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Abstract—Beyond fifth-generation (B5G) networks (namely 6G)
aim to support high data rates, low-latency applications, and
massive machine communications. Integrating Artificial Intelli-
gence (AI) and Machine Learning (ML) models are essential
for addressing the network’s increasing complexity and dynamic
nature. However, dynamic service demands of B5G cause the
AI/ML models performance degradation, resulting in violations
of Service Level Agreements (SLA), over- or under-provisioning
of resources, etc. To address the performance degradation of
the AI/ML models, retraining is essential. Existing threshold
and periodic retraining approaches have potential disadvantages
such as SLA violations and inefficient resource utilization for
setting a threshold parameter in a dynamic environment. This
paper presents a novel algorithm that predicts when to retrain
AI/ML models using an unsupervised classifier. The proposed
predictive approach is evaluated for a Quality of Service (QoS)
prediction use case on the Open RAN Software Community (OSC)
platform and compared to the threshold approach. The results
show that the proposed predictive approach outperforms the
threshold approach.

Index Terms—Prediction, AI/ML, Retraining, 5G and Beyond.

I. INTRODUCTION

The envisioned Beyond 5G (B5G) networks have brought
a major transformation in the networking industry. With the
advent of new use cases, such as ultra-reliable low latency
communications (uRLLC), massive machine-type communi-
cations (mMTC), and enhanced mobile broadband (eMBB),
network operators need to accommodate these demands while
maintaining high quality of service (QoS) [1]. In view of the
B5G network complexity, intelligence has become an essen-
tial component of it to enhance the network performance.
The ability of Artificial Intelligence and Machine Learning
(AI/ML) algorithms to handle complex network architectures
makes them suitable and allows them to make more intelligent
decisions (e.g., resource allocation based on predicted future
traffic patterns).

Many consortia, such as European Telecommunications
Standards Institute (ETSI), Open Radio Access Network (O-
RAN) Alliance, Telecom Infra Project (TIP), 5G Infrastructure
Association (5G-IA), and 6G Smart Networks and Services
Industry Association (6G-IA) are working towards enabling
intelligence in the B5G. The ETSI based zero-touch network
service management (ZSM) framework aims to automate and

orchestrate the network service management and eliminate
manual intervention through the adaption of intelligence [2].
The ZSM framework can be realized through the O-RAN
Alliance architecture [3], where intelligence is enabled through
two logical RAN Intelligent Controllers (RICs): Non-real time
RIC (Non-RT RIC) and Near-real time RIC (Near-RT RIC).
The Non-RT RIC operates the use cases which have granularity
> 1 sec, whereas the Near-RT RIC manages the use cases
that have a granularity between 10 ms and 1 sec. The AI/ML
models run at the Non-RT and Near-RT RIC are referred to as
rApps and xApps, respectively.

The use of AI/ML models through RICs improves the
performance of RAN, however, several challenges need to be
addressed. The performance of AI/ML models greatly relies on
the data used for training. The dynamic service demands from
users can cause AI/ML model performance degradation, leading
to resource allocation and utilization issues [4]. Here, over-
provisioning of resources (e.g., bandwidth, storage, etc.) results
in the waste of resources, network congestion, and an increase
in operational expenditure (OPEX), while under-provisioning of
resources results in reduced network performance, poor QoS,
longer response time, and network outages.

The above-specified factors influence Service Level Agree-
ments (SLAs) between service providers and users. For in-
stance, in a smart ambulance use case exploiting B5G, the
SLA defines a minimum and maximum throughput of 25 Mbps
and 400 Mbps, respectively, with a response time of less than
20 ms. However, model performance degradation can cause
violation of the defined SLAs [5]. Therefore, it is crucial to
address the model performance degradation in B5G.

Retraining the model with newly arrived user data can help
to ensure the AI/ML model performance. In [6], the authors
proposed a threshold approach to trigger the model retraining.
This approach monitors the model performance metrics such as
accuracy, precision, recall, or the F1 score and initiates retrain-
ing if the values fall below or exceed a predefined threshold.
However, determining the appropriate threshold value poses
significant challenges, as setting it too low may result in exces-
sive computational costs from frequent retraining, while setting
it too high may lead to a decline in model performance and



Figure 1. ZSM components realized through O-RAN architecture.

violate SLAs. These issues highlight the complexity of setting
a threshold value in a highly dynamic environment. Another
approach in [7] uses periodic retraining, where the models
are updated at regular intervals regardless of fluctuations in
user traffic or the current performance of the AI/ML model.
The aforementioned threshold and periodic approaches for
retraining an AI/ML model are susceptible to SLA violations
during the retraining process, which is influenced by various
factors such as the location of retraining (i.e., cloud or edge)
and the time required for retraining the model.

The method of retraining an AI/ML model requires consid-
ering the location of the retraining either in the cloud or at
the edge. The cloud provides advantages such as a larger pool
of computational resources and the capability to process larger
datasets. On the other end, retraining at the edge offers benefits
such as reduced propagation latency by processing closer to the
end-user. However, retraining at the edge may be constrained
by the availability of computational resources, which indeed
may increase the retraining time.

This paper presents a novel approach that predicts when to
retrain by using an unsupervised classifier. This approach is
designed to take into account the additional delays (location
of retraining) involved in the retraining and replacement of the
AI/ML model. By considering all relevant factors, the proposed
approach reduces SLA violations and increases the efficiency of
computational resources. The main contributions of this paper
are summarized as follows: (i) mapping between the ZSM
framework and the O-RAN architecture; (ii) integrating the
proposed approach to predict when to retrain an AI/ML model;
and (iii) evaluating the proposed approach by considering the
Quality of Service (QoS) prediction use case over the O-RAN
software community (OSC) platform [8].

II. SYSTEM MODEL AND PROPOSED APPROACH

This section describes the system model and the proposed
approach to predict when to retrain an AI/ML model. Figure 1
shows the O-RAN architecture which is realized based on the
ZSM concepts and principles [9]. ZSM aims at orchestrating

network service provisioning, management, and scaling by
minimizing human intervention.

The ZSM-E2E service management domain is adopted as
the Service Management and Orchestration (SMO) module in
O-RAN, which is responsible for hosting all service modules,
management of network configurations, resource inventory,
and policy making. The functionalities of ZSM modules like
intelligence, analytics, and orchestration are realized as AI/ML
model management services using control loops, assessing and
improving the deployed services, and network management
services in O-RAN, respectively. These modules can be realized
through the Non-RT RIC in O-RAN.

Another component of the ZSM is domain controller, which
takes care of resource management and it can be realized
through Near-RT RIC in O-RAN, which controls radio re-
sources through E2 control messages. Some common modules,
such as domain data collection and services, are adopted
through a common database between Non- and Near-RT RIC.
Non-RT RIC runs in the cloud, whereas Near-RT RIC runs at
the edge in the considered scenario. The AI/ML model manage-
ment module in the Non-RT RIC is primarily responsible for
selecting when to retrain an AI/ML model using the proposed
approach, which predicts the requirement for retraining in
advance based on the newly arrived user traffic.

The proposed approach predicts when to retrain the AI/ML
model by exploiting an unsupervised classifier on the arrival
of user traffic. The classifier observes the arriving user traffic
and determines whether the incoming traffic belongs to the
observed or is different. If the new traffic arrives over a certain
period of time, then the proposed approach triggers retrain-
ing. Algorithm 1 depicts the proposed approach and Table I
reports definitions of the parameters/variables used in it. The
Algorithm 1 takes Tds, Te2e, ds, and an unsupervised classifier
(C) as input parameters and predicts whether an AI/ML model
retraining is required or not as an output. Here, Te2e can be
obtained from the SLAs between operators and users defined
for various use cases [5]. The algorithm starts by initializing a
variable called Nco, which represents the number of consecutive
data chunks (i.e., a small set of data from ds) [10] required to



check on the incoming data stream ds, that has new data (see
line 3). Here, the number of consecutive data chunks to be
observed (Nco) is defined as the ratio between Tds and Te2e.
This definition is derived after observing the convergence of
the model’s accuracy for various datasets with different values
of Tds. Noticed that the considered approach is working well
for the datasets under consideration [11], [12].

The ds splits into consecutive chunks of data with a length
of Nds and the classifier (C) performs classification over each
data sample in the data chunk (see lines 6-7). The classifier
assigns +1 if the data sample in the data chunk belongs to
the observed; otherwise assigns −1 to indicate it as the newly
arrived user data. The classification labels (i.e., +1 or −1) of
each data sample in the data chunk are stored in Ypredict. Our
approach counts the number of new data samples classified
under −1 (i.e., Ncd) from the Ypredict for each data chunk
(see lines 9-13). If the value of Ncd is at least one, then the
algorithm will check over the next data chunk. If the number
of consecutive data chunks that have new data (i.e., Ntd) is
equal to the Nco, then the proposed approach triggers AI/ML
model retraining (see lines 14-21). During the retraining, the
previously trained AI/ML model weights are updated based on
the newly available data and deployed as a xApp to predict
further.

Table I
DESCRIPTION OF VARIABLES USED IN ALGORITHM

Acronym Referring to / Definition
ds Incoming data stream
Tds Time taken to transmit the considered data

samples from ds
Te2e End-to-end delay of an application under con-

sideration [5]
Nco The number of consecutive data chunks to ob-

serve for the new data
Ntd To keep track of the number of data chunks that

have new data
Nds Number of data samples considered in Tds

Ncd To count the number of new data samples that
arrived in each data chunk

Ypredict Stores the classifier output in a list (i.e., Y)

III. EXPERIMENTAL SETUP AND RESULTS

This section presents the experimental setup considered to
evaluate the QoS prediction use case over the OSC RIC
platform, followed by a discussion of obtained results.

The proposed approach is evaluated for QoS prediction use
case that predicts the service quality (e.g., throughput) provided
by the network providers to their subscribers [13]. Figure 2
shows the experimental setup used to evaluate the considered
QoS prediction use case, where the proposed approach is
deployed at Non-RT RIC and integrated with the OSC RIC
platform.

We deployed the OSC Near-RT RIC framework (F-release),
an E2 simulator, and various open interfaces [8]. Specifically,
the Near-RT RIC framework is deployed as a Kubernetes pod
— it is defined as a collection of containers inside a node
of a Kubernetes cluster. In addition, the OSC Near-RT RIC
components include an E2 manager, a routing manager, a

Algorithm 1 Predict when to retrain an AI/ML model
1: Input : Tds, Te2e, C, ds
2: Output : Retrain or not
3: Nco ← ⌈ Tds

Te2e
⌉

4: Ntd ← 0
5: while data available do
6: for n← 0 to ⌊ length(ds)Nds

⌋ do
7: Ypredict ← C (ds[(Nds ∗n) to (Nds ∗ (n+1)−1)])
8: Ncd ← 0
9: for i← 0 to length(Ypredict) do

10: if Ypredict[i] is − 1 then
11: Ncd ++
12: end if
13: end for
14: if Ncd ≥ 1 then
15: Ntd ++
16: else
17: Ntd ← 0
18: end if
19: if Ntd is Nco then
20: Retrain the AI/ML Model
21: end if
22: end for
23: end while

subscription manager, an app manager, and a shared database
(i.e., InfluxDB), along with open interfaces like A1, E2, and
O1 as shown in Figure 2. As stated, all these components are
deployed as microservices in a Kubernetes cluster. Whenever a
xApp is onboarded into the Near-RT RIC, it writes its statistics
into the common database (i.e., InfluxDB).

A key performance metric monitoring (KPMMON) xApp in
the Near-RT RIC writes the statistics of each layer of the RAN
into the InfluxDB database. It periodically writes the statistics
of the data units used for each layer and an API function
inside the database calculates cell throughput upon the data is
updated. The onboarded QoS prediction (QP) xApp also writes
the predicted QoS values into the InfluxDB. The status of the
QP xApp onboarded into the Near-RT RIC is shown in Figure 3.
The QP xApp is built using a long short-term memory (LSTM)
model with three layers, each with 100 hidden units followed
by a rectified linear unit (ReLU) as an activation function to
forecast the QoS.

An OSC E2 simulator is composed of a 5G core, central
unit (O-CU), distributed unit (O-DU), and a radio unit (O-RU)
which communicate with the Near-RT RIC using E2 messages
such as: (1) E2 setup request; (2) E2 setup subscription, and (3)
E2 setup indication as shown in Figure 2. Here, an E2 simulator
is connected by multiple user equipments (UEs) with different
data rates configured through a customized JavaScript Object
Notation (json) file. These json files are used for launching
multiple UEs to generate various data rates.

Note that the current F-release of OSC does not provide
a complete implementation of SMO and Non-RT RIC frame-



Figure 2. Experimental Setup

Figure 3. Status of the onboarded QP xApp in the Near-RT RIC.

works as of now. Thus, in order to evaluate the QoS prediction
use case using the proposed approach, the missed functionalities
in OSC platform are implemented and deployed in a bare metal
server, for example, performing the off-line AI/ML models
training and onboard them in the Near-RT RIC as a microser-
vice [14] using the dms cli tool. Moreover, the proposed
approach is implemented as a REST API, and monitors changes
in user traffic by accessing real-time data (i.e., throughput) from
the InfluxDB database through a customized API.

The Near-RT RIC and E2 simulator are connected, and
integrated with the proposed predictive approach — which used
an unsupervised classifier to determine changes in user traffic
and trigger retraining when necessary — deployed in Non-RT
RIC to provide AI/ML model management functionalities such
as data collection and preparation, AI/ML model training and
its deployment.

In this paper, three different unsupervised classifiers are
explored, such as the One-Class Support Vector Machine
(OC-SVM), Isolation Forest (IF), and Local Outlier Factor
(LOF) [15], to detect changes in user traffic. The performance
of these classifiers is evaluated on the QoS dataset, which
is used for building the QP xApp. The obtained results are
presented in Table II. The LOF classifier outperformed the
other two or performed equally in terms of accuracy, precision,
recall, and F1-score. Hence, the LOF classifier is considered for
detecting changes in user traffic. The LOF classifier calculates
the local density deviation for each incoming user data sample
and assigns “+1” or “-1” whether the data sample belongs to
the trained data or not, respectively. The detailed description
of metrics (e.g., accuracy, F1-score) is presented in [15] for
interested readers.

The arrival of new user traffic can cause SLA violations
and resource provisioning issues [16]. Thus, there is a strong
need to detect changes in the incoming user data. The proposed
predictive approach exploits unsupervised classifier (i.e, “+1”,

Table II
COMPARISON OF UNSUPERVISED CLASSIFIERS

Classifier Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

One-class SVM [15] 0.72 1.0 0.72 0.84
Isolation Forest [15] 0.91 1.0 0.91 0.95
Local Outlier Fac-
tor [15]

0.99 1.0 0.99 0.99

“-1”) to detect the changes effectively in the newly arrival
data as detailed in Algorithm 1. In addition, the threshold
approach [6] is also used to detect the changes in newly
arrived data. However, it has to admit the violations till the
predefined threshold in order to trigger the retraining. The
proposed predictive approach is compared with the threshold
approach to detect the changes in the newly arrived data quickly
and adapt changes through retraining.

To evaluate the efficacy of the proposed predictive approach
— which predicts when to retrain and update the model based
on changes in user traffic — compared with the other two
approaches. The trained LSTM Model is used for predic-
tion without changing the model during the experimentation
duration. The Retrained-LSTM (threshold approach), where
the model is retrained periodically whenever the predefined
threshold exceeds. The proposed predictive approach, named
Retrained-LSTM (predictive approach), predicts when to retrain
the model immediately after observing changes in user traffic by
utilizing an unsupervised classifier over incoming user traffic.

The performance of the considered approaches is evaluated
by predicting throughput over a period of time with varying
user traffic rates. For the evaluation purpose, the UEs are
configured with different data rates than the trained data rates.
The values of Tds and Te2e are set to 15 ms and 10 ms in
the proposed predictive approach after considering propagation,
transmission, processing delays, and other factors [5]. The root
mean square error (RMSE) over each data chunk served as the
performance metric for the threshold approach, and it is set to
15. Note that the values used for Tds and Te2e are specific to
the considered use case in this paper and may vary depending
on the operator’s requirements and the specific application.



Figure 4. Evaluation of the proposed predictive approach using QP xApp

Figure 4 depicts the performance of the considered ap-
proaches in predicting throughput, and multiple UEs with dif-
ferent data rates are configured to create changes in user traffic,
which can be observed from 120 ms onwards. The proposed
predictive approach is triggered for retraining at 150 ms after
detecting changes in user traffic over two consecutive data
chunks ([120− 150] ms) and is replaced with retrained LSTM
model at 260 ms. For the same user traffic, the threshold
approach is able to detect changes in user traffic over the
interval [270 − 285] ms and trigger retraining at 285 ms
when its RMSE exceeded the defined threshold. The retrained
model of the threshold approach is replaced at 405 ms. A
performance comparison reveals that the changes in user traffic
are effectively adapted by the proposed predictive approach
and reduce the violations compared to the threshold approach.
Note that preparation of an updated model before the arrival
of new data may cause minimal SLA violations and resource
provisioning issues while avoiding unnecessary retraining to
save significant resources.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented an approach to predict when to retrain
an AI/ML model which can prevent severe SLA violations
and facilitate efficient resource provisioning. We realized the
ZSM framework through O-RAN architecture components.
We evaluated the proposed predictive approach with the QoS
prediction use case by using the Open RAN Software Com-
munity (OSC) platform and compared it with the existing
threshold approach. The future work will focus on exploring
Reinforcement Learning (RL) approaches to predict when to
retrain an AI/ML model.
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