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Abstract—This paper investigates the performance of scalable
user-centric (UC) distributed massive multiple-input multiple-
output (D-mMIMO) systems, widely known in the literature as
cell-free mMIMO, with limited processing capacity. Specifically, it
is assumed that the computational complexity (CC) of performing
channel estimation and precoding signals does not increase with
the number of access points (APs). In this regard, it is considered
that each user equipment (UE) can only be associated with a finite
number of APs. Moreover, a method is proposed for adjusting
the AP clusters according to the network implementation, i.e.,
centralized or distributed. We compare the proposed approaches
with a scalable UC system that does not perform AP cluster
adjustment and does not prevent the processing demands from
growing with the number of APs. Simulation results reveal that
UC systems can keep the spectral efficiency (SE) under minor
degradation even if the processing capacity is limited, reducing
the CC by up to 96%. Besides, the proposed method for adjusting
the AP cluster leads to further reductions in CC.

Index Terms—AP selection, cell-free networks, computational
complexity, distributed massive MIMO, user-centric approach.

I. INTRODUCTION

User-centric (UC) distributed massive multiple-input
multiple-output (D-mMIMO) systems, also referred to as
cell-free (CF) mMIMO, have been envisaged as one of the
most promising technologies for future mobile communication
networks (6G and beyond) [1], [2]. In these systems, several
access points (APs) are spread out in the coverage area,
and the user equipment (UE) is served by a subset of APs,
called AP cluster, providing a more uniform service and a
better coverage probability than cell-based systems due to the
enhanced macro-diversity and reduction of AP-UE distances
[3], [4]. Despite the benefits, computational complexity (CC)
can still be a drawback in these systems [5], [6].

Several baseline solutions consider that the complexity of
UC systems grows with the number of UEs and APs, which
is not practical [3], [4], [7]. In this regard, [8]–[10] proposed
a framework to provide scalability to UC systems. Essentially,
it limits the number of UEs each AP can serve. Consequently,
the network resources (i.e., processing requirement, signaling
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on fronthaul/backhaul, and total power) remain finite even if
the number of UEs goes to infinity, which is scalable. The
authors showed that scalable UC systems can still provide uni-
form coverage with negligible spectral efficiency (SE) losses
compared to the case when the UEs are served by all APs.
The conclusions are valid for both centralized and distributed
network implementations, in which the processing tasks are
executed in central processing units (CPUs) or distributively
in APs [10]–[12].

However, the current definition of scalability has addressed
only one of the issues of UC systems. More specifically,
although the network resources become independent of the
number of UEs, the signal processing complexity can still
grow with the number of APs [10]. This happens because
the total number of complex multiplications required to per-
form channel estimation and precoding is proportional to the
number of APs serving the UE [8]. Thus, a deeper investi-
gation into this topic is necessary, as the literature regularly
assumes that there are more APs than UEs in the network.
Another inconsistency of UC systems is that the AP selection
processes are not adapted to the network implementations.
They generally only intend to improve some performance
metrics, such as effective channel gain [13], reduce pilot
contamination [10], and others [14], [15]. Consequently, AP
clusters may benefit one implementation over another. For
instance, AP clusters with a large number of APs can degrade
the energy efficiency (EE) and CC of UC systems operating
in distributed implementation while they can improve the SE
for the centralized ones.

This paper investigates the performance of scalable UC
D-mMIMO systems whose CC to perform channel estimation
and precoding signals does not grow with the number of APs.
In particular, it is considered a UC system where the UE is as-
sociated only with a finite number of APs, i.e., the CPU keeps
the UEs connected only with the APs having the strongest
channel gains. To the best of the authors’ knowledge, this is
the first paper to propose an approach that limits the CC of
UC systems from growing with the number of APs. Moreover,
it is proposed a method to adjust the AP clusters according to
the network implementation. The proposed method works in
UC systems with and without processing capacity limitations,



and it can be used as an alternative solution for reducing CC in
UC systems without processing capacity limitation. As far as
the authors are aware, this is also the first work that proposes a
method for adjusting the AP clusters according to the network
implementation in UC systems. Simulation results demonstrate
that it is possible to keep the SE under minor degradation even
if the CC is reduced by up to 96%. Nonetheless, the centralized
implementation may require more processing capacity than the
distributed one to avoid significant losses in the SE. It is also
shown that the proposed strategy to adjust the AP clusters can
reduce CC and potentially increase EE.

Notation: Boldface lowercase and uppercase letters denote
column vectors and matrices, respectively, the superscript (·)H
denotes the conjugate-transpose operation, the N×N identity
matrix is IN , and the cardinality of the set A is represented
by |A|. The trace, euclidean norm and expectation operator
are denoted as tr( . ), ∥ . ∥ and E { . }, respectively, and the
notation NC

(
µ, σ2

)
stands for a complex Gaussian random

variable with mean µ and variance σ2.

II. SYSTEM MODEL

We consider a D-mMIMO network composed of L APs and
K single-antenna UEs, where L > K. Each AP is equipped
with N antennas, and the total number of antennas considering
all APs is M = NL. The APs connect to the CPUs through
fronthaul links, while the CPUs are linked to each other
through backhaul ones. The system operates on time-division
duplex (TDD) mode and it is assumed reciprocity for the
uplink (UL) and downlink (DL) channels. The channel vector
hkl ∈ CN×1 between the AP l and UE k undergoes an
independent correlated Rician fading, being defined as

hkl =

√
κkl

1 + κkl
hLOS
kl ejθkl︸ ︷︷ ︸

hkl e
jθkl

+

√
1

1 + κkl
hNLOS
kl︸ ︷︷ ︸

h̃kl

, (1)

where θkl ∼ U [0, 2π) denotes random phase shifts, hkl e
jθkl ∈

CN×1 means the deterministic line-of-sight (LOS) compo-
nent, and κkl stands for the Rician factor. The term h̃kl ∼
NC(0N , R̃kl) ∈ CN×1 is the small-scale fading component
with covariance matrix R̃kl = E{h̃klh̃

H
kl} ∈ CN×N .

A. Uplink Training and Channel Estimation

Each coherence block comprises τc samples, where τp
samples are dedicated for UL pilot signals and τd for DL data.
In the UL training phase, the UEs send pilot sequences of τp-
length to the APs. Then, the UL channels are estimated using
phase-unaware linear minimum mean square error (LMMSE)
estimation. The pilot signals are orthogonal to each other,
and a pilot tk can be reused by some UEs if K > τp. Let
Pk ⊂ {1, . . . ,K} denote the subset of the UEs assigned to
the pilot tk, including the UE k. The received pilot signal at
AP l can be expressed as [8]

ypilot
tkl

=
∑
i∈Pk

√
τpηi hil + ntkl, (2)

where ntkl ∼ NC
(
0N , σ2

ulIN
)

denotes the noise and ηi is
the power that the UE i transmits in the UL direction. The
LMMSE channel estimate is given by

ĥkl =
√
τpηkRklΨ

−1
tkl

ypilot
tkl

, (3)

where Rkl = E{hklh
H
kl} = (hklh

H

kl + R̃kl) and Ψtkl =

E{(ypilot
tkl

)(ypilot
tkl

)H} =
∑

i∈Pk
ηiτp(hilh

H

il + R̃il) + σ2
ulIN .

B. Downlink Data Transmission

In UC systems, each UE is associated with a subset of
APs called AP cluster, represented by Mk ⊂ {1, . . . , L}.
The connections between the UE k and APs are denoted by a
diagonal matrix Dkl ∈ NN×N , being defined as

Dkl =

{
IN if l ∈ Mk

0N if l /∈ Mk.
(4)

The subset of UEs served by an AP is denoted by Dl, and
it is restricted to |Dl| ≤ τp to ensure system scalability [10].
Let sk ∈ C denote the symbol intended for the UE k. The DL
received signal at the UE k can be expressed as

ydl
k =

L∑
l=1

hH
klDklwklsk︸ ︷︷ ︸

Desired signal

+

K∑
i=1,i ̸=k

L∑
l=1

hH
klDilwilsi︸ ︷︷ ︸

Interfering signals

+ nk︸︷︷︸
Noise

, (5)

where xl =
∑K

k=1 Dklwklsk represents the data signal sent
by the AP l, wkl denotes the precoding vector, and nk ∼
NC

(
0, σ2

dl

)
is the receiver noise. The terms sk and wkl satisfy

E
{
∥sk∥2

}
= 1 and E

{
∥wkl∥2

}
= ρkl, with ρkl being the

power allocated to the UE k regarding the AP l.
From (5), the achievable DL SE can be computed as [10]

SE
(dl)
k =

τd
τc

log2

(
1 + SINR

(dl)
k

)
, (6)

where SINR
(dl)
k denotes the DL signal-to-interference-plus-

noise ratio (SINR), which is given by

SINR
(dl)
k =

∣∣E{
hH
k Dkwk

}∣∣2
K∑
i=1

E
{
|hH

k Diwi|2
}
− |E {hH

k Dkwk}|2 + σ2
dl

, (7)

where wk ∈ CM×1 and hk ∈ CM×1 are, respectively,
the collective vectors of wkl and hkl. For instance, wk =[
wT

k1, ...,w
T
kL

]T
for l ∈ {1, · · · , L}. Besides, Dk =

diag (Dk1, ...,DkL) ∈ NM×M stands for the diagonal block
matrix. Note that (6) represents the widely known hardening
bound, which is a capacity lower bound valid for any choice
of precoding vectors [10].

C. Network Implementations and Computational Complexity

In the centralized implementation, the CPUs perform chan-
nel estimation, precoding, and process the DL signals [10].
This implementation provides better interference cancellation,
and the CPUs have access to channel statistics of the UEs. In
the distributed one, the APs perform these tasks locally using
local channel state information (CSI). The CPUs are responsi-
ble for encoding the DL data signals. This implementation



may require less signaling on the fronthaul/backhaul links.
However, if τc/(τc − τp) ≈ 1 and K ≫ N , the distributed
implementation may require much more signaling [11].
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Fig. 1: Flowchart of the AP cluster size control.

The CC is calculated as in [8], accounting for the sum
of the number of complex multiplications required from the
network for a generic UE to perform channel estimation and
generate the combining vectors in each coherence block. In UC
D-mMIMO systems, the CC is a function of many parameters,
such as the number of antennas N in each AP and the
number of UL pilots τp, but it differs according to the network
implementation and combining scheme. For the centralized
implementation, the CC depends on the number of APs serving
each UE (|Mk|) and the number of UEs that are partially
served by the same APs, being computed from [8, Table 5.1].
For the distributed implementation, the CC is a function of
the number of UEs served by each AP (|Dl|) and the number
of APs serving each UE (|Mk|), and is computed from [8,
Table 5.3]. The CC considers the combining vectors since it
is assumed that the precoding vectors are scaled versions of
the combining ones, such as in [10].

III. SCALABLE UC D-MMIMO SYSTEMS WITH LIMITED
PROCESSING CAPACITY

In scalable D-mMIMO systems, the network complexity
does not grow with the number of UEs since the number
of UEs that each AP serve is limited, i.e., Kl ≤ τp, where
Kl = |Dl|. Therefore, the maximum number of UEs served
by each AP remains finite even if the number of UEs K goes
to infinity. However, the complexity of performing channel
estimation and computing the precoding vectors can still grow
with the number of APs [10]. That is, as L increases, the
number of APs connected to the UE k (Lk) can also increase
resulting in more processing complexity from the network,
where Lk = |Mk|. To circumvent this issue, we rely on a
strategy where each UE can be associated only with a finite
number of APs, denoted as Cmax, with Lk ≤ Cmax [16].
We call this strategy maximum AP cluster size control. It is
noteworthy that despite having a similar function, the Cmax

on this work is fundamentally different from the one presented
in [16]. In this paper, Cmax is a parameter that refers to
the system processing capacity limitation that proportionates
a new type of analysis for UC D-mMIMO systems.

The maximum AP cluster size control procedure is pre-
sented in Fig. 1 and it can be described as follows: when a new

UE k enters the network, it measures the large-scale fading
coefficients of the APs in its vicinity, which is calculated
according to βkl = tr (Rkl) /N [10]. Then, it claims a master
AP to ensure its connection with at least one AP. The master
AP serves the UE k even if it has a poor channel condition
[8]. To select a master AP, the UE k requests a connection
to the available APs in its surroundings. Then, the available
APs respond, and the UE k chooses the one with the strongest
channel gain βkl to be its master AP. Let Al ⊂ Dl denote the
subset of UEs that the AP l is master. The available APs are
the ones presenting |Al| < τp, ∀l ∈ {1, . . . , L}.

After selecting the master AP, the UE k performs any UC
AP selection scheme. Then, the CPUs associated with the AP
cluster of the UE k compute the number of APs (Lk) serving
the UE k. If Lk < Cmax, no action is required. Otherwise,
the CPUs will drop the connection of the UE k with the Ek

APs presenting the weakest channel gains, where Ek denotes
the number of APs that exceed Cmax, which is calculated
as Ek = Lk − Cmax. To drop the APs in excess, the CPUs
associated with the UE k sorts the channel gains in ascending
order, such that β̃kl ≤ β̃kl ≤ · · · ≤ β̃kl, where β̃kl denotes
the sorted version of βkl, ∀l ∈ Mk. Thus, the CPUs impose
that Dkl = 0N for the first Ek APs presenting the smallest
channel gains after the sort operation. One can note that the
APs in excess can belong to different CPUs. Therefore, each
CPU drops the connection only of the APs linked to it by
fronthaul. When all the CPUs associated with the Ek APs in
excess perform these tasks, the Ek APs are finally dropped.

IV. AP CLUSTER ADJUSTMENT

In this section, it is proposed a heuristic method that adjusts
the AP clusters according to the network implementation. Such
method holds for any UC AP selection scheme, i.e., with and
without processing capacity limitation. Besides, it is a heuristic
strategy because only heuristic solutions are scalable [10]. In a
nutshell, the UEs are associated with a subset of APs following
any AP selection process. Then, the proposed method aims to
simultaneously reduce the number of UEs served by each AP
l (Kl) and the number of APs connected to each UE k (Lk)
while keeping the SE under minor degradation. In this context,
it is a novel way to reduce the CC and increase EE in scalable
UC distributed D-mMIMO systems. Throughout the analysis,
it is also assumed that each UE connects to a master AP.

A. AP Cluster Adjustment in the Distributed Implementation

In the distributed implementation, the proposed method
exploits the local long-term CSI at each AP and intends to
reduce Kl without causing significant SE degradation. When
all APs are involved, the average value of Lk is also reduced.
It is noteworthy that Lk is not directly reduced in distributed
implementation, and neither could it be since it would require
global long-term CSI at each AP.

The adjustment of the AP cluster relies on two metrics that
we have proposed: (i) the partial channel strength indicator
(β̄kl) and (ii) the total channel strength indicator (β̄l). We use
these metrics to prevent the less fortunate UEs from being



easily dropped by the AP. Therefore, they do not directly
represent the long-term CSI of the UEs that the AP serves.
Instead, they are the long-term CSI raised to a normalization
exponent, defined as λl, which provides a better balance
between the channel gains of the most and less fortunate
UEs served by the AP, such that 0 < λl < 1. Without this
normalization, the AP could easily drop a UE presenting a
weaker channel gain if the AP was also serving UEs with
stronger channel gains. However, these differences can be
reduced when the channel gains are raised to a power lower
than one and greater than zero, such as λl.

The partial channel strength indicator is given by β̄kl =
(βkl)

λl , where λl = mink∈Dl
(βkl)/maxk∈Dl

(βkl). The sec-
ond metric, called total channel strength indicator, is calculated
as β̄l =

∑
k∈Dl

β̄kl. In the proposed method, the two metrics
are used by each AP l to calculate β̄l,−k = β̄l− β̄kl, ∀k ∈ Dl.
The purpose of calculating β̄l,−k is to evaluate how much β̄l

is affected by dropping the UE k from the AP l. The AP l
keeps the connection of UE k only if

Dkl =


IN if β̄l,−k ≤ β̄mean

l

IN if k ∈ Al

0N otherwise,

(8)

where β̄mean
l =

∑
k∈Dl

β̄l,−k/Kl is a threshold value and
Al ⊂ Dl denotes the subset of UEs that the AP l is master.
One can note that the term β̄l,−k has to be smaller than β̄mean

l ,
because β̄l,−k will be small if the UE k has a large partial
channel strength indicator β̄kl, since β̄l,−k = β̄l − β̄kl. Mean-
while, β̄l,−k will be large if the UE k adds only a marginal
gain to β̄l. That is, if β̄kl represents a considerable percentage
of β̄l =

∑
k∈Dl

β̄kl, the term β̄l will be significantly reduced
if the UE k is disconnected from the AP l.

B. AP Cluster Adjustment in the Centralized Implementation

In the centralized implementation, the long-term CSI of
APs and UEs is available at the CPUs [10], [11]. Hence,
the proposed method exploits the global long-term CSI to
reduce Lk. At first, reducing Lk may appear counter-intuitive
since the centralized implementation has a better interference
suppression capability. However, since CC grows with the
number of APs serving the UE (recall that Lk = |Mk|),
the AP cluster expansion will not always be beneficial, and
reducing Lk may be necessary even in this implementation.

The partial channel strength indicator is now calculated
as β̄kl = (βkl)

λk , where λk introduces a balance be-
tween the serving APs presenting the smallest and high-
est channel gain to the UE k. It is assumed that λk =
minl∈Mk

(βkl)/maxl∈Mk
(βkl) and the total channel strength

indicator is computed as β̄k =
∑

l∈Mk
β̄kl. Then, the CPUs

calculates the contribution that each AP brings to β̄k as
β̄k,−l = β̄k − β̄kl, ∀l ∈ Mk. Therefore, a CPU keeps the
connection of AP l only if

Dkl =


IN if β̄k,−l ≤ β̄mean

k

IN if k ∈ Al

0N otherwise,

(9)

where β̄mean
k = σsi/2+

∑
l∈Mk

β̄k,−l/Lk and σsi denotes the
standard deviation of β̄k,−l, ∀l ∈ Mk. The term σsi is utilized
to make the CPUs drop fewer APs from the AP cluster of
UE k to exploit the centralized implementation’s capacity in
improving SE. It is worth noting that only the CPUs associated
with the AP cluster of the UE run the proposed method.
Besides, each CPU disconnects the UE from the subset of
APs linked to it by fronthaul.

C. Pros and Cons of the two AP clusters Adjustments

The utilization of the proposed method on a distributed
implementation proportionates a fronthaul signaling reduction
since the number of data flows on the fronthaul is proportional
to Kl [10], [11]. Besides, it allows the AP to carry out
fewer operations while attaining the same SE performance,
increasing the system’s EE. Moreover, the reduction of Lk also
reduces the signaling on fronthaul links as fewer APs forward
the data signal of UE k. The utilization of the proposed method
in a centralized implementation also allows significant savings
in CC resources and fronthaul signaling. In a centralized
implementation, the number of data flows on the fronthaul
is not proportional to Kl as in the distributed implementation.
However, the quantization level required to avoid loss of SE
increases with Kl. It is worth noting that in this paper, we have
considered that the AP cluster adjustment is only activated
when λl and λk are lesser than a threshold Γ to avoid excessive
adjustments, where Γ is a project parameter. We have set
Γ = 10−2 and Γ = 10−3 for the distributed and centralized
implementations, respectively.

V. NUMERICAL RESULTS

We consider a D-mMIMO network consisting of K single
antenna UEs and L APs, each equipped with N antennas. The
values of L, N , and K vary and are specified throughout the
results. The K UEs are uniformly distributed over a square
area of 1 × 1 km, and the distribution of the APs follows a
hard core point process (HCPP)1. The simulations focus on
DL channels and it is assumed that τc = 200, τp = 10,
and τd = 190. The total transmission powers of the UEs
and APs are 100mW and 200mW, respectively. We perform
Monte-Carlo simulations to account for different locations and
channel realizations and different AP/UE locations. The wrap-
around technique is also utilized to provide a better balance
regarding the amount of interference affecting each AP.

It is utilized an AP clustering scheme that jointly performs
the pilot assignment and AP selection [8]. In this one, the UEs
can connect to master and non-masters APs. The non-masters
serve only the UEs with the greatest channel gain in each
pilot. The first τp UEs are assigned to mutually orthogonal
pilots, and the remaining ones to the pilot causing the lowest
pilot contamination. Hereafter, we name it as scalable cell-
free (SCF) scheme. The 3GPP Urban Micro (UMi) path

1This method states that the distance between any two APs cannot be
smaller than dmin =

√
A/L, where A is the coverage area in square meters.

The first step is to randomly drop the APs based on a homogeneous Poisson
point process with mean rate 1/dmin, then randomly update the location of
APs that do not meet the spacing requirement until it is fulfilled.



loss model is adopted for modeling the propagation channel,
with LOS/non-line-of-sight (NLOS) conditions defined in the
Technical Report (TR) 38.901 [17]. It is considered that the
shadowing terms of an AP to different UEs are correlated, and
the computation of correlation matrices Rkl follows the local
scattering spatial correlation model [8]. Table I exhibits the
parameters used in the UMi and Rkl models [8], [18].

TABLE I: Parameters assumed for the UMi path loss and local
scattering spatial correlation model.

Parameter Value

Shadow fading standard deviation, σSF 4 dB
AP/UE antenna height, hAP, hUE 11.65 m, 1.65 m

RX noise figure (NF) 8 dB
Carrier frequency, bandwidth 3.5GHz, 100MHz

Angular standard deviations (ASDs) σφ = σθ = 15◦

Antenna spacing 1/2 wavelength distance

The power coefficients at AP l in the distributed imple-
mentation are set as ρkl = ρd

√
βkl/

∑
k′∈Dl

√
βk′ l, where

ρd is the maximum DL transmit power per AP. For the
centralized one, it is used the scalable fractional power control
[8]. In order to compute the precoding vectors, it is employed
the partial MMSE (P-MMSE) and partial regularized zero-
forcing (P-RZF) for the centralized implementation. For the
distributed, it is utilized the local partial MMSE (LP-MMSE)
and maximum ratio (MR). These techniques were chosen due
to their scalability features [10].

A. Impacts of Limiting the Processing Capacity

We start by evaluating a network composed of K = 25
UEs and L = 100 APs equipped with N = 1 antenna. Fig. 2
presents the cumulative distribution functions (CDFs) of the
SE of UC systems with and without processing capacity lim-
itation. It considers different processing capacity limitations,
i.e., several values of Cmax, and the system is compared with
a traditional UC scheme (i.e., Lk is not restricted), which we
have denoted as SCF.

In Fig. 2a, the SE is not as reduced by the variations of
Cmax. The SE even increases slightly for 10 ≤ Cmax ≤ 20.
This is because decreasing Lk also reduces Kl, helping
precoding techniques such as LP-MMSE (of local processing)
to mitigate interference. Still, this improvement has a limit
since the SE decays about 9% when Cmax goes from 40 to 5.
In Fig. 2b, the SE can suffer significant losses when Cmax is as
small as 5. Hence, reducing the AP cluster sizes (Lk) may lead
the centralized implementation to not exploit its full potential
in mitigating interference and improving SE. Therefore, it is
essential for this implementation to utilize more processing
capacity, such as Cmax ≥ 20.

Fig. 3 presents the SE and CC when the number of APs
varies and by setting K = 25, and Cmax = 20. In Fig. 3a, the
average SE grows with L for UC systems with and without
processing capacity limitation. Despite this, limited systems
have a significant advantage, as their CC does not always
increase with L, starting to decay from L = 60. This behavior
occurs because Kl reduces as L increases. Therefore, even
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Fig. 2: CDF of SE by varying Cmax from 5 to 30. Parameters
setting: L = 100, K = 25, and N = 1.
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TABLE II: Average number of APs per UE (Lk) and UEs
per AP (Kl) without and with AP cluster control. Parameters
setting: K = 25, N = 1, and Cmax = 20.

Method L = 95 L = 200

Kl Lk Kl Lk

SCF 10 38 10 80
With Cmax 5.25 19.98 2.5 20

if Lk remains constant, there will be a reduction in Kl, as
Table II demonstrates. Additionally, it is possible to observe
that the CC decreases by about 96.4% when the processing
capacity limitation is employed together with the P-MMSE
for L = 200. However, a centralized implementation may
require more processing capacity to be feasible compared to
the distributed implementation. For instance, the P-MMSE
scheme has a CC similar to LP-MMSE (without processing
limitation) even limiting the processing capacity, when L is
as large as 200.

Fig. 4 presents the EE achieved in the distributed imple-
mentation considering different values of Cmax and a UC
system without processing capacity limitation. Note that the
processing capacity limitation can provide a considerable
improvement in the EE, especially for small values of Cmax.
For instance, the processing capacity limitation guarantees an
increase of about 10% in EE for Cmax < 30. Besides, the EE
grows by about 61% in the LP-MMSE and 36% in the MR,
when Cmax decreases from 40 to 5. This happens because
reducing Kl also decreases the power consumption in each
fronthaul link. Thus, even though the system presents SE
losses when Cmax = 5, the reduction of power consumption
in each fronthaul link compensates them, increasing the EE.
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Fig. 4: Average EE achieved by varying Cmax. Parameters
setting: L = 100, K = 25, and N = 1.

B. Impacts of AP Cluster Adjustment

From now on, we will investigate the impacts of adjusting
the AP clusters in UC systems. We will focus on UC systems
without processing capacity limitation to assess the full bene-
fits of the AP cluster adjustment in reducing CC. Furthermore,
we will consider only the P-MMSE and LP-MMSE schemes
as they provide the best interference mitigation in centralized
and distributed implementations.

Fig. 5 presents the average SE and CC versus the number
of UEs K in a network composed of L = 100 APs equipped
with N = 1 antenna. It can be noted that the proposed method
causes a tiny reduction in the SE of P-MMSE. Despite this, the
losses are not as expressive as in Fig. 2b. This is because the
proposed method does not decrease Lk to a small value such
as 5, as Table III indicates. One can also note that the proposed
method causes a slight increase in the SE of LP-MMSE.
Moreover, the AP cluster adjustment also reduces the CC of
both network implementations, decreasing by up to 60% in the
P-MMSE scheme for K = 25. Finally, the proposed method
decreases Kl from 10 to 3.95 and Lk from 40 to 15.80, as
illustrated in Table III, indicating that the proposed strategy
can also increase the EE in distributed implementation.
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Fig. 5: Average DL SE (a) and CC (b) achieved by varying the
number of UEs K, when the proposed AP cluster adjustment
is employed. Parameters setting: L = 100 and N = 1.

TABLE III: Average number of APs per UE (Lk) and UEs per
AP (Kl) without and with AP cluster adjustment. Parameters
setting: L = 100 and N = 1.

Method K = 25 K = 50

Kl Lk Kl Lk

SCF 10 40 10 20
Distributed adjustment 4.32 17.3 4.38 8.75
Centralized adjustment 6.23 24.92 6.17 12.35

Fig. 6 presents the average SE and CC versus the number
of UEs L and N for a fixed total number of antennas
M = LN = 100 and setting the number of UEs to be



K = 25. One can note that the same discussions about
decreasing CC apply to this case. The difference is the SE
behavior. When L = 25 and N = 4, the LP-MMSE scheme
achieved the best balance regarding the amount of interference
and desired signal, leading the average SE to its maximum
value. Meanwhile, the P-MMSE presents better SE when the
AP clusters are adjusted for L < 100. This is because the
fewer APs in the coverage area, the further away the APs
will be from the UE. Hence, the AP clusters can have many
APs presenting poor channel gains. Therefore, disconnecting
some of these APs will not impact the UE’s performance.
Additionally, it can be noticed that CC reduces as L increases
and N decreases. The reduction is stronger in UC systems
with AP cluster adjustment. At L = 100, the proposed method
reduces the CC by about 63% and 78% for the P-MMSE and
LP-MMSE schemes, respectively. Therefore the AP cluster
adjustment can strongly reduce CC, especially for a large
number of APs.
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Fig. 6: Average DL SE (a) and CC (b) achieved by varying
L and N , while keeping M = 100, when the proposed AP
cluster adjustment is employed. Parameters setting: K = 25.

VI. CONCLUSIONS

This paper investigated the performance of scalable UC
D-mMIMO systems whose processing capacity limitations do
not increase with the number of APs. We analyzed UC systems
whose AP clusters can have only a finite number of APs
serving each UE. We also proposed a method that adjusts
the AP clusters to the network implementation. The results
demonstrated that restricting the network processing capacity

can improve the EE by up to 61%. However, it can degrade the
SE of centralized implementation when the maximum number
of APs serving the UE is small. On the other hand, AP clusters
comprising just a few APs almost do not harm the SE of the
distributed implementation. Simulation results also reveal that
the proposed AP cluster adjustment can slightly improve the
SE of distributed implementation while reducing the CC in
both network implementations. The CC can decrease by up
to 96% in centralized implementation. These results open the
way for future works to design practical UC systems with
limited processing capacity and systems that intend to adjust
the AP clusters to the network implementation. The cluster size
control proposed in this work can inspire future publications
related to UC systems with limited processing capacity as it
works in any AP selection scheme.
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