
 

 

 
Abstract—The detection of moving objects from a video image 

sequences is very important for object tracking, activity recognition, 
and behavior understanding in video surveillance. 

The most used approach for moving objects detection / tracking is 
background subtraction algorithms. Many approaches have been 
suggested for background subtraction. But, these are illumination 
change sensitive and the solutions proposed to bypass this problem 
are time consuming. 

In this paper, we propose a robust yet computationally efficient 
background subtraction approach and, mainly, focus on the ability to 
detect moving objects on dynamic scenes, for possible applications in 
complex and restricted access areas monitoring, where moving and 
motionless persons must be reliably detected. It consists of three 
main phases, establishing illumination changes invariance, 
background/foreground modeling and morphological analysis for 
noise removing. 

We handle illumination changes using Contrast Limited Histogram 
Equalization (CLAHE), which limits the intensity of each pixel to 
user determined maximum. Thus, it mitigates the degradation due to 
scene illumination changes and improves the visibility of the video 
signal. Initially, the background and foreground images are extracted 
from the video sequence. Then, the background and foreground 
images are separately enhanced by applying CLAHE.  

In order to form multi-modal backgrounds we model each channel 
of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture 
Model (GMM). Finally, we post process the resulting binary 
foreground mask using morphological erosion and dilation 
transformations to remove possible noise. 

For experimental test, we used a standard dataset to challenge the 
efficiency and accuracy of the proposed method on a diverse set of 
dynamic scenes. 

 
Keywords—Video surveillance, background subtraction, 

Contrast Limited Histogram Equalization, illumination invariance, 
object tracking, object detection, behavior understanding, dynamic 
scenes.  

I. INTRODUCTION 

HERE has been growing interest in the use of Background 
subtraction (BS) to localize moving objects in a video shot 

by a static camera or in a video stream [3], [11]. It is used as 
the first significant step in many computer vision applications, 
including objects tracking [11], [2], human-computer 
interaction [7], traffic monitoring [4], and video surveillance 
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[7]. In this perspective many approaches have been proposed 
as efficient Background subtraction methods [1]-[9]. 

Basically, the approach proceed by detecting the moving 
objects from the difference between the current Video frame 
“foreground image” and a reference frame “background 
model”.  

Background subtraction segments foreground objects more 
accurately in most cases compared to other moving object 
detection methods, and detect foreground objects even if they 
are motionless. However, one weakness of traditional 
background subtraction methods is that they are susceptible to 
environmental changes like gradual or sudden illumination 
changes.  

One reason for this drawback is that most methods assume a 
static background. In fact, automated surveillance systems 
typically use stationary sensors to monitor an environment of 
interest. However, the assumption of a stationary sensor does 
not necessarily imply a stationary background. Examples of 
nonstationary background are wind, ground vibrations, 
swaying trees or ocean ripples. 

 Hence we need to update the background model even if we 
suppose the use of stationary sensors. The update of the 
background model is one of the major challenges for 
background subtraction methods  

The existing approaches vary in computational speed, 
memory requirements and accuracy [8]. 

But, robust BS techniques are supposed to be flexible 
enough to handle variations in lighting, moving scene clutter, 
multiple moving objects and other arbitrary changes to the 
observed scene or scenes [16]-[20]. 

Thus, a principal proposition in this work is to introduce the 
illumination invariance by CLAHE (Contrast Limited 
Adaptive Histogram Equalization) enhancement technique. 
Having an automated surveillance system that is independent 
of illumination changes is important for real world 
deployment, and we reintroduce the use of Gaussian Mixture 
Model to provide an accurate background model with a 
morphological post processing techniques to give a 
representation of the scene background that consistently yields 
high detection accuracy. 

The rest of this paper is organized as follows: First we give 
a succinct review of the previous work in the field, second we 
describe promptly the basic technologies and methods used in 
our approach, third, we present the major finding of our 
research and finally we conclude our work. 

II. RELATED WORK 

Methods for background subtraction are subject of many 
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test exhaustively our approach on a standard dataset along 
with the corresponding ground truth data. 
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