arXiv:2104.00048v1 [cs.SE] 31 Mar 2021

SkiffOS: Minimal Cross-compiled Linux for
Embedded Containers

Christian Stewart
Aperture Robotics LLC.
christian@aperturerobotics.com

Abstract—Embedded Linux processors are increasingly
used for real-time computing tasks such as robotics and
Internet of Things (IoT). These applications require ro-
bust and reproducible behavior from the host OS, com-
monly achieved through immutable firmware stored
in read-only memory. SkiffOS addresses these require-
ments with a minimal cross-compiled GNU /Linux sys-
tem optimized for hosting containerized distributions
and applications, and a configuration layering system
for the Buildroot embedded cross-compiler tool which
automatically re-targets system configurations to any
platform or device. This approach cleanly separates
the hardware support from the applications. The host
system and containers are independently upgraded and
backed-up Over-the-Air (OTA).

Index Terms—Container; Embedded Linux; Robotics;
Single Board Computer

I. INTRODUCTION

Single Board Computer (SBC) vendors distribute "board
support packages" (BSPs) containing a mutable root
filesystem with a package manager. Each platform requires
a unique combination of kernel, bootloader, and firmware
to operate, as a result BSPs typically lack portability.

Most Linux distributions use binary package managers to
install and upgrade applications and system files, managed
by distribution maintainers. Application dependencies co-
exist with system dependencies, often creating version con-
flicts resulting in out-of-date and potentially vulnerable
system software @] Package availability and versioning
can vary across processor architectures.

Package managers operate on a mutable filesystem with
imperative management commands (i.e. install, uninstall,
upgrade) E] Each modification to the system configura-
tion diverges from the known initial state, and can result in
unpredictable changes in system behavior such as broken
boot, inaccessible ssh, or malfunctioning drivers.

Declarative configuration models allow for reproducible
behavior from the OS. Embedded Linux systems such
as IoT sensors, industrial automation, TV set-top boxes,
webcams, kiosks, and other products often bundle a
GNU/Linux system into read-only firmware based on
declarative configurations. This guarantees reproducible
behavior, but comes with significant disadvantages in us-
ability: software typically cannot be installed or upgraded
without a system re-build and re-flash.

II. SKIFFOS: FIRMWARE FOR HOSTING CONTAINERS

Buildroot is a project providing a Makefile and KConfig-
based tool for automated cross-compilation of GNU/Linux
systems, including toolchains, kernels, drivers, userspaces,
and bootloaders %] It includes over 2500 software pack-
ages providing support for all major system utilities, and
provides an easy to understand structure and configura-
tion language allowing for rapid development across a
diverse set of hardware configurations M]

SkiffOS builds a minimal cross-compiled system for host-
ing containers across a diverse set of compute platforms,
with minimal variance in the user experience. It emu-
lates traditional firmware approaches with an immutable
operating system image which produces reproducible be-
havior, while providing the utility of package-manager
based GNU/Linux distributions with containerized envi-
ronments attached to persistent storage.

Configuration layers bundle configuration files, Buildroot
extension packages, system files, build hooks, and installa-
tion/utility scripts into named packages. Configurations
are supplied for numerous target systems and virtual-
ization environments. Hardware-specific performance op-
timizations are enabled at build time, producing a system
image tuned for the target computer. Makefile targets are
available for formatting and installing the system to boot
media. Multiple system configurations can be compiled in
parallel with "workspaces."

The SkiffOS Git repository can be embedded in exten-
sion projects as a sub-module and extended with out-of-
tree configuration packages and overrides. Buildroot is
referenced as a sub-module within the SkiffOS Git tree.
Checksumming, package version pinning, and reproducible
offline builds are used to ensure that a given SkiffOS
commit will always produce identical output.

Existing system userspaces can be imported and used
directly as container images Package managers can then
be used to install and manage software independently from
the host system. Multiple distributions and containerized
applications can be run in parallel. Workloads can be
defined as container images to enhance portability and
reproducibility E] Container management platforms such
as Kubernetes and Docker Swarm can be used to remotely
deploy and monitor workloads [6].

http://arxiv.org/abs/2104.00048v1

III. IMPLEMENTATION

SkiffOS is available under the MIT license, and references
Buildroot as a sub-module under the GPLv2 license, with
a patch series providing additional features and bug fixes.
Changes are frequently submitted upstream to the Build-
root mailing list.

As of Release 2020.11.7 the target support table is:

System Config Package Kernel
Apple Macbook (Intel) apple/macbook 5.11.2
BananaPi M1 bananapi/m1 5.11.2
BananaPi M1+ /Pro bananapi/mlplus 5.11.2
BananaPi M2+ bananapi/m2plus 5.11.2
BananaPi M3 bananapi/m3 5.11.2
Docker Container virt/docker N/A
Intel x86/64 intel /x64 5.11.2
Msft Windows (WSL) virt/wsl N/A
NVIDIA Jetson Nano jetson/nano 4.9.140
NVIDIA Jetson TX2 jetson/tx2 4.9.140
Odroid C2 odroid/c2 th-5.9.16
Odroid C4 odroid/c4 tb-5.9.16
Odroid HC1/2, XU3/4 odroid/xu th-5.9.16
Odroid U odroid/u tb-5.9.16
OrangePi Lite orangepi/lite 5.11.2
OrangePi Zero orangepi/zero 5.11.2
PcDuino 3 pcduino/3 5.11.2
PcEngines APU2 peengines/apu2 5.11.2
PiO pi/0 5.4.72
Pi 1 pi/1 5.4.72
Pi 3 (and 1/2) pi/3 5.4.72
Pi4 pi/4 5.4.72
Pine64 H64 pine64/h64 5.8.0
PinePhone pine64/phone megi-5.9.11
Pinebook Pro pine64/book 5.11.2
Qemu (VM) virt/qemu 5.11.2
Virtualbox (VM) virt/qemu 5.11.2
Rockpro64 pine64/rockpro64 5.9.0

Legal information and licenses for all dependencies can
be bundled together with the make legal-info command.
Some board support packages include proprietary binary
blobs (typically firmware) and are denoted as "Proprietary"
in the produced licensing information bundle.

A. Configuration Layers

The SkiffOS base configuration, builds a minimal host
operating system with hardware support, OpenSSH server,
and system management tools. Enabling additional config-
uration layers adds use-case specific functionality. Configu-
rations are organized into logical units called "layers" with
the following structure:

e cflags: additional target compiler flags

e buildroot: buildroot configuration fragments

e buildroot_ext: buildroot extensions

e buildroot_patches: buildroot package patches
o extensions: utility commands

o hooks: scripts hooking pre/post build steps

o kernel: kernel configuration fragments

o kernel_patches: kernel .patch files

e root_overlay: root overlay files

o metadata: metadata files

— commands: targets in "extensions' makefile
— dependencies: comma-separated layers
— description: single-line description
— unlisted: if exists, hidden from "help"
e resources: support files
o scripts: used by extensions and/or hooks
e uboot: u-boot configuration fragments
e uboot_patches: u-boot .patch files

Configuration layers can override options set by previous
layers, making it simple to re-target configurations to
various compute platforms by merging with the desired
hardware configuration layer. The set of desired configura-
tion layers is defined as an ordered comma-separated list,
for example:

SKIFF_CONFIG=pi/4,core/gentoo

SkiffOS can be extended ﬂ] by adding it as a sub-module
of a project repo. Project configurations can then be
specified in additional configuration layers.

B. Persistent data partition

The persist partition contains a skiff directory with:

e connections: network-manager connections

o core: skiff-core configuration and state

o docker: docker state and storage

e etc: configuration tree overlay

o hostname: system hostname

e journal: systemd-journald system logs

e keys: public keys for access to "root" user

o ssh: ssh server keys and persistent configuration

System startup scripts mount the persist partition and
create the file structure at boot time. Most configurations
will create a memory swapfile to avoid failure due to an out-
of-memory condition. OpenSSH is configured for public-
key access with the persist "keys" directory or in the OS
image.

The persist partition is automatically resized to fit the
remainder of the available storage space on first boot.
Bootloaders such as u-boot are sometimes copied to the
beginning of the storage media. Some systems use more
complex partition layouts mandated by the hardware ven-
dor. Skiff and Buildroot’s flexible configuration language
supports this variance between target systems.

C. Owver-the-air (OTA) upgrades

The SkiffOS system typically consists of fewer than five
files, including the root filesystem squashfs/initramfs, ker-
nel image, and kernel modules squashfs. The kernel and
immutable boot system can be atomically upgraded by re-
placing these files at run-time. The push_image. sh script
is provided, using rsync and ssh to upload the updated
files to a running system. In some cases, the firmware
and/or bootloader is also upgraded by the script.

./scripts/push_image.sh root@my-device-ip

D. Kconfig configuration fragments

Buildroot organizes software components into "packages."
Packages can be enabled and configured using the Kconfig
language. The available options can be explored using the
make menuconfig or make xconfig configuration menus.
Configuration options are specified in "fragments" that are
merged together into a single ".config" file and provided to
the Buildroot build system. The Buildroot build system
manages merging together kconfig and u-boot configura-
tion fragments and applying patches.

Example buildroot configuration fragment:

BR2_LINUX_KERNEL_DEFCONFIG="versatile"
BR2_LINUX_KERNEL CUSTOM_VERSION VALUE="5.11.2"

Buildroot and the Linux kernel use the Kconfig configura-
tion language. The available options can be explored with
make br/menuconfig and make br/kernel-menuconfig
configuration menus. Configuration fragments are merged
together in SKIFF_CONFIG order followed by lexicographic
filename order.

This example kernel configuration fragment enables the
ext3/ext4 filesystem:

CONFIG_EXT3_FS=n
CONFIG_EXT3_FS_SECURITY=y
CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_POSIX_ACL=y
CONFIG_EXT4_FS=y
CONFIG_EXT4_FS_SECURITY=y
CONFIG_EXT4_POSIX_ACL=y

The m option denotes a feature built as a kernel module
instead of "built-in."

E. Buildroot extensions

Configuration layers can extend Buildroot with packages
in the buildroot_ext directory. The buildroot_patches

directory contains patches for Buildroot packages, i.e. fixes
for platform errata. For convenience, kernel and uboot
patches can also be specified in the kernel_patches and
uboot_patches directories.

F. SkiffOS extensions

The extensions configuration layer directory contains
a Makefile which implements custom commands made
available to the user in the help screen:

cmd/pi/common/format: Format a SD card.
cmd/pi/common/install: Install to a SD card.

Commands are prefixed by their layer name and
can be executed as Makefile targets, for example,
make cmd/pi/common/install, and are declared in the
metadata/commands text file:

format Format a SD card and install bootloader.
install Installs to a formatted SD card.

G. Root filesystem overlay

The root_overlay trees are copied to the target filesystem
image at the end of the build in the order that the layers
were specified. This is used to add additional configuration
files or scripts to the root SkiffOS system image. For
example, the pi/common layer adds configuration under
the etc directory, and firmware configuration under the
usr directory.

H. Temporary local overrides

Configuration overrides can be specified in the overrides
directory tree, which contains additional configuration lay-
ers implicitly added to the build. For example, temporary
local buildroot overrides for all workspaces can be declared
in overrides/buildroot, and kernel configuration frag-
ments affecting the pi4 workspace alone can be declared
in overrides/workspaces/pi4/kernel.

IV. SkiFr CORE: CONTAINERIZED ENVIRONMENTS

Skiff Core includes the Docker containerization runtime
and a Go program for automating the creation and initial
setup of containerized environments. It can be enabled
with the skiff/core configuration layer. User sessions
are routed to the container assigned to their account.
Multiple OS distributions can be installed simultaneously
on a single machine. Existing userspaces including vendor-
provided software images can be imported as container
images.

The skiff-core binary is configured as the user shell, and
intercepts incoming SSH sessions to redirect them to the
corresponding container. The container setup process is
displayed if the container(s) are not yet ready. The usual
userspace init daemon, typically systemd, is run as PID
1, and standard approaches for defining systemd services
and the systemctl CLI tool function identically to when
running without containerization.

The "core" system can be updated or rolled-back inde-
pendently from the "root" operating system. Mountpoints
are used to mount user home directories and other tem-
porary paths so that "docker export" and "docker save'
include system files only. Containers are portable between
machines of similar architecture without target-specific
configuration.

The container system is configured with a YAML file:

containers:
core:
image: skiffos/skiff-core-gentoo:latest
mounts:
- /dev:/dev
- /etc/resolv.conf:/etc/resolv.conf:ro
- /mnt/persist/data:/home
[...]
users:
core:
container:
containerUser:
auth: {copyRootKeys: true}
images:
skiffos/skiff-core-gentoo:latest:
pull:
policy: ifnotexists
registry: quay.io
build:
source: /opt/skiff/coreenv/base

core
core

Several OS distribution configurations are available as
configuration layers. If a pre-built image is unavailable, or
the pull section of skiff-core.yaml is empty, the system
will instead build the included Dockerfile.

OS Distribution Config Package Website
Gentoo core/gentoo 2entoo.org
Manjaro core/manjaro manjaro.org
NixOS core/nixos nixos.org
Ubuntu skiff/core ubuntu.org

Additional images optimized for specific use cases are
available:

Image Description

gentoo-lto-exwm LTO, Apps, Emacs X11 Workflow

gentoo-kde KDE Desktop w/ apps
gentoo-lto 03, Graphite, Link-time optimize
nasa-cfs Flight systems framework

Flight systems framework
KDE Neon for PinePhone
Manjaro KDE for PinePhone

nasa-fprime
pinephone-neon

-manjaro-kde

The NASA Fprime[] and NASA cFS[d] images are

currently based on Ubuntu. To pull, for example, the
gentoo-1to image, which includes the Gentoo core image
with gentooLTO optimizations, the Docker CLI command
is:

docker pull skiffos/skiff-core-gentoo-lto:latest

When using "Skiff Core," the Docker container engine
is used, which leverages Linux namespaces and not vir-
tualization or emulation, implementing "OS-level virtual-
ization as opposed to hardware virtualization" ﬂm] The
PID namespace is used to allow running the usual system
initialization and management daemons as the privileged
PID 1 within the container.

The results of ﬂﬂ] show "an almost negligible impact
of the [Docker container| layer in terms of performance,
if compared to native execution." While throughput is
not significantly affected, the results of ﬂa] show that
namespacing can cause a measurable signal processing
delay. To mitigate potential impacts of processing latency,
most container isolation is disabled.

V. COMPARISON WITH EXISTING APPROACHES

This section discusses several of the current approaches
in use today, and their disadvantages when applied to
embedded Linux and/or robotics development:

1) Binary Package Distributions: Traditional board-
support packages use binary package distribution systems
such as Debian’s Advanced Package Tool (APT). Several
key disadvantages of this approach are lack of hardware-
specific optimizations, reliance on third-party infrastruc-
ture for builds and maintenance, inability to reproduce a
system from source code, and difficulties with portability.
The rolling nature of package upgrades introduces unpre-
dictable behavior when upgrading a system, particularly
when a long time has passed since the previous upgrade

(.

Current widely-used package management tools install
system files, firmware, and user applications together into
a single mutable "root" filesystem. Imperative install, re-
move, and upgrade commands instruct the package man-
ager to perform operations on the system. Interrupted
package manager operations might leave some files in a
partially written state. If the affected (now corrupted) files
are critical to system boot and/or reachability, the only
recourse to fix the system may be to remove the boot
media from the machine, connect it to a different device,
and fix the issue manually.

SkiffOS addresses the concern of always having repro-
ducible boot-up and reachability behavior in embedded
systems by booting to an immutable root filesystem image,
mounting persistent storage, and running user applications
and operating systems inside lightweight Linux containers.
This mitigates the risks of mid-upgrade power brownout:
the immutable portion of the system is always reachable,
allowing the user can connect to the container and fix the
problem without physical intervention.

https://github.com/skiffos/skiffos/tree/2020.11.7/configs/core/gentoo
https://gentoo.org
https://github.com/skiffos/skiffos/tree/2020.11.7/configs/core/manjaro
https://manjaro.org
https://github.com/skiffos/skiffos/tree/2020.11.7/configs/core/nixos/
https://nixos.org
https://github.com/skiffos/skiffos/tree/2020.11.7/configs/skiff/core/
https://ubuntu.org

Optimization of compute performance and reduction of
energy usage are important considerations for resource-
constrained embedded devices (the "power budget"). For
most robotics applications, the "power budget" is a sig-
nificant factor in determining maximum range/endurance.
Compilation of the operating system and applications from
source allows fine-tuning of build output to the hardware
to make maximum use of energy saving optimizations.

Backing up the system by creating a full bit-for-bit copy is
a time-consuming process which often leads to infrequent
backups and, as a result, occasional data loss due to
storage card failure. SkiffOS provides an alternate ap-
proach, in which existing OS distributions can be imported
as containers. Containers are easy to back up, restore,
roll-back, and are portable between machines of similar
architecture. Any vendor-provided BSP can be imported
as a container and used without sacrifices to workflow or
compatibility.

2) NizOS: NixOS E] argues that imperative package
managers destructively update the state of the system,
leading to "inability to roll back changes easily, to run
multiple versions of a package side-by-side, to reproduce a
configuration deterministically on another machine, or to
reliably upgrade a system." NixOS includes a declarative
package manager which performs modifications according
to a specification of target system state. Nix can perform
atomic upgrades with the ability to roll-back.

SkiffOS is designed around the same principles of im-
mutability and declarative configuration, but provides
these guarantees through compilation of the system in
advance, loading an immutable and ephemeral root system
at boot-up. It also addresses the other issues described
by the NixOS paper, including running multiple systems
side-by-side in Linux containers, and reproducing a system
configuration deterministically at a later time.

NixOS breaks the Filesystem Hierarchy Standard (FHS)
ﬂﬁ] declared by the Linux foundation and followed by
most distributions, instead using a flat symbolic link-based
structure. This causes incompatibility with software not
compiled by Nix. On the other hand, Buildroot [3] (and
therefore SkiffOS) follow the FHS for compatibility with
existing glibc-based binaries.

SkiffOS focuses on providing a minimal "shim" to ab-
stract away the differences between hardware (particu-
larly Single-Board Computers) such that the containers
are portable to new platforms. It does not distribute
complex packages like web browsers, graphical interfaces,
and other user applications. This responsibility is left to
the distributions running in Linux containers attached
to persistent storage and/or customization of the cross-
compiled system.

NixOS has been integrated with SkiffOS as a "core'
container configuration. This approach uses Buildroot to
manage the hardware specifics, and NixOS to handle
declarative system configuration and rolling application

upgrades in containers. Software not compiled by Nix can
still be run in a concurrent container.

3) Buildroot: The Buildroot [3] project provides a auto-
mated system cross-compiler. Users typically download
a Buildroot release, create a configuration by hand, and
store this along with their other project files. It focuses
on providing a toolset for Embedded Linux developers
to produce system images for use with a single target
platform and/or product.

SkiffOS extends Buildroot to simplify this process with
an easy to understand configuration layering architecture,
which merges together the platform support configs with
the selected components to configure the build automat-
ically. The configuration layers can be stored externally
to the SkiffOS tree. Existing Buildroot projects can be
adapted as configuration layers and ported to any of the
available target configurations.

4) Yocto Project: The Yocto Project [13] is closely com-
parable to Buildroot, and is primarily focused on the
python-based "bitbake" tool, which is derived from Gen-
too’s "portage," with a focus on cross-compilation of com-
plex embedded Linux systems. This is contrasted with
Buildroot’s focus on simplicity, using the Makefile and
Kconfig architecture ﬂﬂ] Yocto system configurations are
fragmented into "overlay" repositories from various sources,
while Buildroot focuses on a consolidated and curated
package tree with strict and opinionated code style. Yocto
has many more packages than Buildroot.

Buildroot B] forms a linear commit history with release
checkpoints, and Skiff releases pin the version of the
Buildroot sub-module along with the versions of the device
firmware, kernels, and board support files. A given Git
checkout is reproducible forever M] Yocto setups may
suffer from loss of availability of overlay repositories, or
de-synchronization between changes to the overlay reposi-
tories and changes to the core system configurations.

VI. CONCLUSION

SkiffOS offers reproducible system behavior, offline com-
pilation, immutable host system for containers attached
to persistent storage, board-specific build re-targeting via
config layers, and Over-The-Air upgrade/downgrade. The
host system and/or containers can be easily customized for
specific use cases with cross-platform configuration layers.
The "Skiff Core" workflow provides an easy way to import
any existing Linux userspace such that users will likely not
realize they are now working in a container. Background
workloads can run in parallel Linux containers, indepen-
dently isolated from the user workspace(s) including re-
source management and quality-of-service (QoS).

SkiffOS is available under the MIT license at:
https://github.com/skiffos /skiffos
Buildroot is available under the GPLv2 license at:

https://buildroot.org

https://github.com/skiffos/skiffos
https://buildroot.org

REFERENCES

[1] R. D. Cosmo, S. Zacchiroli, and P. Trezentos, “Package up-
grades in FOSS distributions: Details and challenges,” CoRR,
vol. abs/0902.1610, 2009. arXiv:[0902.1610. [Online|. Available:
http://arxiv.org/abs/0902.1610.

2] E. Dolstra and A. Loh, “Nixos: A purely functional
linux distribution,” in Proceedings of the 13th ACM SIG-
PLAN International Conference on Functional Programming,
ser. ICFP ’08, Victoria, BC, Canada: Association for Com-
puting Machinery, 2008, pp. 367-378, ISBN: 9781595939197.
pol: 10 . 1145 / 1411204 . 1411255, [Online]. Available:
https://doi.org/10.1145/1411204.1411255.

(3] Buildroot. [Online|. Available: https://buildroot.org/ (visited
on 03/17/2021).

[4] J. Diamond and K. Martin, “Managing a real-time
embedded linux platform with buildroot,” Fermsi
National Accelerator Lab, 2015. [Online]. Available:
https://www.osti.gov/biblio/1250794,

[5] P. Z. Vaillancourt, J. E. Coulter, R. Knepper, and B. Barker,
Self-scaling clusters and reproducible containers to enable sci-
entific computing, 2020. arXiv: |2006.14784 [cs.DC].

[6] Y. Wang and Q. Bao, “Adapting a container infrastructure
for autonomous vehicle development,” in 2020 10th
Annual Computing and Communication Workshop
and Conference (CCWC), 2020, pp. 0182-0187. DO
10.1109/CCWC47524.2020.9031129,

[7] Skiffos extension template. [Online]. Available:
https : / / github . com / skiffos / skiff - ext - example (visited
on 03/17/2021).

[8] R. Bocchino, T. Canham, G. Watney, L. Reder, and J. Levison,
“F prime: An open-source framework for small-scale flight
software systems,” 2018.

[9] D. McComas, “Nasa/gsfc’s flight software core flight system,”
in Flight Software Workshop, vol. 11, 2012.

[10] J. M. Mbongue, D. T. Kwadjo, and C. Bobda, Performance
exploration of virtualization systems, 2021. arXiv: 2103.07092
[cs.DC].

[11] R. Morabito, “A performance evaluation of container
technologies on internet of things devices,” in 2016 IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2016, pp. 999-1000. DOI:
10.1109/INFCOMW.2016.7562228,

[12] Filesystem hierarchy standard. [Online]. Available:
https:/ /refspecs.linuxfoundation.org/FHS 3.0/fhs-3.0.pdf
(visited on 03/17/2021).

[13] Yocto project. [Online]. Available:
https://www.yoctoproject.org/| (visited on 03/17/2021).

[14] T. P. Alexandre Belloni, “Buildroot vs. openembedded/yocto
project: A four hands discussion,” in Embedded
Linux Conference, 2016. [Online]. Available:
https://events.static.linuxfound.org/sites/events/files/slides /belloni- petazzoni- buildroot-oe_0.pdf
(visited on 03/17/2021).

https://arxiv.org/abs/0902.1610
http://arxiv.org/abs/0902.1610
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/1411204.1411255
https://buildroot.org/
https://www.osti.gov/biblio/1250794
https://arxiv.org/abs/2006.14784
https://doi.org/10.1109/CCWC47524.2020.9031129
https://github.com/skiffos/skiff-ext-example
https://arxiv.org/abs/2103.07092
https://doi.org/10.1109/INFCOMW.2016.7562228
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://www.yoctoproject.org/
https://events.static.linuxfound.org/sites/events/files/slides/belloni-petazzoni-buildroot-oe_0.pdf

	I Introduction
	II SkiffOS: Firmware for Hosting Containers
	III Implementation
	III-A Configuration Layers
	III-B Persistent data partition
	III-C Over-the-air (OTA) upgrades
	III-D Kconfig configuration fragments
	III-E Buildroot extensions
	III-F SkiffOS extensions
	III-G Root filesystem overlay
	III-H Temporary local overrides

	IV Skiff Core: Containerized Environments
	V Comparison with Existing Approaches
	V-1 Binary Package Distributions
	V-2 NixOS
	V-3 Buildroot
	V-4 Yocto Project

	VI Conclusion

