
 

Computation offloading in beyond 5G/6G networks with edge
computing
Citation for published version (APA):
Stan, C., Rommel, S., Vegas Olmos, J. J., & Tafur Monroy, I. (2023). Computation offloading in beyond 5G/6G
networks with edge computing: implications and challenges. In R. Mehmood, V. Alves, I. Praça, J. Wikarek, J.
Parra-Domínguez, R. Loukanova, I. de Miguel, T. Pinto, R. Nunes, & M. Ricca (Eds.), Distributed Computing and
Artificial Intelligence, Special Sessions I, 20th International Conference (pp. 473-479). (Lecture Notes in
Networks and Systems, LNNS; Vol. 741). Springer. https://doi.org/10.1007/978-3-031-38318-2_47

DOI:
10.1007/978-3-031-38318-2_47

Document status and date:
Published: 01/07/2023

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. apr. 2024

https://doi.org/10.1007/978-3-031-38318-2_47
https://doi.org/10.1007/978-3-031-38318-2_47
https://research.tue.nl/en/publications/e9f1a30c-d48b-4e5f-8b2b-8d4b894da376


Computation offloading in beyond 5G/6G
networks with edge computing: implications and

challenges⋆

Catalina Stan1[0009−0000−2072−2279], Simon Rommel1[0000−0001−8279−8180], Juan
José Vegas Olmos2[0000−0002−6796−1602], and Idelfonso Tafur

Monroy1[0000−0002−2935−7682]

1 Department of Electrical Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands

{c.i.stan, s.rommel, i.tafur.monroy}@tue.nl
2 NVIDIA Corporation, Ofer Industrial Park, Yokneam, Israel

juanj@nvidia.com

Abstract. The emerging beyond 5G/6G networks come with novel,
latency-sensitive and computation-intensive applications that require en-
hanced network performance and infrastructure to meet the expected
quality of experience for end users. To cope with this challenge, compu-
tation offloading leverages the benefits of multi-access edge computing to
migrate the application tasks requiring additional computing resources
for reduced execution delay. Although the benefits of introducing offload-
ing mechanisms into the network might be straightforward, the imple-
mentation is not trivial due to various communication and computation
trade-offs that must be made to obtain optimal offloading decisions. In
this paper, we provide an overview of computation offloading with high-
light on the networking perspective by looking at different offloading
decisions, current research efforts, as well as the challenges that may
be encountered while building an efficient and robust offloading mecha-
nism. In addition, we provide our view on the evolution of computation
offloading in 6G networks to support novel applications through enriched
infrastructure and powerful artificial intelligence techniques.

Keywords: Beyond 5G · 6G · edge computing · computation offloading.

1 Introduction

The integration of edge computing into the existing networks aims to bring ad-
ditional computing, storage and networking resources to support the emerging
5G/6G applications. In contrast to the traditional network architectures that
mainly rely on the centralized mobile cloud computing (MCC) to handle com-
plex computational tasks, edge computing introduces an intermediate layer, i.e.,
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the edge layer, into the current infrastructure where the computing capabili-
ties are distributed due to the dynamic deployment of the edge nodes [13]. In
the mobile networks context, the edge computing paradigm is often referred
to as multi-access edge computing (MEC) [3], as introduced by the European
Telecommunications Standards Institute (ETSI), and it will be used throughout
the rest of this paper. With this promising solution, the computing capabilities
are brought closer to the end users, therefore reducing the distance between
the source and destination of the data. Given this context, offloading intensive
processing to edge nodes through computation offloading has been employed in-
creasingly at a time when the latency requirements coming from applications
such as augmented reality/virtual reality (AR/VR), autonomous driving or in-
teractive gaming are more demanding with each generation of mobile networks.
Although computation offloading is not a new technique, with its origins dating
back to the early 2000s [7], it has been studied during the MCC environment
deployment and more recently in the MEC environment in order to alleviate
network congestion and improve quality of experience (QoE) for end users.

This paper gives an overview of the advantages of computation offloading
by comparing MCC with MEC, describes different offloading decisions and their
trade-offs, discusses the main challenges that arise during an offloading proce-
dure, as well as presenting our view on how offloading will fit into the future 6G
networks. The remainder of this paper is organized as follows: section 2 presents
an overview of computation offloading, section 3 provides a closer look at the
different challenges faced in offloading, section 4 presents our view on offloading
in 6G networks, and section 5 summarizes and concludes the paper.

2 Overview of computation offloading

In the computation offloading process, tasks coming from computation-intensive
applications are offloaded to remote servers such as MEC or MCC servers for
faster computing. To meet the expected QoE, which often translates to low la-
tency in terms of network response [2], offloading processing to MEC rather than
MCC has become a preferred solution due to shorter distance between the end
users and edge nodes. In addition, this decentralized data processing method
reduces the number of data flows transmitted in the network backhaul, there-
fore saving network bandwidth [7]. In the case of latency-tolerant applications,
offloading computing to MCC is more appropriate, increasing the availability of
resources at MEC for the latency-sensitive applications since edge resources are
limited compared to cloud servers in terms of storage and computing capabili-
ties. The aforementioned MEC and MCC aspects are summarized in Table 1 and
are the basis of understanding the benefits of computation offloading to different
elements of the network.

2.1 Computation offloading mechanisms

When building a computation offloading algorithm, one key aspect is to analyze
the type of applications involved in the offloading process since it provides in-
formation about whether an application task can be partitioned or not and, as a
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Table 1. Comparison between cloud and edge computing [9] [10].

Criteria Cloud computing Edge computing

Deployment Centralized Distributed
Configuration and planning Sophisticated Lightweight
Distance to end user Large Small
Latency High Low
Backhaul usage Frequent Infrequent
Computational capabilities High Limited
Storage capacity High Limited

consequence, if it can be included in the transmission queue for edge processing.
With this in mind, the output of an offloading algorithm may result in one of
the following decisions [9]:

– Local execution where application tasks are executed on the device.
– Full offloading to MEC where the entire computation is migrated at the edge.
– Partial offloading where the application is partitioned in multiple tasks that

can be executed part on the device and part on the MEC host.

In addition to the above offloading decisions, tasks can be sent to the cloud
for processing, but such solution may come at the expense of lower QoE. In
Figure 1, the three offloading decisions are depicted in the context of 5G networks
where the wireless and optical network (front-, mid- and backhaul) are the main
components of the communication path when transmitting tasks to MEC/MCC.

Making optimal offloading decisions in time-varying 5G networks is not triv-
ial, therefore various trade-offs must be made in the process. Some of these trade-
offs may include the following network parameters: wireless and optical commu-
nication time, execution and queuing time at MEC/MCC, energy consumption
for communication and computation, MEC load or MEC placement. Numerous
efforts have been dedicated to addressing the optimal offloading problem in edge
computing taking into account the implications of making these trade-offs be-
tween two or more network parameters. In the rest of this subsection, we will be
looking at some of them.

In [8], computation offloading is placed in a vehicle edge computing network
where tasks can be computed locally, on a fixed edge server or a vehicular edge
server. The offloading decision is made using deep reinforcement learning (DRL),
also including allocation for the computing and communication resources in the
action space, while considering the delay of the computation task. In [16], a com-
putation offloading scheme for dependent Internet of Things (IoT) applications is
proposed, where the target is to obtain the offloading decision (local or edge). In
the scheme, the decision is made with DRL by investigating the dependency be-
tween tasks, as well as the overhead, i.e., latency and energy consumption. In [17],
an intelligent ultradense edge computing framework is proposed to solve the of-
floading decision problem together with resource allocation and service caching
placement. DRL was employed to tackle the combined optimization problems,
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Fig. 1. Computation offloading decisions (local execution, full offloading and partial
offloading) in 5G network with MEC and MCC.

while federated learning was introduced for end user privacy preservation in the
model training phase. A DRL-based online offloading method is proposed in [5],
where the problem is divided into two sub-problems: offloading decision solved
with DRL and resource allocation in terms of time required for energy harvesting
and offloading, solved with one-dimensional bi-section search. Model-free DRL
is used in [14] to solve the offloading challenge by considering non-divisible and
delay-sensitive tasks as well as the load level dynamics of the edge nodes. The
decision to offload a task and the selection of which edge node to offload it to was
indicated in the DRL action space. A multilevel vehicular edge-cloud computing
network is considered in [6] where both computation offloading and resource al-
location are included in the optimization problem. Reinforcement learning was
employed to solve the problem by minimizing the vehicle’s consumption in terms
of communication and computation time, as well as energy consumption. Sim-
ilar network parameters were used in [4], where the aim was to maximize the
long-term system utility in an edge computing assisted power IoT scenario.

3 Challenges in computation offloading

Offloading comes with a wide set of challenges that may be considered while
building a computation offloading framework. Examples of such challenges are
described as follows:

– The type of offloading decision, presented in Section 2, is the center of the
algorithm and it is usually the first problem to be addressed.
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– In partial offloading, the dependability between application tasks is difficult
to approach and implement due to the execution order (one task may require
the output of another task) and software/hardware restrictions (some tasks
may require local execution, such as the camera input) [10].

– Definition of the network model and input parameters – it refers to the
choices regarding the offloading environment (e.g., single or multi-user, static
or mobile users, single or multi-MEC, MEC placement) and its parameters:
communication (e.g., transmit power, available bandwidth) and computation
capabilities (e.g., number of CPUs).

– Resource allocation for both communication (e.g., radio resources) and com-
putation (e.g., number of cores per task) to achieve the desired offloading
trade-off in terms of execution delay, transmission delay, energy consump-
tion, etc.

– Management of user mobility as well as edge mobility (e.g., when deploy-
ing vehicle edge computing, unmanned aerial vehicles (UAVs)) since network
parameters are time-varying and service continuity may be difficult to guar-
antee [9].

The examples above are proof that making optimal offloading decisions, espe-
cially in dynamic and dense 5G networks, is challenging, therefore employing
advanced artificial intelligence (AI) techniques is a natural step to solve this
problem, as seen lately in the literature [12].

4 6G vision for computation offloading

The range of applications is expanding with each generation of mobile networks,
each application requiring its specific network infrastructure model, techniques
and minimum performance indicators in order to provide the expected QoE.
Offloading to edge has been one of the techniques used for improving the per-
formance of latency-sensitive 5G applications such as AR/VR, face recognition,
gaming, video analytics that require enhanced computing capabilities. In future
6G networks more applications are expected to emerge, requiring AI on both
application and networking sides of the deployment. Therefore, AI-enabled com-
putation offloading is expected to become one of the key drivers in providing
real-time user experience for future applications including telepresence (mixed
reality co-design, merged reality game/work), AI-assisted vehicle-to-everything
(V2X), to name but a few [15]. With the increasing number of end devices,
far edge computing can become more relevant in future 6G networks since the
resources are placed even closer to the end users [1], creating a computing contin-
uum spanning across the network. As a consequence, the latency can be reduced
even more and the interaction and data sharing with external parties is avoided
for privacy reasons, but coming at the expense of complex offloading mechanisms
due to the increased number of computing nodes and offloading possibilities. In
addition, 6G architectures are set to employ distributed AI mechanisms such as
federated learning to preserve user privacy and reduce security risks by decou-
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pling the model training from the need to access the raw training data generated
and stored on end user devices [11].

5 Conclusion

This paper presented an overview of computation offloading starting with a
comparison between MEC and MCC and highlighting the benefits of these com-
puting resources. Then, different offloading decisions were introduced, followed
by a short description of current computation offloading works and the chal-
lenges faced when building an offloading framework. Finally, we described our
vision on the evolution of computation offloading in future 6G networks by look-
ing at novel applications, enhanced computing resources through far edge, and
federated learning as an AI training model solution for user data protection.
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