )
2 (1)

On top of the latent space, a GMM is used for clustering. It
assumes that the data is generated from a mixture of several
Gaussian distributions, each representing a distinct cluster.
Mathematically, a GMM with K components is defined as:

q(x) =
K∑
i=1

ϕiN (x|µi, σi) (2)

withN (x|µi, σi) being the i-th gaussian component Ci and ϕi
representing the mixture component weights, with the con-
straint that

∑K
i=1 ϕi = 1. These probabilistic models can be

seen as a generalization of k-means clustering to incorporate
information about the covariance structure of the data, as well
as the centers of the latent Gaussians. GMM presents one
advantage over k-means: it provides the probabilities of the
data point belonging to each of the possible clusters, i.e., soft-
clustering. Thus, for a given new data point, the algorithm
finds its probability belonging to each cluster. Therefore,
if for a particular cluster the probability is very low, this
can be used to identify the data point as an outlier. Mathe-
matically, a GMM is a linear superposition of m Gaussian
components, i.e., probability density functions with weight
coefficients summing up to 1. The expectation-maximization
(EM) method is used for estimating the parameters, i.e., mean
vector and covariance matrix, of a GMM. This algorithm has
two steps:

• E-step: probability of each data point belonging to
each of the components in the GMM, given the cur-
rent estimates of the model parameters; assuming that
N inputs are available, then this step calculates ∀i ∈
{1, ...,N}, j ∈ {1, ...,K}

γi,k =
ϕkN (xi|µk , σk)∑K
j=1 ϕjN (xi|µj, σj)

(3)

where γi,k is the probability that input xi is generated by
cluster Ck .

• M-step: the algorithm uses these probabilities to update
the model parameters such that the likelihood of the
data is maximized. This is done by setting the model
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parameters to the values that maximize the expected log-
likelihood of the data, given the current estimates of the
component membership probabilities. This step evalu-
ates for every gaussian component Ck the followings:

ϕk =

N∑
i=1

γi,k
N

(4)

µk =

∑N
i=1 γi,kxi∑N
i=1 γi,k

(5)

σk =

∑N
i=1 γi,k(xi − µk)

2∑N
i=1 γi,k

(6)

A pseudo-code for the expectation-maximization algo-
rithm is reported in Algorithm 1.

Hence, the proposed approach consists in learning repre-
sentations of normal traffic, fitting the GMM on deep em-
beddings obtained through the encoder and then identifying
anomalies, i.e., attacks, as points with very low probability of
belonging to normal traffic cluster. The pseudo-code for the
clustering on deep embeddings is reported in Algorithm 2.

Algorithm 2 Assign points to clusters based on GMM.
1: Input: Data point xi, GMM model parameters:
{µk , σk , ϕk}Kk=i

2: Output: Cluster assignment for data point xi
3: Initialize empty list of ri of probabilities for data point xi
4: Compute deep embeddings for xi using encoder non-

linear mapping. hi ← f (xi)
5: for each cluster k do ▷ Loop through each cluster

component
6: Evaluate probabilities for deep embeddings hi using

GMM parameters:
7: rik ← ϕkN (hi|µk ,σk)∑K

j=1 ϕjN (hi|µj,σj)

8: end for
9: Assign data point xi to cluster with highest probability:
10: ci ← argmaxk rik
11: Return cluster assignment ci

Thus, leveraging these two methodologies, i.e., autoen-
coder and GMM, we implemented a system trained in a fully
unsupervised way able to classify traffic flows in real-time.

IV. EXPERIMENTS AND RESULTS
To validate the proposed approach, experiments have been
carried out on the widely used CIC-IDS 2017 dataset [24],
containing both benign traffic andmalicious common attacks.

The exploited model architecture, obtained through a trial-
and-error approach, is depicted in Fig. 2: a convolutional
autoencoder is leveraged to learn features from traffic flows.
The goal of this work is to give a demonstration of how
the proposed approach can be used to enable unsupervised
learning techniques at 6G base stations, while the model
optimization is beyond the scope of this article. The encoder
is composed of 5 convolutional layers, with 8, 16, 32, 64 and

192 filters, respectively. At the end of the convolutional part,
2 dense layers are used, composed of 512 and 16 neurons
each, with the last layer representing the latent space encoding
of the matrix traffic flows. The decoder part is mirrored
with respect to the encoder structure. Rectified Linear Unit
(ReLU) has been adopted as activation function. Finally, on
top of the latent space a GMM is deployed to perform soft-
clustering. During inference, the decoder part is discarded,
since we are interested only in the soft-clustering and not in
the reconstruction error.

ENCODER DECODER

Input
Matrix

Reconstructed
MatrixLatent

space

Probabilities

z

GMM

FIGURE 2. Autoencoder model with GMM layer stacked on top of the
latent space. During inference, the decoder part is not considered.

Experiments have been carried out considering three possi-
ble values of the traffic flow length N : 10, 20, 50. To improve
the statistical significance of the experiments, DL and GMM
models have been trained and tested 5 times for each consid-
ered length N . The obtained results include the confidence
intervals at 95% confidence level. Each training phase has
been composed of 30 epochs, using Adam as optimizer and a
batch size of 256.
The presented approach must be implemented in a totally

unsupervised way and in a real-world scenario, where normal
traffic appears with high likelihood with respect to malicious
packets; indeed, most of the traffic received by base stations
is related to normal activities of UEs. Instead, when an attack
is performed towards the network, the traffic distribution is
the opposite.
For this reason, the training set has been balanced to

represent as much as possible a normal real use-cases, i.e.,
99 − 1% normal/attack traffic split. Furthermore, due to the
unsupervised nature of the model and the ultimate goal of
its deployment in a 6G base station, it would be impos-
sible to balance such data. The proposed DL architecture,
leveraging an unsupervised approach, can enable a scenario
where learning is done directly on packets received at the
base station, not needing human intervention in the training
phase. For instance, it may be possible to rely on the learned
representation of packets over time to identify new threats as
points belonging to new clusters in the latent space.

To test the performance of the devised model, experiments
where attacks are being performed towards the network are
considered. Specifically, DoS Hulk attack types have been
extracted to test the performance of the proposed model.
These attacks generate unique requests bypassing caching
engines, thus making the server present a unique page for
each request, until resource exhaustion. In this scenario, with
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FIGURE 3. Results of the experiments on DoS Hulk attacks for varying N .
The 95% confidence interval is also shown.

an attack currently carried out, the test distribution is the
opposite of that of the training set.

Furthermore, another experiment has been carried out
without any further retraining, considering a unknown DoS
attack, namely Goldeneye. These kinds of attacks destroy the
security in networks using ’HTTP Keep Alive + NoCache’ as
attack vector. Even in this scenario, we considered the same
imbalance as in the Hulk experiment.

The accuracy metric is not ideally suited to compare the
classification performance of the devised DLL model due to
the different distribution among the two classes. Indeed, the
accuracy is defined as:

TP+ TN
TP+ TN + FN + FP

(7)

with True Positive (TP) being the outcome where the model
correctly predicts the positive class, TrueNegative (TN) being
the outcome where the model correctly predicts the negative
class, False Positive (FP) being the outcome where the model
incorrectly predicts the positive class, and False Negative
(FN) being the outcome where the model incorrectly predicts
the negative class. Hence, the results might be significantly
skewed due to the different number of samples belonging
to different classes; thus, if a classifier is only able to label
samples belonging to the majority class (i.e., it has a constant
output) appearing the 99% of the time, the accuracy would be
99%. Still, the classifier would not work properly.

Thus, to address this aspect, the F1-score is adopted as
performance metric, defined as:

F1 − score =
2

1
P + 1

R

(8)

where P and R represent the precision and the recall, respec-
tively, defined as follows:

P =
TP

TP+ FP
; R =

TP
TP+ FN

(9)

Results of the DoS Hulk and DoS Goldeneye experiments
are reported in Fig. 3 and Fig. 4, respectively.

Regarding DoS Hulk, all three configurations show good
F1-score values. This can be compared with the best perform-
ingmodel in [24], that shows an F1-score of 98%, albeit work-
ing on statistics extracted on complete traffic flows which

91,7% 91,9%
92,2%

10 20 50
90%

91%

92%

93%

94%

N

F1
 s

co
re

FIGURE 4. Results of the experiments on DoS Goldeneye attacks for
varying N . The 95% confidence interval is also shown.

makes it unsuitable for real-time detection. In particular, the
N = 10 configuration reaches the highest score, i.e., 97.3%;
increasing N does not lead to better results for this type of
DoS attack. Themotivation can be traced back to the structure
of DoS Hulk attacks, where a unique pattern is generated at
each request, thus making N = 10 enough to detect these
kinds of attacks.
Furthermore, although both the N = 20 and N = 50 sce-

narios show promising performance, i.e., 96.8% and 96.9%
F1-scores respectively, the growth of N increases the compu-
tational burden for the base station, leading in the worst case
to a scenario where the base station cannot handle the full
load.

In Table 2 we report results of other works in the literature
exploiting the CIC-IDS 2017 dataset, comparing them with
the results in this paper. Their F1-score is slightly higher when
compared to our results. However, these implementations are
not practically amenable to a 6G deployment for the reasons
mentioned in Sec. II.

Concerning DoS Goldeneye, the configuration that reaches
the highest F1-score is N = 50, i.e., 92.2%, slightly outper-
forming both N = 10 and N = 20 counterparts by 0.5%
and 0.3%, respectively. In this experiment, increasingN leads
to an increasing F1-score. These attacks leverage both Keep
Alive and NoCache vectors and they can be harder to detect.
Hence, with DoS Goldeneye the growth of N can help the
DL model to better generalize on the attack structure and
consequently improve the detection effectiveness.

However, this scenario still suffers from the aforemen-
tioned problems due to the larger amount of packets that need
to be collected and pre-processed; furthermore, the slight F1
increase with respect to the two other configurations is not
enough to justify its deployment. Thus, we can conclude
that both N = 10 and N = 20 configurations give the
best trade-off between F1-score and computational burden.
Additionally, since the model was not trained on Goldeneye,
a retraining mechanism could also be implemented to further
improve the accuracy on unknown attacks when the propor-
tion of data outliers exceed a certain threshold.

We also compared these results with a supervised approach
based on an NN whose structure is equal to the encoder
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TABLE 2. Obtained F1-score and comparison with other works.

Model F1-score
ID3 [24] 0.98 (all-classes)
DNN with fusion of statistical importance [19] 0.9989 (all-classes)
DNN with genetic algorithm as feature selection [25] 0.9832 (all-classes)

N=10 N=20 N=50
Autoencoder +GMM 0.973 0.968 0.969

part of the autoencoder and that works on input matrices
composed of 50 packets. The NN is trained on DoS Hulk and
reaches an F1-score of 96.7%. This result is slightly below
the performance of the unsupervised approach for N = 50,
i.e., 0.2%. However, an interesting result is obtained in the
following scenario: when testing the supervised approach
on a previously unknown DoS attack, i.e., Goldeneye, the
performance drops to a mean F1-score of 54.46%. Compared
to the unsupervised approach, reaching 92.2%, this highlights
the need for unsupervised approaches for detecting new types
of threats that were not included in the training set.

Concerning the computational complexity of the archi-
tectures, a comparison among the number of Multiply-
Accumulate (MAC) operations of the encoder part is car-
ried out for varying N . Results are sketched in Fig. 5. The
computation complexity of GMM, given by O(N × K ), with
N representing the number of data points and K the num-
ber of components of the GMM, is indeed negligible when
compared to the one of NNs. As N increases, the number of
MAC operations increases, reaching more than 30M MACs
for N = 50. Mean inference time for varying N is also
computed for 10 samples, exploiting an 11th Gen Intel(R)
Core(TM) i7-11800H @ 2.30GHz CPU, resulting in 0.0288
s, 0.0291 s, and 0.0299 s for N = 10, N = 20, and
N = 50, respectively. As expected, increasing the number
of rows of the matrix produces an increase in the inference
time, however the difference is negligible among the different
values of N .

FIGURE 5. Number of MAC operations for varying N .

Finally, we can visualize the autoencoder latent space to
give a glimpse on encoding data distribution. The Goldeneye
test set with N = 50 is used as an example. The latent space
is in R16, hence it is necessary to resort to data dimension-

FIGURE 6. Visualization of the autoencoder latent space for the
Goldeneye test set with N = 50, using t-SNE.

ality reduction technique to visualize it. In particular, the t-
SNE technique [26] has been exploited using 2 dimensions.
As sketched in Fig. 6, most of the normal traffic flows are
encoded in a dense area (red dots on the right hand side of the
plot) with a limited presence of malicious packets (blue dots
mainly located away from normal traffic). The embedding
latent space of the traffic flows further confirms the capability
of the autoencoder to distinguish between the threat and non-
threat flows.

V. CONCLUSION
AI will play an important role in future 6G networks, provid-
ing intelligent behaviors in any aspects of the network man-
agement. In this context, AI-based 6G security can provide
smart and reliable security solutions [1]. Hence, this work
shows how a threat mitigation system exploiting convolu-
tional autoencoder and GMM can perform malicious flow
detection in a totally unsupervised scenario. To validate our
system, we used the CIC-IDS 2017 dataset, containing both
benign andmalicious traffic flows. Two possible DoS attacks,
namelyDoSHulk andDoSGoldeneye, have been studied.We
showed that in the first experiment, increasingN does not lead
to an increasing F1-score. Instead, in the other experiment,
as N increases, an increasing F1-score is observed. The two
different behaviours in the two experiments can be traced
back to the different structures of the attacks, with Hulk
exploiting only the NoCache mechanism, while Goldeneye
leveraging both Keep Alive and NoCache. We also compared
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the performance of a supervised approach to detect previously
unknown threats. Results highlighted the need for an unsuper-
vised approach to deal with such scenarios.

Summarizing, the demonstration provided in this work can
pave the way for future collective network intelligence moved
at the edge. Indeed, the proposed method can be considered
as a first step towards a first 6G intelligent node, capable
of continuously learning over flows collected at the base
stations. The exploitation of the latent space in addition to the
probabilities of each flow to belong to different classes can
be a helpful insights to determine also new types of attacks.
Indeed, if one point does not have high probabilities to belong
to the known classes and it is indeed very far from all the other
points, it may be an outlier corresponding to a new attack
category, thus triggering a retraining phase to improve threat
detection. In addition, this work can be applied as a decision
support system for future IDS. Indeed, the obtained F1-score
results do not highly differ from recent works related to DoS
in the context of 5G networks, typically ranging from 90% to
98% [27], [28]. Moreover, a mixed approach can be devised,
where the NN identifies threats and a human intervention is
needed to confirm the blacklisting of that specific UE.

Furthermore, models can be collaboratively learned by
multiple instances of nodes, leveraging distributed learning
techniques. Towards this direction, future works will study
the effectiveness of federated learning techniques to improve
the proposed solution. In addition to this, a distributed attack
could also be collaboratively detected by different base sta-
tions, exploiting for instance temporal information: if two or
more base stations recognize the same attacks in a certain
time slot, the threat may be due to a distributed attack to the
network. Additionally, methods to find the best performing
architecture for DoS problems, such as Neural Architecture
Search (NAS), can be utilized.
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